
Let T(n) be a time function defined as a recurrence of the form
cn for n<n0

T(n) =
aT(n/b)+f(n) for n≥n0

for some constants a≥1,b>1,c1,c2,...,cn0-1≥0, T : ¿ Æ ¬+.

1. if f(n) Œ O(nk), such that k<logb a, then T(n) Œ Q(nlogba)

2s. if f(n) Œ Q(nk), such that k=logb a then T(n) Œ Q(nk log n)

2g. if f(n) Œ Q(nklogmn), s.t. k=logb a & m≥0 then T(n) Œ Q(nklogm+1n)

3. if f(n) Œ W(nk), such that k>logb a,
and $c>0, $n0>0, n≥n0 fi af(n/b)≤cf(n), then T(n) Œ Q(f(n)).

Master Method

{

Let n=j-i+1 in the binary search algorithm and let T(n) be a time
function defined as a recurrence of the form

c1 for n=1

T(n) =
T(n/2)+c2 for n≥2

for some constants c1,c2≥0, T : ¿ Æ ¬+.

2. if f(n) Œ Q(nlog21log0n), then T(n) Œ Q(n0 log1n) = Q(log n)

Example: binary search

{

Let n in the merge sort algorithm be the size to be sorted and let
T(n) be a time function defined as a recurrence of the form

c1 for n=1

T(n) =
2T(n/2)+c2n+c3 for n≥2

for some constants c1,c2,c3≥0, T : ¿ Æ ¬+.

2. if f(n) Œ Q(nlog22log0n), then T(n) Œ Q(n1 log1n) = Q(n log n)

Example: Merge sort

{

Let T(n) be a time function associated to the divide and conquer
multiplication algorithm defined as a recurrence of the form

c1 for n=1

T(n) =
4T(n/2)+c2n+c3 for n≥2

for some constants c1,c2≥0, T : ¿ Æ ¬+.

1. if f(n) Œ O(n1), s. t. 1<log2 4, then T(n) Œ Q(nlog2 4)=Q(n2)

Example: D&Q multiplication (I)

{

Let T(n) be a time function associated to the divide and conquer
multiplication algorithm defined as a recurrence of the form

c1 for n=1

T(n) =
3T(n/2)+c2n+c3 for n≥2

for some constants c1,c2≥0, T : ¿ Æ ¬+.

1. if f(n) Œ O(n1), s. t. 1<log2 3, then T(n) Œ Q(nlog2 3)@Q(n1.58)

Example: D&Q multiplication (II)

{

Recall the recursive binary search algorithm presented earlier in the course . The running time of
search(a,low,high,value), used to determine if one of a[low], a[low+1], ..., a[high] is equal to value,
depends on the size of high-low. As high-low increase, running time increases.

We use T(n) to denote the number of steps used to execute search(a,high,low,value) where
n=high-low+1. Calling search(a,low,high,value) could result in one of four possibilities:

1. low > high so the algorithm returns -1.
2. low ≤ high and value = a[mid] so the algorithm returns mid.
3. low ≤ high and value > a[mid] so the algorithm returns search(a,mid+1,high,value).
4. low ≤ high and value < a[mid] so the algorithm returns search(a,low,mid-1,value).

where mid = floor((high+low)/2)

The first two possibilities each use some constant number of steps and the second two, by defini-
tion of T(n), use T(high-(mid+1)+1) and T(mid-1-low+1), respectively. Thus, we see that:

T(n) = c1 if n < 1;
T(n) = c2 if n ≥ 1 and value = a[mid];
T(n) = T(high-(mid+1)+1) + c3 if n ≥ 1 and value > a[mid]; and
T(n) = T(mid-1-low+1) + c4 if n ≥ 1 and value < a[mid]

where c1, c2, c3 and c4 are constants.

Example: binary search

We can rewrite this equation in terms of n rather than using low and high:

high-(mid+1)+1 = high-mid
= high-floor((high+low)/2)
= high+ceiling(-(high+low)/2) because -floor(x) = ceiling(-x)
= ceiling(high - (high+low)/2)
= ceiling((high-low)/2)
= ceiling((n-1)/2)

mid-1-low+1 = mid-low
= floor((high+low)/2)-low
= floor((high+low)/2 - low)
= floor((high-low)/2)
= floor((n-1)/2)

Thus, we have:

T(n) = c1 if n < 1;
T(n) = c2 if n ≥ 1 and value = a[mid];
T(n) = T(ceil((n-1)/2) + c3 if n ≥ 1 and value > a[mid]; and
T(n) = T(floor((n-1)/2) + c4 if n ≥ 1 and value < a[mid]

Example: binary search

This is called a recurrence equation for T(n). Unfortunately, recurrence equations do not tell us
much about actual running so we need to derive a direct equation for T(n). This will be difficult to
do with the floor and ceiling functions so we obtain a recurrence inequality:

T(n) = c1 if n < 1;
T(n) ≤ T(n/2) + k1 otherwise (where k1=max(c3,c4))

This is true because binary search n/2 ≥ ceil((n-1)/2) and floor((n-1)/2) and binary search uses
the same or a larger number of steps when searching larger subsequences. We ignore the case
when value = a[mid] because we are interested in the worst case running time of binary search.
Finding a match never gives a worst case running time because the search stops as soon as a
match is found.

If instead we set a recurrence equality:

S(n) = c1 if n < 1;
S(n) = S(n/2) + k1 otherwise (where k1=max(c3,c4))

we find by the Master Method that S(n) is Q(log n). However since we can argue by mathematical
induction that T(n)≤S(n) for all n. Thus we conclude T(n) is O(log n).

Example: binary searchExample: binary search

