Master Method

Let $T(n)$ be a time function defined as a recurrence of the form
$T(n)= \begin{cases}c_{n} & \text { for } n<n_{0} \\ a T(n / b)+f(n) & \text { for } n \geq n_{0}\end{cases}$
for some constants $a \geq 1, b>1, c_{1}, c_{2}, \ldots, c_{n_{0-1}} \geq 0, T: \square \square \quad+$.

1. if $f(n) \square O\left(n^{k}\right)$, such that $\underline{k}<\log _{\underline{b}} \underline{a}$, then $T(n) \square \square\left(n^{\log _{b} a}\right)$

2s. if $f(n) \square \square\left(n^{k}\right)$, such that $k=\log _{\underline{b}}$ a then $T(n) \square \square\left(n^{k} \log n\right)$
2g. if $f(n) \square \square\left(n^{k} \log ^{m} n\right)$, s.t. $\underline{k}=\log _{\underline{b}} \underline{a}$ \& $m \geq 0$ then $T(n) \square \square\left(n^{k} \log ^{m+1} n\right)$
3. if $f(n) \square \square\left(n^{k}\right)$, such that $k>\log _{\underline{b}} \underline{a}$, and $\square c>0, \square n_{0}>0, n \geq n_{0} \square$ af(n/b) $\leq c f(n)$, then $T(n) \square \square(f(n))$.

Example: binary search

Let $\mathrm{n}=\mathrm{j}-\mathrm{i}+1$ in the binary search algorithm and let $\mathrm{T}(\mathrm{n})$ be a time function defined as a recurrence of the form
$T(n)= \begin{cases}c_{1} & \text { for } n=1 \\ T(n / 2)+c_{2} & \text { for } n \geq 2\end{cases}$
for some constants $\mathrm{c}_{1}, \mathrm{c}_{2} \geq 0, \mathrm{~T}: \square \square \quad{ }^{+}$.
2. if $f(n) \square \square\left(n^{\log _{2}{ }^{1} \log }{ }^{0} n\right)$, then $T(n) \square \square\left(n^{0} \log { }^{1} n\right)=\square(\log n)$

Example: Merge sort

Let n in the merge sort algorithm be the size to be sorted and let $T(n)$ be a time function defined as a recurrence of the form
$T(n)= \begin{cases}c_{1} & \text { for } n=1 \\ 2 T(n / 2)+c_{2} n+c_{3} & \text { for } n \geq 2\end{cases}$
for some constants $c_{1}, c_{2}, c_{3} \geq 0, T: \square \square \quad+$.
2. if $f(n) \square \square\left(n^{\log _{2} 2} \log ^{0} n\right)$, then $T(n) \square \square\left(n^{1} \log { }^{1} n\right)=\square(n \log n)$

Example: D\&Q multiplication (I)

Let $T(n)$ be a time function associated to the divide and conquer multiplication algorithm defined as a recurrence of the form
$T(n)= \begin{cases}c_{1} & \text { for } n=1 \\ 4 T(n / 2)+c_{2} n+c_{3} & \text { for } n \geq 2\end{cases}$
for some constants $\mathrm{c}_{1}, \mathrm{c}_{2} \geq 0, \mathrm{~T}: \square \square \quad+$.

1. if $f(n) \square O\left(n^{1}\right)$, s. t. $1<\log _{2} 4$, then $T(n) \square \square\left(n^{\log _{2} 4}\right)=\square\left(n^{2}\right)$

Example: D\&Q multiplication (II)

Let $T(n)$ be a time function associated to the divide and conquer multiplication algorithm defined as a recurrence of the form
$T(n)= \begin{cases}c_{1} & \text { for } n=1 \\ 3 T(n / 2)+c_{2} n+c_{3} & \text { for } n \geq 2\end{cases}$
for some constants $\mathrm{c}_{1}, \mathrm{c}_{2} \geq 0, \mathrm{~T}: \square \square \quad+$.

1. if $f(n) \square O\left(n^{1}\right)$, s. t. $1<\log _{2} 3$, then $T(n) \square \square\left(n^{\log _{2} 3}\right) \square \square\left(n^{1.58}\right)$

Example: binary search

Recall the recursive binary search algorithm presented earlier in the course. The running time of search(a,low,high,value), used to determine if one of a[low], a[low+1], ..., a[high] is equal to value depends on the size of high-low. As high-low increase, running time increases.

We use $T(n)$ to denote the number of steps used to execute search(a,high,low,value) where $\mathrm{n}=$ high-low+1. Calling search(a, low,high,value) could result in one of four possibilities:

1. low $>$ high so the algorithm returns -1 .
2. low \leq high and value $=a[m i d]$ so the algorithm returns mid.
3. low \leq high and value $>a$ [mid] so the algorithm returns search(a,mid +1 ,high,value).
4. low \leq high and value $<$ a[mid] so the algorithm returns search(a,low,mid- 1 ,value). where mid $=$ floor((high+low)/2)

The first two possibilities each use some constant number of steps and the second two, by definition of $T(n)$, use $T($ high- $(\operatorname{mid}+1)+1)$ and $T($ mid $-1-l o w+1)$, respectively. Thus, we see that:

$$
\begin{array}{ll}
T(n)=c 1 & \text { if } n<1 ; \\
T(n)=c 2 & \text { if } n \geq 1 \text { and value }=a[m i d] ; \\
T(n)=T(\text { high- }(\text { mid }+1)+1)+c 3 & \text { if } n \geq 1 \text { and value }>a[\text { mid }] ; \text { and } \\
T(n)=T(\text { mid- } 1-l o w+1)+c 4 & \text { if } n \geq 1 \text { and value }<a[\text { mid }] \\
& \\
& \text { where } c 1, c 2, c 3 \text { and } c 4 \text { are constants. } .
\end{array}
$$

Example: binary search

We can rewrite this equation in terms of n rather than using low and high:

```
high-(mid+1)+1 = high-mid
    = high-floor((high+low)/2)
    = high+ceiling(-(high+low)/2) because -floor(x) = ceiling(-x)
    \(=\) ceiling(high - (high+low)/2)
    = ceiling((high-low)/2)
    \(=\) ceiling \(((n-1) / 2)\)
```

mid-1-low+1 = mid-low
= floor((high+low)/2)-low
$=$ floor $(($ high+low $) / 2$ - low $)$
$=$ floor((high-low)/2)
$=$ floor((n-1)/2)

Thus, we have:

```
\(\mathrm{T}(\mathrm{n})=\mathrm{c} 1 \quad\) if \(\mathrm{n}<1\);
\(T(n)=c 2 \quad\) if \(n \geq 1\) and value \(=a[m i d] ;\)
\(T(n)=T(\) ceil \(((n-1) / 2)+c 3\) if \(n \geq 1\) and value \(>a[m i d] ;\) and
\(T(n)=T(f l o o r((n-1) / 2)+c 4\) if \(n \geq 1\) and value \(<a[m i d]\)
```


Example: binary search

This is called a recurrence equation for $\mathrm{T}(\mathrm{n})$. Unfortunately, recurrence equations do not tell us much about actual running so we need to derive a direct equation for $T(n)$. This will be difficult t_{1} do with the floor and ceiling functions so we obtain a recurrence inequality:

$$
\begin{array}{ll}
T(n)=c 1 & \text { if } n<1 ; \\
T(n) \leq T(n / 2)+k 1 & \text { otherwise }(\text { where } k 1=\max (c 3, c 4))
\end{array}
$$

This is true because binary search $n / 2 \geq \operatorname{ceil}((n-1) / 2)$ and floor $((n-1) / 2)$ and binary search uses the same or a larger number of steps when searching larger subsequences. We ignore the case when value $=a[m i d]$ because we are interested in the worst case running time of binary search. Finding a match never gives a worst case running time because the search stops as soon as a match is found.

If instead we set a recurrence equality:

$$
\begin{array}{ll}
S(n)=c 1 & \text { if } n<1 ; \\
S(n)=S(n / 2)+k 1 & \text { otherwise (where } k 1=\max (c 3, c 4))
\end{array}
$$

we find by the Master Method that $S(n)$ is $\square(\log n)$. However since we can argue by mathematical induction that $T(n) \leq S(n)$ for all n. Thus we conclude $T(n)$ is $\square(\log n)$.

