
Computer Science 308-250B Homework #5
Due Tuesday April 13, 2004, 13:30

•1) Write a Java class that implements a generic Heapsort of an array of Objects (of any
type). Your method must receive two parameters: the array and an extra object containing
the method to compare elements of the array. You must test your method with objects of
type String. You will also use this method for the rest of the homework.

•2) This problem deals with the Tree Isomorphism Problem. You will receive two trees
from a file and you must determine whether they are isomorphic, meaning that they are
the same tree upto relabelling of the vertices. Briefly this is what you program should do:

A) read two trees from a file
format: root(buy(c)(d))(e(fit))(go)
resulting tree: root

 buy e go

 c d fit
B) Re-root each tree at its center.
C) Assign an integer label to each vertex
D) The trees are isomorphic iff their sets of labels are equal.
E) If the trees are isomorphic then print out a 1-1 mapping between the vertices.

Algorithm Isomorphic(T1, T2)

Input: Rooted trees T1 and T2.
Output: If T1 is isomorphic to T2 then a 1-1 mapping between their vertices proving

that they are isomorphic; otherwise, an empty mapping.

C1 ← FindCenter(T1)
ReRoot(T1, first vertex in C1)
C2 ← FindCenter(T2)
ReRoot(T2, first vertex in C2)

M ← RootedIsomorphic(T1, T2)
IF M is empty and size(C2) > 1 THEN
 ReRoot(T2, second vertex in C2)
 RootedIsomorphic(T1, T2)

return M

Algorithm FindCenter(T)

Input: Rooted tree T.
Output: Returns the set of vertices at the center of T; that is,

the set of vertices furthest from a leaf. The set has size either one or two.

CalculateDistancesFromLeaves(T)
max ← max{ distance(v) | v in T}
return { v | v in T and distance(v) = max }

Algorithm CalculateDistancesFromLeaves(T)

Input: Rooted tree T.
Output: For each vertex v in T, calculates v.distance which is

the length of the shorest path between w and a leaf in T.

Use a postorder traversal of T to initially set
 v.distance ← min{ w.distance + 1 | w is a child of v }

Use a preorder traversal of T to finally set
 v.distance ← min{ v.distance, v.parent().distance + 1 }

Algorithm ReRoot(T, v)

Input: T is a rooted tree and v a vertex in T.
Output: T rooted at v.

T.setRoot(v)
p ← T.parent(v)
WHILE p ≠ null DO
 remove v from p's list of children
 add p to v's list of children
 g ← T.parent(p)
 make p's parent v
 v ← p
 p ← g

Algorithm RootedIsomorphic(T1, T2)

Input: T1 and T2 are rooted trees.
Output: If T1 is rooted-isomorphic to T2 then produces a 1-1 mapping between their

vertices, proving that they are rooted-isomorphic; otherwise, an empty mapping.

h ← T1.height()
IF h ≠ T2.height() THEN
 return empty mapping
L1 ← an array of h+1 empty sequences
L2 ← an array of h+1 empty sequences
L1[h] ← Initialize(T1, h)
L2[h] ← Initialize(T2, h)
FOR i ← h-1, h-2, ..., 0 DO
 L1[i] ← LabelLevel(T1, L1[i+1], i)
 L2[i] ← LabelLevel(T2, L2[i+1], i)
 IF L1[i].size() ≠ L2[i].size() THEN
 return empty mapping
 FOR i ← 0, 1, ..., L1[i].size() DO
 v ← vertex i in L1[i]
 w ← vertex i in L2[i]
 IF orderedlabels(v) ≠ orderedlabels(w) THEN
 return empty mapping
M ← empty sequence
GenerateMapping(T1.root(),T2.root(), M)
return M

Algorithm Initialize(T, h)

Input: Rooted tree t of height h.
Output: Initializes the label, orderedchildren sequence and orderedlabels sequence of

each vertex in T. Returns L, a sequence containing all vertices at depth h in T.

L ← an empty sequence
FOR each vertex v in T DO
 v.label ← 0
 v.orderedchildren ← empty sequence
 v.orderedlabels ← empty sequence
 IF T.depth(v) = h THEN
 L.insert(v)
return L

Algorithm LabelLevel(T, P, d)

Input: Rooted tree T, integer d between 0 and T.height(), and sequence P containing all
vertices at depth d+1 in T arranged in ascending order of their integer labels.

Output: Calculates integer label for each vertex v at depth d in T so that
if v and w are vertices in T at depth d then v.label = w.label if and only if
the subtrees rooted at v and w are isomorphic.
Returns sequence L containing all vertices at depth d in T arranged in ascending
order of their integer labels.

L ← empty sequence
FOR i ← 0, 1, ..., P.size()-1 DO
 v ← vertex i in P
 IF T.parent(v).orderedlabels.isEmpty() THEN
 L.insert(T.parent(v))
 T.parent(v).orderedlabels.insertAtBack(v.label)
 T.parent(v).orderedchildren.insertAtBack(v)
Sort L in descending order of the orderedlabels of each vertex
FOR each vertex v in L DO
 v.label ← k where v.orderedlabels is the kth largest in L

Algorithm GenerateMapping(v, w, M)

Input: Vertices v and w, roots of isomorphic subtrees, and sequence M.
Output: Adds 1-1 mapping between the vertices in the subtree rooted at v and the

vertices in the subtree rooted at w proving that the subtrees are isomorphic.

M.insert(pair v,w)
FOR i ← 0, 1, ..., v.orderedchildren.size()-1 DO
 x ← vertex i in v.orderedchildren
 y ← vertex i in w.orderedchildren

 GenerateMapping(x, y, M)

PLEASE CONSULT
http://crypto.cs.mcgill.ca/~crepeau/CS250/HW5+.pdf

for more details about this algorithm.

