
McGill University, SOCS 308-250B, Assignment 5 Winter 2002

Assignment 5: Tree Isomorphism

Important Note: You do not need to completely understand all of the discussion written here
to successfully complete the assignment. The discussion is meant to give you an idea of what you
are doing and hopefully clear up any ambiguities in the algorithm descriptions. Send comments
or questions to: msuder@cs.mcgill.ca.

Informally, we say that two graphs are isomorphic if one can be transformed into the other
simply by renaming nodes. For example, in the illustration below, the first two trees are iso-
morphic but the third is not isomorphic to either of the other two trees.

(ii)(i)

x

y

z

(iii)

c

b

a

v

w

d

e

In the illustration below, we draw trees (i) and (ii) so that they look exactly the same.

(ii)

a

e

(i)

v

x

y

z

d

w c

b

Formally, we say that two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is
a 1-1 mapping f : V1 → V2 such that {v, w} is an edge in E1 if and only if {f(v), f(w)} is an
edge in E2. We call such a mapping an isomorphism.

For trees (i) and (ii) in the example above, there exists a 1-1 mapping f , with f(v) = b,
f(w) = c, f(x) = a, f(y) = d and f(z) = e, such that:

• {v, x} is an edge in the first tree and {f(v), f(x)} = {b, a} is an edge in the second tree;

• {w, x} is an edge in the first tree and {f(w), f(x)} = {c, a} is an edge in the second tree;

• {x, y} is an edge in the first tree and {f(x), f(y)} = {a, d} is an edge in the second tree;
and

• {y, z} is an edge in the first tree and {f(y), f(z)} = {d, e} is an edge in the second tree.

Another possible 1-1 mapping is g with g(v) = c, g(w) = b, g(x) = a, g(y) = d and g(z) = e.
For this assignment, you will implement an algorithm that determines whether or not two

trees are isomorphic and, if so, returns an isomorphism between the two trees. The algorithm
runs in Θ(n log(n)) time where n is the number of vertices in each tree.

1



McGill University, SOCS 308-250B, Assignment 5 Winter 2002

1 Rooted Tree Isomorphism

Before tackling the general problem for trees, we first consider a slightly simpler problem: deter-
mining whether or two rooted trees are isomorphic. In other words, given two trees T1 = (V1, E1)
and T2 = (V2, E2) whose roots are v1 and v2, respectively, we want to know if there is an iso-
morphism f : V1 → V2 between T1 and T2 that maps the roots onto each other, that is, with
f(v1) = v2.

If such an isomorphism exists then for each child v of v1 there is a child w of v2 such that
f(v) = w and the subtree rooted at v is isomorphic to w. In fact, this implies a recursive
algorithm for solving the problem: the algorithm when applied to two rooted trees recursively
determines which subtrees rooted at children of the tree roots are isomorphic. When the recursive
calls terminate it is then easy to determine whether or not the trees are isomorphic. For example,
in the illustration below isomorphic subtrees are assigned the same integer labels so it is easy
to see that the two rooted trees are isomorphic— both trees have two subtrees labelled 2, one
labelled 3 and one more labelled 5.

v1 v2

3 2 25 2 5 23

Unfortunately, this algorithm is very inefficient because it must determine whether or not each
pair of subtrees is isomorphic.

However, generalizing the observations above, we see that for each vertex v at depth i in T1

there is a vertex w at the same depth i in T2 such that:

1. f(v) = w and

2. the subtree rooted at v is isomorphic to w.

From this generalization we can now obtain an efficient algorithm. Rather than starting with
the tree root, this algorithm begins with vertices at depth h where h is the height of each tree.
The algorithm then works its way up the tree labelling the subtrees rooted at each level so that
if two subtrees rooted at the same level are given the same label then they are isomorphic. We
store the label of each subtree at its root.

The subtrees rooted at depth h each consists of exactly one vertex, a leaf; therefore, these
subtrees are all isomorphic to one another. Thus, we assign each of these subtrees the same
integer label 0.

Moving up to subtrees rooted at depth h − 1, we see that these subtrees consist of a root
and zero or more children at depth h. Two of these subtrees are isomorphic iff their roots each
have the same number of children. Therefore, we label each subtree with the number of children
the subtree root has. Thus, subtrees whose roots are leaves are labelled 0, subtrees whose roots
have one child are labelled 1, subtrees whose roots have two children are labelled 2, and so on.

Once we reach depth 0 ≤ i ≤ h− 1, all subtrees rooted at depths i + 1, i + 2, . . . , h have
been labelled so that isomorphic subtrees at the same depth have the same label. Each subtree
rooted at depth i consists of a root and zero or more labelled subtrees at depth i + 1; therefore,
two subtrees are isomorphic iff their depth i + 1 subtrees have the same labels. For example, if
subtree A contains subtrees labelled 3, 2, 5, 2 and another subtree B contains subtrees labelled

2



McGill University, SOCS 308-250B, Assignment 5 Winter 2002

2, 5, 3, 2 then they are isomorphic. On the other hand, if a subtree C contains subtrees
labelled 2, 5, 3 then A is not isomorphic to C because C has only one subtree labelled 2. To
make comparing sets of labels efficient, we store the labels as a sorted sequence in the subtree
root. For example, the roots of A and B would store the sequence (2, 2, 3, 5) and the root of
C would store (2, 3, 5).

The algorithm terminates after labelling the trees at depth 0. The two trees are isomorphic
if and only if the roots are assigned the same labels.

If the two trees are isomorphic, then the algorithm constructs an isomorphism first by pair-
ing up the tree roots and then by recursively constructing an isomorphism for corresponding
isomorphic subtrees rooted at their children. We can make this part of the algorithm efficient
by having each vertex store a sequence of its children sorted by their subtree vertex labels. For
example, if the root v of subtree A stores the sorted sequence (2, 2, 3, 5) then v has four
children, one corresponding to each of the four labels. If w and x are the children corresponding
to the label 2, y the child corresponding to 3 and z the child corresponding to 5 then v would
contain the additional sequence (w, x, y, z). Then, if the root v′ of subtree B stores the same
sequence (2, 2, 3, 5) and the additional sequence of ordered children (w′, x′, y′, z′) than one
isomorphism between A and B contains the pairs (v, v′), (w, w′), (x, x′), (y, y′) and (z, z′).

Before giving the algorithm in detail, we apply it to the following trees:

(i)
(ii)

j k

e

l

f

b

m

g h i

c d

a

ur ts

po

w x y z

v

q

n

We let L[0], L[1], L[2] and L[3] be sequences storing the vertices of each tree at depths 0, 1, 2
and 3, respectively. Thus:

L[0] = (a, n)
L[1] = (b, c, d, o, p, q)
L[2] = (e, f, g, h, i, r, s, t, u, v)
L[3] = (j, k, l, m, w, x, y, z)

We begin by assigning each vertex in L[3] an empty sequence of subtree labels and sorted children
and an integer label 0:

L[3] j k l m w x y z
subtree labels () () () () () () () ()

label 0 0 0 0 0 0 0 0
sorted children () () () () () () () ()

3



McGill University, SOCS 308-250B, Assignment 5 Winter 2002

We then move to the next depth 2:

L[2] e f g h i r s t u v
subtree labels (0, 0) (0) (0) () () () (0) () (0) (0, 0)

label 2 1 1 0 0 0 1 0 1 2
sorted children (j, k) (l) (m) () () () (w) () (x) (y, z)

Then to the next depth 1:

L[1] b c d o p q
subtree labels (1, 2) (0, 1) (0) (0, 1) (0) (1, 2)

label 2 1 0 1 0 2
sorted children (f, e) (h, g) (i) (r, s) (t) (u, v)

Finally, we finish by labelling the roots:

L[0] a n
subtree labels (0, 1, 2) (0, 1, 2)

label 0 0
sorted children (d, c, b) (p, o, q)

The labels assigned to each root is 0 so the two trees are isomorphic. The resulting isomorphism
is:

{(a, n), (b, q), (e, v), (j, y), (k, z), (f, u), (l, x), (c, o), (g, s), (m,w), (h, r), (d, p), (i, t)}.

The algorithm below efficiently assigns integer labels to each vertex at depth i by first sorting
L[i] according to the sorted subtree labels sequence stored at each vertex in L[i]. After L[i] is
sorted, roots of isomorphic subtrees in L[i] appear next to one another. For example, sorting
L[1] in the example above would change it from (b, c, d, o, p, q) to (d, p, c, o, b, q) because

(0) ≤ (0) ≤ (0, 1) ≤ (0, 1) ≤ (1, 2) ≤ (1, 2).

Notice that we’re sorting lexicographically just like we sort words in a dictionary.

Algorithm RootedIsomorphic(T1, T2)

Input: T1 and T2 are rooted trees.
Output: If T1 and T2 are rooted isomorphic trees then return an isomorphism from T1 to T2;
otherwise, return an empty mapping.

h ← max(T1.height(), T2.height())
L ← an array length h + 1
Use BFS to add all vertices of depth i in T1 and T2 to L[i], 0 ≤ i ≤ h
for each vertex v in T1 or T2 do

v.label ← 0
v.orderedlabels ← empty sequence
v.orderedchildren ← empty sequence

for i ← h− 1, h− 2, . . . , 0 do
for j ← 0, 1, . . . , L[i + 1].size()− 1 do

v ← vertex j in L[i + 1]
v.parent().orderedlabels.insertLast(v.label)

4



McGill University, SOCS 308-250B, Assignment 5 Winter 2002

v.parent().orderedchildren.insertLast(v)
Sort the vertices of L[i] in ascending order of their orderedlabels sequences.
for each vertex v in L[i] do

v.label ← k − 1 where v.orderedlabels is the kth largest in L[i]
M ← empty sequence
if T1.root().label = T2.root().label then

GenerateMapping(T1.root(), T2.root(), M)
return M

Algorithm GenerateMapping(v, w, M)

Input: Vertices v and w, roots of isomorphic subtrees, and sequence M .
Output: Adds an isomorphism to M between the subtree rooted at v and the subtree rooted at
w.

M .insert(pair v,w)
for i ← 0, 1, . . . , v.orderedchildren.size()−1 do

x ← vertex i in v.orderedchildren
y ← vertex i in w.orderedchildren
GenerateMapping(x, y, M)

2 General Tree Isomorphism

Surprisingly, most of the difficult work has already been done for solving the general tree iso-
morphism problem. All we need to do is to root each tree so that if the two trees are isomorphic
then there is an isomorphism that maps the roots onto each other. After we have rooted the
trees, we simply use the algorithm for rooted trees to find an isomorphism if one exists. One
way to do this is to choose the roots from the centers of each tree.

2.1 Center of a Tree

The center of a tree is the set of vertices furthest from a leaf. One way to find the center is to
repeatedly remove all leaves until either a single vertex or two vertices connected by an edge are
left. The sequence of trees drawn below illustrates this algorithm. The black circles represent
vertices that have been removed from the tree. After removing all leaves three times, we finally
discover the center of the tree, represented by the only remaining white circle.

The algorithm below implements this algorithm but without actually destroying the tree. It
keeps track of the degree of each vertex as it “removes” vertices from the tree in a variable
called centerdegree. A vertex becomes a leaf when its centerdegree variable equals 1. At

5



McGill University, SOCS 308-250B, Assignment 5 Winter 2002

that point, the algorithm “removes” the vertex from the tree by decrementing the centerdegree
variable of each neighbor.

Algorithm FindCenter(T )

Input: Rooted tree T .
Output: Returns the set of vertices at the center of T . The set has size either one or two.

r ← the number of vertices in T
S ← empty set
for each vertex v in T do

v.centerdegree ← v.degree()
if v.degree() ≤ 1 then

S.insert(v)
r ← r − 1

while r > 0 do
T ← empty set
for each v in S do

for each neighbor w of v do
w.centerdegree ← w.centerdegree −1
if w.centerdegree = 1 then

T .insert(w)
r ← r − 1

S ← T
return S

2.2 Rooting a Tree

The center of a tree consists of either one or two vertices. If the center of each tree contains only
one vertex then we simply root each tree at its center. Otherwise, if each center contains two
vertices, say {u, v} for the first tree and {x, y} for the second and the two trees are isomorphic
then any isomorphism will map u to either x or y. Thus, we root the first tree at u and the
second at x. If the rooted isomorphism algorithm is successful then we return the resulting
isomorphism; otherwise, we root the second tree at y and run the algorithm again.

Once we have chosen a root we must root the tree. Here’s how:

Algorithm ReRoot(T , v)

Input: T is a rooted tree and v a vertex in T .
Output: T rooted at v.

r ← v
p ← v.parent()
while p 6= null do

remove v from p’s list of children
add p to v’s list of children
g ← p.parent()
make p’s parent v
v ← p

6



McGill University, SOCS 308-250B, Assignment 5 Winter 2002

p ← g
T .setRoot(r)

2.3 Final Algorithm

Algorithm Isomorphic(T1, T2)

Input: Rooted trees T1 and T2.
Output: If T1 is isomorphic to T2 then returns an isomorphism from T1 to T2; otherwise an empty
mapping.

C1 ← FindCenter(T1)
ReRoot(T1, first vertex in C1)
C2 ← FindCenter(T2)
ReRoot(T2, first vertex in C2)
M ← RootedIsomorphic(T1, T2)
if M is empty and C2.size() > 1 then

ReRoot(T2, second vertex in C2)
M ← RootedIsomorphic(T1, T2)

return M

7


	Rooted Tree Isomorphism
	General Tree Isomorphism
	Center of a Tree
	Rooting a Tree
	Final Algorithm


