Computer Science 308-250B Homework \#2 Due Monday February 9, 2004, 13:30

In all the problems, all calculations are done $\bmod \mathrm{M}$ where
$\mathrm{M}=3333373$ in order to limit the size of the integers involved. This way we avoid problems due to overflow.

As we have seen in class, the Fibonacci numbers are defined as follows:

Thus the most natural way to write a program to compute one uses the next algorithm:

[15\%] •1) Write a Java program that implements this algorithm. Find the time needed to compute $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, \ldots$ and plot a graph of your results. What is the largest n for which you can compute f_{n} within 1 second ?

No Java details provided.
The running time should be exponential. Indeed, the running time is $\Omega\left(f_{n}\right)$ as explained in class before.

An iterative way of computing the same values only keeps track of the last two values and use them to compute the new ones :

[15\%] - 2 Write a Java program that implements this algorithm. Find the time needed to compute $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, \ldots$ and plot a graph of your results. What is the largest n for which you can compute f_{n} within 1 second ?

No Java details provided.
The running time should be linear, i.e. $\mathrm{O}(\mathrm{n})$.

An alternate definition we have NOT seen in class for the Fibonacci numbers is:

[15\%] -3a) Prove by mathematical induction that this new definition of f_{n} is correct.
basis case: $\mathrm{n}=1,2: \mathrm{f}_{1}=\mathrm{f}_{2}=1$
induction step: Let $\mathrm{n}>2$ and assume the formulas are correct for all $\mathrm{k}, 0<\mathrm{k}<\mathrm{n}$. Then notation: $\mathbf{F}=\mathbf{f}^{\mathbf{2}}$
n odd, ($\mathrm{n}-1$ even, $\mathrm{n}-2$ odd)
$\mathrm{f}_{\mathrm{n}} \quad=\mathrm{f}_{\mathrm{n}-1}+\mathrm{f}_{\mathrm{n}-2}$
$=*\left[\mathrm{~F}_{(\mathrm{n}-1) / 2+1}-\mathrm{F}_{(\mathrm{n}-1) / 2-1}\right]+\left[\mathrm{F}_{(\mathrm{n}-1) / 2}+\mathrm{F}_{(\mathrm{n}-3) / 2}\right]$
$=\mathrm{F}_{(\mathrm{n}+1) / 2}-\mathrm{F}_{(\mathrm{n}-3) / 2}+\mathrm{F}_{(\mathrm{n}-1 / 2}+\mathrm{F}_{(\mathrm{n}-3) / 2}$
$=\mathrm{F}_{(\mathrm{n}+1) / 2}+\mathrm{F}_{(\mathrm{n}-1) / 2}$

NOTE : " $=$ "" indicates use of the induction hypothesis. All other steps are simple algebraic manipulations.
n even, (n -1 odd, n - 2 even)

$$
\begin{aligned}
\mathrm{f}_{\mathrm{n}} \quad & =\mathrm{f}_{\mathrm{n}-1}+\mathrm{f}_{\mathrm{n}-2} \\
& \left.=\mathrm{F}_{\mathrm{F}}+\mathrm{F}_{(\mathrm{n}-2) / 2}\right]+\left[\mathrm{F}_{(\mathrm{n}-2) / 2+1}-\mathrm{F}_{(\mathrm{n}-2) / 2-1}\right] \\
& =\mathrm{F}_{\mathrm{n} / 2}+\mathrm{F}_{\mathrm{n} / 2-1}+\mathrm{F}_{\mathrm{n} / 2}-\mathrm{F}_{\mathrm{n}}{ }^{2} / 2-2 \\
& \left.=2 \mathrm{~F}_{\mathrm{n} / 2}+\mathrm{f}_{\mathrm{n} / 2}-\mathrm{f}_{\mathrm{n} / 2-2}\right]^{2}-\mathrm{F}_{\mathrm{n} / 2-2} \\
& =2 \mathrm{~F}_{\mathrm{n} / 2}+\left[\mathrm{F}_{\mathrm{n} / 2}-2 \mathrm{f}_{\mathrm{n} / 2} \mathrm{f}_{\mathrm{n} / 2-2}+\mathrm{F}_{\mathrm{n} / 2-2}\right]-\mathrm{F}_{\mathrm{n} / 2-2} \\
& =\mathrm{F}_{\mathrm{n} / 2}+2 \mathrm{~F}_{\mathrm{n} / 2}-2 \mathrm{f}_{\mathrm{n} / 2} \mathrm{f}_{\mathrm{n} / 2-2} \\
& =\mathrm{f}_{\mathrm{n} / 2}\left[\mathrm{f}_{\mathrm{n} / 2}+2 \mathrm{f}_{\mathrm{n} / 2}-2 \mathrm{f}_{\mathrm{n} / 2-2}\right] \\
& =\mathrm{f}_{\mathrm{n} / 2}\left[\mathrm{f}_{\mathrm{n} / 2}+2 \mathrm{f}_{\mathrm{n} / 2-1}\right] \\
& =\left[\mathrm{f}_{\mathrm{n} / 2+1}-\mathrm{f}_{\mathrm{n} / 2-1}\right]\left[\mathrm{f}_{\mathrm{n} / 2+1}+\mathrm{f}_{\mathrm{n} / 2-1}\right] \\
& =* \mathrm{~F}_{\mathrm{n} / 2+1}-\mathrm{F}_{\mathrm{n} / 2-1}
\end{aligned}
$$

[15\%] -3b) Write a Java program that implements this algorithm. Find the time needed to compute $\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}, \ldots$ and plot a graph of your results. What is the largest n for which you can compute f_{n} within 1 second?

No Java details provided.
The running time should be linear, i.e. $\mathrm{O}(\mathrm{n})$.
[15\%] -4a) Prove the following by mathematical induction for all $\mathbf{n}>\mathbf{0}$.

basis case: $\mathrm{n}=1,2$:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{1}=\left(\begin{array}{ll}
f_{0} & f_{1} \\
f_{1} & f_{2}
\end{array}\right),\left(\begin{array}{ll}
0 & 1
\end{array}\right)^{2}=\left(\begin{array}{ll}
f_{1} & f_{2} \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
f_{2} & f_{3}
\end{array}\right)
$$

induction step: Let $\mathrm{n}>2$ and assume the formula is correct for $\mathrm{n}-1$. Then

$$
\begin{aligned}
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n} & =\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
n-1 & 1
\end{array}\right) \\
& ={ }_{*}\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
f_{n-2} & f_{n-1} \\
f_{n-1} & f_{n}
\end{array}\right) \\
& =\left(\begin{array}{cc}
f_{n-1} & f_{n} \\
f_{n-2}+f_{n-1} & f_{n-1}+f_{n}
\end{array}\right) \\
& =\left(\begin{array}{cc}
f_{n-1} & f_{n} \\
f_{n} & f_{n+1}
\end{array}\right)
\end{aligned}
$$

A natural way of computing this exponentiation is to use a method similar to the one we used in Homework \#1 for numbers (below I stands for the 2 by 2 identity matrix):

[15\%] -4b) Write a Java program that implements this algorithm. Find the time needed to compute $\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}, \ldots$ and plot a graph of your results. What is the largest n for which you can compute f_{n} within 1 second (give an estimate if n is too big...)?

No Java details provided.
The running time should be logarithmic, i.e. $\mathrm{O}(\log n)$.

[$\mathbf{1 0 \%}$] -5) If \mathbf{M} is rather small (say $M<1000$) and you wish to compute the value $f_{n} \bmod M$; find a very fast algorithm to compute this value, even for very large values of \mathbf{n}.
hint: Show that there exists an integer $R, 0<R<M^{2}$ such that $f_{n} \bmod M=f_{n \bmod R} \bmod M$.

Since the value of $f_{n} \bmod M$ is completely defined by $f_{n-1} \bmod M$ and $f_{n-2} \bmod M$ it is clear that whenever $f_{n-1}=f_{n+R-1} \bmod M$ and $f_{n-2}=f_{n+R-2} \bmod M$ then $f_{n}=f_{n+R} \bmod M$. Therefore if we find a value \mathbf{R} such that $f_{R+1}=\mathbf{1}\left(=f_{1}\right) \bmod M$ and $f_{R+2}=\mathbf{1}\left(=f_{2}\right) \bmod M$ then for any positive n we have $f_{n}=f_{n+R} \bmod M$ and thus $f_{n} \bmod M=f_{n \bmod R} \bmod M$.

All is left to prove is that there exists an integer $\mathbf{R}, \mathbf{0}<\mathbf{R}<\mathbf{M}^{2}$ such that $\mathbf{f}_{\mathrm{R}+1}=\mathbf{1} \boldsymbol{\operatorname { m o d }} \mathbf{M}$ and $\mathbf{f}_{\mathrm{R}+2}=\mathbf{1} \boldsymbol{\operatorname { m o d }} \mathbf{M}$. If we consider the sequence

$$
\mathbf{f}_{1} \bmod M, \mathbf{f}_{2} \bmod M, \mathbf{f}_{3} \bmod M, \ldots, \mathbf{f}_{\mathrm{M}^{2}} \bmod M, \mathbf{f}_{\mathrm{M}^{2}+1} \bmod M, \mathbf{f}_{\mathrm{M}^{2}+2} \bmod M
$$

we enumerate $\mathbf{M}^{\mathbf{2}} \mathbf{+ 1}$ pairs $\left(\mathbf{f}_{\mathbf{i}} \boldsymbol{\operatorname { m o d }} \mathbf{M}, \mathbf{f}_{\mathbf{i}+1} \boldsymbol{\operatorname { m o d }} \mathbf{M}\right)$ of consecutive values of the Fibonacci sequence. Now since only \mathbf{M}^{2} such pairs (\mathbf{x}, \mathbf{y}) exist, there must exist an \mathbf{i} and a \mathbf{j} such that $\left(\mathbf{f}_{\mathbf{i}} \bmod \mathbf{M}, \mathbf{f}_{\mathbf{i}+1} \bmod \mathbf{M}\right)=\left(\mathbf{f}_{\mathbf{j}} \bmod \mathbf{M}, \mathbf{f}_{\mathrm{j}+1} \bmod \mathbf{M}\right)$. Let $\mathbf{R}=\mathbf{i}-\mathbf{j}<\mathbf{M}^{2}$. Notice that if we start with $\left(\mathbf{f}_{\mathbf{i}} \bmod M, \mathbf{f}_{\mathrm{i}+1} \bmod M\right)=\left(\mathbf{f}_{\mathbf{j}} \bmod M, \mathbf{f}_{\mathrm{j}+1} \bmod M\right)$ then $\mathbf{f}_{\mathrm{i}-1} \bmod M=\mathbf{f}_{\mathrm{j}-1} \bmod M$ as well because $f_{n-1}=\mathbf{f}_{n+1}-\mathbf{f}_{n}$. We obtain $\left(\mathbf{f}_{i} \bmod M, f_{i+1} \bmod M\right)=\left(\mathbf{f}_{j} \bmod M, f_{j+1} \bmod M\right)$ which means that $\left(\mathbf{f}_{\mathbf{i}} \bmod \mathbf{M}, \mathbf{f}_{\mathrm{i}+1} \bmod \mathbf{M}\right)=\left(\mathbf{f}_{\mathbf{i}+\mathrm{R}} \bmod \mathbf{M}, \mathbf{f}_{\mathrm{i}+\mathrm{R}+1} \bmod \mathbf{M}\right)$ which implies that $\left(\mathbf{f}_{\mathbf{i}-1} \bmod \mathbf{M}, \mathbf{f}_{\mathbf{i}} \bmod \mathbf{M}\right)=\left(\mathbf{f}_{\mathbf{i}+\mathrm{R}-1} \bmod \mathbf{M}, \mathbf{f}_{\mathbf{i}+\mathrm{R}} \bmod \mathbf{M}\right)$ which implies that $\left(\mathbf{f}_{\mathrm{i}-2} \bmod \mathbf{M}\right.$, $\left.\mathbf{f}_{\mathrm{i}-1} \bmod \mathbf{M}\right)=\left(\mathbf{f}_{\mathrm{i}+\mathrm{R}-2} \bmod M, \mathbf{f}_{\mathbf{i}+\mathrm{R}-1} \bmod \mathbf{M}\right)$ which implies by induction that
$\left(f_{1} \bmod M, f_{2} \bmod M\right)=\left(f_{R+1} \bmod M, f_{R+2} \bmod M\right)$.

