
Computer Science 308-250B Homework #2
Due Monday February 9, 2004, 13:30

In all the problems, all calculations are done mod M where
M=3333373 in order to limit the size of the integers involved.

This way we avoid problems due to overflow.

As we have seen in class, the Fibonacci numbers are defined as follows:

1 if n=1,2
fn =

fn-1 + fn-2 if n>2

Thus the most natural way to write a program to compute one uses the next algorithm:

fibrec(n)
If (n<3) Then return 1
Else return fibrec (n-1)+ fibrec (n-2)

[15%] •1) Write a Java program that implements this algorithm. Find the time needed to
compute f1,f2,f3,f4,f5,… and plot a graph of your results. What is the largest n for which
you can compute fn within 1 second ?

No Java details provided.
The running time should be exponential. Indeed, the running time is Ω(fn) as explained in
class before.

An iterative way of computing the same values only keeps track of the last two values
and use them to compute the new ones :

fibit(n)
f:=1; g:=1
For k:=2 to n do

f:= f+g
g:= f-g

Return f

[15%] •2 Write a Java program that implements this algorithm. Find the time needed to
compute f1,f2,f3,f4,f5,… and plot a graph of your results. What is the largest n for which
you can compute fn within 1 second ?

No Java details provided.
The running time should be linear, i.e. O(n).

An alternate definition we have NOT seen in class for the Fibonacci numbers is:

1 if n=1,2
fn = n+1

2

2f + n− 1
2

2f if n>2, n odd
n
2 +1
2f − n

2 −1
2f if n>2, n even

 [15%] •3a) Prove by mathematical induction that this new definition of fn is correct.

basis case: n=1,2: f1= f2=1

induction step: Let n>2 and assume the formulas are correct for all k, 0<k<n. Then

notation: F=f2

n odd, (n-1 even, n-2 odd)

fn = fn-1+fn-2
=*[F(n-1)/2+1-F(n-1)/2-1]+[F(n-1)/2+F(n-3)/2]
= F(n+1)/2-F(n-3)/2+F(n-1)/2+F(n-3)/2
= F(n+1)/2+F(n-1)/2

NOTE : “=*” indicates use of the
induction hypothesis. All other steps are
simple algebraic manipulations.

n even, (n-1 odd, n-2 even)

fn = fn-1+fn-2
=*[Fn/2+F(n-2)/2]+[F(n-2)/2+1-F(n-2)/2-1]
= Fn/2+Fn/2-1+Fn/2-Fn/2-2
=* 2Fn/2+[fn/2-fn/2-2]2-Fn/2-2
= 2Fn/2+[Fn/2-2fn/2fn/2-2+Fn/2-2]-Fn/2-2
= Fn/2+2Fn/2-2fn/2fn/2-2
=* fn/2[fn/2+2fn/2-2fn/2-2]
= fn/2[fn/2+2fn/2-1]
= [fn/2+1-fn/2-1] [fn/2+1+fn/2-1]
=* Fn/2+1-Fn/2-1

[15%] •3b) Write a Java program that implements this algorithm. Find the time needed to
compute f1,f2,f3,f4,f5,…and plot a graph of your results. What is the largest n for which
you can compute fn within 1 second ?

No Java details provided.
The running time should be linear, i.e. O(n).

[15%] •4a) Prove the following by mathematical induction for all n>0.

0 1
1 1

n
=
fn−1 fn
fn fn+1

basis case: n=1,2 :

0 1
1 1

1
=
f0 f1
f1 f2

,
0 1
1 1

2
=

f1 f2
f2 f3

induction step: Let n>2 and assume the formula is correct for n-1. Then

0 1
1 1

n
=
0 1
1 1

0 1
1 1

n−1

=*
0 1
1 1

fn−2 fn−1
fn−1 fn

=
fn−1 fn

fn−2+ fn−1 fn−1+ fn

=
fn−1 fn
fn fn+1

A natural way of computing this exponentiation is to use a method similar to the one we
used in Homework #1 for numbers (below I stands for the 2 by 2 identity matrix):

ExpMOD(A,b)
If (b=0)
Then return I
Else If (b mod 2)=0 Then return ExpMOD(A2, b/2)

Else return A(ExpMOD(A2, (b-1)/2))

[15%] •4b) Write a Java program that implements this algorithm. Find the time needed to
compute f1,f2,f3,f4,f5,… and plot a graph of your results. What is the largest n for which
you can compute fn within 1 second (give an estimate if n is too big…)?

No Java details provided.
The running time should be logarithmic, i.e. O(log n).

[10%] •5) If M is rather small (say M<1000) and you wish to compute the value fn mod M;
find a very fast algorithm to compute this value, even for very large values of n.
hint: Show that there exists an integer R, 0<R<M2 such that fn mod M = fn mod R mod M.

Since the value of fn mod M is completely defined by fn-1 mod M and fn-2 mod M it is
clear that whenever fn-1 = fn+R-1 mod M and fn-2 = fn+R-2 mod M then fn = fn+R mod M.
Therefore if we find a value R such that fR+1 = 1 (=f1) mod M and fR+2 = 1 (=f2) mod M
then for any positive n we have fn = fn+R mod M and thus fn mod M = fn mod R mod M.

All is left to prove is that there exists an integer R, 0<R<M2 such that fR+1 = 1 mod M
and fR+2 = 1 mod M. If we consider the sequence

f1 mod M, f2 mod M, f3 mod M, … , fM2 mod M, fM2+1 mod M, fM2+2 mod M

we enumerate M2+1 pairs (fi mod M, fi+1 mod M) of consecutive values of the Fibonacci
sequence. Now since only M2 such pairs (x,y) exist, there must exist an i and a j such that
(fi mod M, fi+1 mod M) = (fj mod M, fj+1 mod M). Let R=i-j<M2. Notice that if we start
with (fi mod M, fi+1 mod M) = (fj mod M, fj+1 mod M) then fi-1 mod M = fj-1 mod M as
well because fn-1= fn+1 – fn. We obtain (fi mod M, fi+1 mod M) = (fj mod M, fj+1 mod M)
which means that (fi mod M, fi+1 mod M) = (fi+R mod M, fi+R+1 mod M) which implies
that (fi-1 mod M, fi mod M) = (fi+R-1 mod M, fi+R mod M) which implies that (fi-2 mod M,
fi-1 mod M) = (fi+R-2 mod M, fi+R-1 mod M) which implies by induction that

(f1 mod M, f2 mod M) = (fR+1 mod M, fR+2 mod M).

Pre-processing:

FindR(M)
f:=1; g:=2; R:=1
While NOT (f=1 and g=1) do

f:= f+g mod M
g:= f-g mod M
R:=R+1

Return R

Given constant R:

FastFib(n)
Return(Fibit(n mod R))

