
Computer Science 308-250B Homework #2
Due Monday February 9, 2004, 13:30

In all the problems, all calculations are done mod M where
M=3333373 in order to limit the size of the integers involved.

This way we avoid problems due to overflow.

As we have seen in class, the Fibonacci numbers are defined as follows:

1 if n=1,2
      fn =

fn-1 + fn-2 if n>2

Thus the most natural way to write a program to compute one uses the next algorithm:

fibrec(n)
If (n<3) Then return 1
Else return fibrec (n-1)+ fibrec (n-2)

[15%] •1) Write a Java program that implements this algorithm. Find the time needed to
compute f1,f2,f3,f4,f5,… and plot a graph of your results. What is the largest n for which
you can compute fn within 1 second ?



An iterative way of computing the same values only keeps track of the last two values
and use them to compute the new ones :

fibit(n)
f:=1; g:=1
For k:=2 to n do

f:= f+g
g:= f-g

Return f

[15%] •2) Write a Java program that implements this algorithm. Find the time needed to
compute f1,f2,f3,f4,f5,… and plot a graph of your results. What is the largest n for which
you can compute fn within 1 second ?

An alternate definition we have NOT seen in class for the Fibonacci numbers is:

1 if n=1,2
fn = n+1

2

2f + n− 1
2

2f if n>2, n odd
n
2 +1
2f − n

2 −1
2f  if n>2, n even

 [15%] •3a) Prove by mathematical induction that this new definition of fn is correct.

[15%] •3b) Write a Java program that implements this algorithm. Find the time needed to
compute f1,f2,f3,f4,f5,…and plot a graph of your results. What is the largest n for which
you can compute fn within 1 second ?



[15%] •4a) Prove the following by mathematical induction for all n>0.

     n
0 1 fn-1 fn
1 1 fn fn+1

A natural way of computing this exponentiation is to use a method similar to the one we
used in Homework #1 for numbers (below I stands for the 2 by 2 identity matrix):

ExpMOD(A,b)
If (b=0)
Then return I
Else  If (b mod 2)=0 Then return ExpMOD( A2, b/2 )

Else return A*( ExpMOD(A2, (b-1)/2 ) )

NOTE: when you implement matrix multiplication make sure all your coeeficients
are computed mod M.

[15%] •4b) Write a Java program that implements this algorithm. Find the time needed to
compute f1,f2,f3,f4,f5,… and plot a graph of your results. What is the largest n for which
you can compute fn within 1 second (give an estimate if n is too big…)?

[10%] •5) If M is rather small (say M<1000) and you wish to compute the value fn mod M;
find a very fast algorithm to compute this value, even for very large values of n.
hint: Show that there exists an integer R, 0<R<M2 such that fn mod M  = fn mod R mod M.



About counting time…

In Java you may find out what the time is by calling the method

System.currentTimeMillis()

Here is what the Java documentation has to say about this method:

20.18 The Class java.lang.System
…
public final class System {
…
        public static long currentTimeMillis();
…
}

20.18.6 public static long currentTimeMillis()

Returns the difference, measured in milliseconds, between the current time and the
standard base time known as "the epoch," 00:00:00 GMT on January 1, 1970. See
the description of the class Date (§21.3) for a discussion of slight discrepancies that
may arise between "computer time" and UTC (Coordinated Universal Time).

• You must realize that calling this method takes time, thus you have to be careful in
the way you use it. For instance, don’t use it in the middle of another method you want to
time. You should call System.currentTimeMillis() just before and right after the call to
the other method you are timing.

• If the time required to complete a calculation is too small you may have to run it
several times in a loop and calculate the total running time divided by the number of
trials.

• If the time required to complete a calculation grows too slowly you may choose to
calculate values at a larger interval. Computing f1,f2,f4,f8,f16,… may be more significant in
some cases.


