Computer Science 308-250B Homework #1 SOLUTIONS

•1) Write an iterative definition of this algorithm (no recursion allowed).

 $\begin{array}{l} \underline{\textbf{Mulàlarusse}}(a,b)\\ sum:= 0\\ While b>0 \ do\\ If (b \ is \ odd) \ Then \ sum:= sum+a; \ b:= b-1\\ b:= b/2\\ a:= a+a\\ Return \ sum\end{array}$

•2) Find the largest value of **n** of type **long** for which this method finds the correct answer for all **a,b** with 0 ≤ **a,b** ≤ **n**-1 and compare it with the direct Java expression (**a*b**) mod **n**. Write a Java program to find the largest correct values for both methods.

The limit for (a*b) mod n is due to the calculation of a*b that will overflow as soon as
$(n-1)*(n-1) > Maylong - 2^{63} - 1$
$(\mathbf{n}-1) = (\mathbf{n}-1) = \mathbf{N} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n$
or equivalently if
$n > 1 + \sqrt{2^{\circ 3} - 1}$.
Finally ($a*b$) mod n will not overflow if $n \le 3037000500$.
The limit for $\underline{MulMOD}(a,b,n)$ is due to the calculation of $a+a$ that will overflow as soon as
$(n-1)+(n-1) > Maxlong = 2^{63}-1$
or equivalently if
n > Maxlong/2+1.
This leads to
$n > 2^{62} + 1/2$
Finally MulMOD(a b n) will not overflow if $n < 4611686018427387904$
$1111111 \underbrace{11111100}_{(a,0,11)} (a,0,11) \text{ will not overliew if } \mathbf{n} \leq 4011000010427507904.$

•3) Find a wise way to compute (a+b) mod n allowing you to go even further in part •2).

Always compute "(a+b) mod n" as "If (a-n+b) < 0 Then Return a+b Else Return a-n+b". This way the sum is bounded by $-n\leq(a-n+b)<n-1$ that never overflows unless n > Maxlong.

•4) Write a Java program to compute $a^b \mod n$ for a,b,n of type long (with $0 \le a,b \le n-1$) and run it with the values

a := 1274434408442 b := 589394265617 n := 1606818609763

The answer is **308250308250.** To compute correctly, you needed to use $\underline{ExpMOD}(a,b,n)$ using $\underline{MulMOD}(a,b,n)$ to do the multiplications. Otherwise you were facing overflow problems using a*b%n.

Let **d** = **433371342353**. Run your program with the values **c,d,n**.

The answer is **1274434408442** (= a).