## Computer Science 308-250B Homework \#1 SOLUTIONS

-1) Write an iterative definition of this algorithm (no recursion allowed).

```
Mulàlarusse(a,b)
sum:= 0
While b>0 do
    If (b is odd) Then sum:= sum+a; b:= b-1
    b:= b/2
    a:=a+a
Return sum
```

-2) Find the largest value of $\mathbf{n}$ of type long for which this method finds the correct answer for all $\mathbf{a}, \mathbf{b}$ with $\mathbf{0} \leq \mathbf{a}, \mathbf{b} \leq \mathbf{n}-\mathbf{1}$ and compare it with the direct Java expression $(\mathbf{a} * \mathbf{b}) \bmod \mathbf{n}$. Write a Java program to find the largest correct values for both methods.

The limit for $(\mathbf{a} * \mathbf{b}) \bmod \mathbf{n}$ is due to the calculation of $\mathbf{a} * \mathbf{b}$ that will overflow as soon as

$$
(n-1) *(n-1)>\text { Maxlong }=2^{63}-1
$$

or equivalently if

$$
\mathbf{n}>1+\sqrt{2^{63}-1} .
$$

Finally ( $\mathbf{a}^{*} \mathbf{b}$ ) mod $\mathbf{n}$ will not overflow if $\mathbf{n} \leq 3037000500$.

The limit for MulMOD $(a, b, n)$ is due to the calculation of $\mathbf{a + a}$ that will overflow as soon as $(\mathbf{n}-1)+(\mathrm{n}-1)>$ Maxlong $=\mathbf{2}^{\mathbf{6 3}} \mathbf{- 1}$
or equivalently if

$$
\mathrm{n}>\text { Maxlong/2+1. }
$$

This leads to

$$
n>2^{62}+1 / 2
$$

Finally $\underline{\text { MulMOD }}(\mathrm{a}, \mathrm{b}, \mathrm{n})$ will not overflow if $\mathbf{n} \leq 4611686018427387904$.
-3) Find a wise way to compute ( $\mathbf{a}+\mathbf{b}$ ) mod $\mathbf{n}$ allowing you to go even further in part $\mathbf{\bullet}$ ).
Always compute "(a+b) mod n" as "If (a-n+b) < 0 Then Return a+b Else Return a-n+b". This way the sum is bounded by $\mathbf{- n} \leq(\mathbf{a}-\mathbf{n}+\mathbf{b})<\mathbf{n} \mathbf{- 1}$ that never overflows unless $\mathbf{n}>$ Maxlong.
$\bullet 4)$ Write a Java program to compute $\mathbf{a}^{\mathbf{b}} \bmod \mathbf{n}$ for $\mathbf{a}, \mathbf{b}, \mathbf{n}$ of type $\mathbf{l o n g}$ (with $\mathbf{0} \leq \mathbf{a}, \mathbf{b} \leq \mathbf{n} \mathbf{- 1}$ ) and run it with the values

$$
\begin{aligned}
& \mathrm{a}:=1274434408442 \\
& \mathrm{~b}:=589394265617 \\
& \mathrm{n}:=1606818609763
\end{aligned}
$$

The answer is $\mathbf{3 0 8 2 5 0 3 0 8 2 5 0}$. To compute correctly, you needed to use $\underline{\operatorname{ExpMOD}}(\mathrm{a}, \mathrm{b}, \mathrm{n})$ using MulMOD $(a, b, n)$ to do the multiplications. Otherwise you were facing overflow problems using $\mathbf{a} * \mathbf{b} \% \mathbf{n}$.

$$
\text { Let } \mathbf{d}=\text { 433371342353. Run your program with the values } \mathbf{c , d , n} \text {. }
$$

The answer is $\mathbf{1 2 7 4 4 3 4 4 0 8 4 4 2 ( = \mathbf { a } ) .}$

