Computer Science 308-250B Homework #1 Due Monday January 26, 2004, 13:30

On the second class we learned a number of multiplication algorithms including the russian method known as "multiplication à la russe". Find below a recursive definition of this algorithm (the comments should help you understand why it works) :

		J		
Mulàlarusse(a,b)				
If (b=0)				
Then	return 0	// a*0 = 0		
Else	If (b is even)			
	Then return <u>Mulàlarusse(</u> a+a, b/2)	// a*b = (2*a)*(b/2)		
	Else return (a + <u>Mulàlarusse(</u> a+a, (b-1)/2))	// $a*b = a + (2*a)*((b-1)/2)$		

[25%]

•1) Write an iterative definition of this algorithm (no recursion allowed).

Now notice that if we imbed (**mod n**) operators in this definition we end up with an algorithm computing (**a*b**) **mod n** instead:

MulMOD(a,b,n)				
If (b=0)				
Then	return 0	// a*0 = 0 mod n		
Else	If (b is even)			
	Then return $\underline{MulMOD}((a+a) \mod n, b/2, n)$	$// a*b = (2*a)*(b/2) \mod n$		
	Else return (a + <u>MulMOD((</u> a+a) mod n, (b-1)/2,n)) mod n			
$// a*b = a + (2*a)*((b-1)/2) \mod n$				

[30%]

•2) Find the largest number **n** of type long for which the method MulMod(a,b,n) finds the correct product mod **n** for all a,b with $0 \le a,b \le n-1$ and compare it to the direct Java expression (a*b)%n. Write a Java program to find the largest correct values for both methods. NOTE: if you get a negative result then your answer is wrong.

•3) Find a wiser way to compute (**a+b**) **mod n** allowing you to reach larger values in MulMod(a,b,n) of part •2).

Now notice that if we replace "+" by "*" in the <u>MulMOD</u> algorithm and "0" by "1" in the base case, we end up defining an algorithm for $\mathbf{a}^{\mathbf{b}} \operatorname{mod} \mathbf{n}$ instead of ($\mathbf{a}^{*}\mathbf{b}$) mod n:

ExpMOD(a,b,n)				
If (b=0)				
Then	return 1	// aº=1 mod n		
Else	If (b is even)			
	Then return <u>ExpMOD(</u> a*a mod n, b/2,n)	$// a^{b} = (a^{2})^{b/2} \mod n$		
	Else return (a * ExpMOD(a*a mod n, (b-1)/2,n	$(n)) \mod n / / a^b = a^* (a^2)^{(b-1)/2} \mod n$		

[30%]

•4) Write a Java program to compute a^b mod n for a,b,n of type long (with 0 ≤ a,b ≤ n-1) -- REMARK: Do not forget what you did in •2) -- and run it with the values

a := 1274434408442 b := 589394265617 n := 1606818609763

• What is special about the answer **c:=a^b mod n** you get? (if your answer is correct you should notice something special...)

Let **d** = **433371342353.** Run your program with the values **c,d,n**.

• What is special about the answer **e:=c^d mod n** you get? (if your answer is correct you should notice something...)

NOTE: For questions •2) and •4) you may implement either a recursive or iterative method.