Computer Science 308-250B Homework \#1

Due Monday January 26, 2004, 13:30

On the second class we learned a number of multiplication algorithms including the russian method known as "multiplication à la russe". Find below a recursive definition of this algorithm (the comments should help you understand why it works) :
Mulàlarusse (a, b)
If $(b=0)$
Then return $0 \quad / / \mathbf{a}^{*} \mathbf{0}=\mathbf{0}$
Else If (b is even)
Then return Mulàlarusse $(a+a, b / 2) \quad / / \mathbf{a}$ * $\mathbf{b}=(2 * a) *(b / 2)$
Else return $(a+$ Mulàlarusse $(a+a,(b-1) / 2)) \quad / / \mathbf{a} * \mathbf{b}=\mathbf{a}+(2 * \mathbf{a}) *((b-1) / \mathbf{2})$

[25\%]

-1) Write an iterative definition of this algorithm (no recursion allowed).

Now notice that if we imbed $(\bmod \boldsymbol{n})$ operators in this definition we end up with an algorithm computing ($\mathbf{a} * \mathbf{b}$) $\bmod \mathbf{n}$ instead:

```
MulMOD(a,b,n)
If (b=0)
Then return 0 // a*0=0 modn
Else If (b is even)
    Then return MulMOD( (a+a) mod n, b/2,n ) // a*b = (2*a)*(b/2) mod n
    Else return (a + MulMOD((a+a) mod n, (b-1)/2,n )) mod n
        // a*b=a+(2*a)*((b-1)/2)mod n
```

[30\%]
-2) Find the largest number \mathbf{n} of type long for which the method MulMod(a,b,n) finds the correct product $\bmod \mathbf{n}$ for all \mathbf{a}, \mathbf{b} with $\mathbf{0} \leq \mathbf{a}, \mathbf{b} \leq \mathbf{n - 1}$ and compare it to the direct Java expression (\mathbf{a} *b)\%n. Write a Java program to find the largest correct values for both methods. NOTE: if you get a negative result then your answer is wrong.

[15\%]

-3) Find a wiser way to compute $(\mathbf{a}+\mathbf{b}) \boldsymbol{\operatorname { m o d }} \mathbf{n}$ allowing you to reach larger values in MulMod($\mathbf{a}, \mathbf{b}, \mathbf{n}$) of part $\mathbf{\bullet 2}$).

Now notice that if we replace " + " by "*" in the MulMOD algorithm and " 0 " by " 1 " in the base case, we end up defining an algorithm for $\mathbf{a}^{\mathbf{b}} \bmod \mathbf{n}$ instead of $(\mathbf{a} * \mathbf{b}) \bmod \mathbf{n}$:

ExpMOD (a,b,n)		
If ($\mathrm{b}=0$)		
Then	return 1	$/ / \mathrm{a}^{0}=1 \bmod \mathrm{n}$
Else	If (b is even)	
	Then return ExpMOD ($\mathrm{a}^{*} \mathrm{a} \bmod \mathrm{n}, \mathrm{b} / 2, \mathrm{n}$)	$/ / a^{\text {b }}=\left(\mathrm{a}^{2}\right)^{\mathrm{b} / 2} \bmod \mathrm{n}$
	Else return ($\left.a^{*} \operatorname{ExpMOD}\left(a^{*} a \bmod n,(b-1) / 2, n\right)\right) \bmod n / / \mathbf{a}^{\mathbf{b}}=\mathbf{a}^{*}\left(\mathbf{a}^{2}\right)^{(\mathbf{b}-1) / 2} \bmod \mathbf{n}$	

[30\%]

$\bullet 4)$ Write a Java program to compute $\mathbf{a}^{\mathbf{b}} \bmod \mathbf{n}$ for $\mathbf{a}, \mathbf{b}, \mathbf{n}$ of type long (with $\mathbf{0} \leq \mathbf{a}, \mathbf{b} \leq \mathbf{n - 1}$)
-- REMARK: Do not forget what you did in $\bullet \mathbf{2}$) -- and run it with the values

$$
\begin{aligned}
& a:=1274434408442 \\
& \mathrm{~b}:=589394265617 \\
& \mathrm{n}:=\mathbf{1 6 0 6 8 1 8 6 0 9 7 6 3}
\end{aligned}
$$

- What is special about the answer $\mathbf{c}:=\mathbf{a}^{\mathbf{b}} \bmod \mathbf{n}$ you get?
(if your answer is correct you should notice something special...)
Let $\mathbf{d}=\mathbf{4 3 3 3 7 1 3 4 2 3 5 3}$. Run your program with the values $\mathbf{c , d , n}$.
- What is special about the answer $\mathbf{e}:=\mathbf{c}^{\mathrm{d}} \bmod \mathbf{n}$ you get?
(if your answer is correct you should notice something...)

NOTE: For questions $\bullet \mathbf{2}$) and $\bullet 4$) you may implement either a recursive or iterative method.

