
1Analysis of Algorithms

ANALYSIS OF
ALGORITHMS

• Running Time

• Pseudo-Code

• Analysis of Algorithms

• Asymptotic Notation

• Asymptotic Analysis

• Mathematical facts

n = 4

AlgorithmInput

T(n)

Output

2Analysis of Algorithms

Average Case vs. Worst Case
Running Time of an Algorithm

• An algorithm may run faster on certain data sets
than on others.

• Finding theaverage case can be very difficult, so
typically algorithms are measured by theworst-case
time complexity.

• Also, in certain application domains (e.g., air traffic
control, surgery, IP lookup) knowing theworst-case
time complexity is of crucial importance.

Input

T
im

e

1 ms

2 ms

3 ms

4 ms

5 ms

A B C D E F G

worst-case

best-case
} average-case?

3Analysis of Algorithms

Measuring the Running Time
• How should we measure the running time of an

algorithm?

• Experimental Study
- Write aprogram that implements the algorithm
- Run the program with data sets of varying size and

composition.
- Use a method likeSystem.currentTimeMillis() to get

an accurate measure of the actual running time.
- The resulting data set should look something like:

50 1000

t (ms)

n

10

20

30

40

50

60

4Analysis of Algorithms

Beyond Experimental Studies
• Experimental studies have several limitations:

- It is necessary toimplementand test the algorithm
in order to determine its running time.

- Experiments can be done only on alimited set of
inputs, and may not be indicative of the running
time on other inputs not included in the
experiment.

- In order to compare two algorithms, the same
hardware and software environments should be
used.

• We will now develop ageneral methodology for
analyzing the running time of algorithms that
- Uses ahigh-level description of the algorithm

instead of testing one of its implementations.
- Takes into accountall possible inputs.
- Allows one to evaluate the efficiency of any

algorithm in a way that isindependent from the
hardware and software environment.

5Analysis of Algorithms

Pseudo-Code
• Pseudo-code is a description of an algorithm that is

more structured than usual prose but less formal than
a programming language.

• Example: finding the maximum element of an array.

Algorithm arrayMax(A,n):
Input: An array A storingn integers.
Output: The maximum element in A.

currentMax← A[0]
for i ← 1 to n −1 do

if currentMax < A[i] then
currentMax← A[i]

return currentMax

• Pseudo-code is our preferred notation for describing
algorithms.

• However, pseudo-code hides program design issues.

6Analysis of Algorithms

What is Pseudo-Code?
• A mixture of natural language and high-level

programming concepts that describes the main ideas
behind a generic implementation of a data structure
or algorithm.
- Expressions: use standard mathematical symbols

to describe numeric and boolean expressions
- use← for assignment (“=” in Java)

- use= for the equality relationship (“==” in Java)

- Method Declarations:
- Algorithm name(param1, param2)

- Programming Constructs:
- decision structures: if ... then ... [else...]

- while-loops: while ... do

- repeat-loops: repeat ... until ...

- for-loop: for ... do

- array indexing: A[i]

- Methods:
- calls: object method(args)

- returns: return value

7Analysis of Algorithms

Analysis of Algorithms
• Primitive Operations: Low-level computations that

are largely independent from the programming
language and can be identified in pseudocode, e.g:
- calling a method and returning from a method
- performing an arithmetic operation (e.g. addition)
- comparing two numbers, etc.

• By inspecting the pseudo-code, we cancount the
number of primitive operations executed by an
algorithm.

• Example:

Algorithm arrayMax(A,n):
Input: An array A storingn integers.
Output: The maximum element in A.

currentMax← A[0]
for i ← 1 to n −1 do

if currentMax < A[i] then
currentMax← A[i]

return currentMax

8Analysis of Algorithms

Asymptotic Notation
• Goal: to simplify analysis by getting rid of unneeded

information
- like “rounding” 1,000,001≈ 1,000,000
- we want to say in a formal way 3n2 ≈ n2

• The “Big-Oh” Notation
given functionsf(n) andg(n), we say that
f(n) is O(g(n)) if and only if
there are positive constantsc andn0 such that
f(n) ≤ c g(n) for n ≥ n0

f(n) = 2n + 6

g(n) = n

20 21 22 23 24 25 26 2720
21

22
23

24
25

26
27

c g(n) = 4n

n

9Analysis of Algorithms

Another Example
• n2 is not O(n)

• we cannot findc andn0 such that
n2 ≤ c n for n ≥ n0

f(n) = n2

g(n) = n

20 21 22 23 24 25 26 2720
21

22
23

24
25

26
27

n

c g(n)

10Analysis of Algorithms

Asymptotic Notation (cont.)
• Note: Even though it iscorrect to say

“7n - 3 isO(n3)”, a better statement is
“7n - 3 isO(n)”, that is, one should make the
approximation as tight as possible

• Simple Rule: Drop lower order terms and constant
factors.
- 7n - 3 isO(n)
- 8n2log n + 5n2 + n is O(n2log n)

• Special classes of algorithms:
- logarithmic: O(log n)
- linear O(n)
- quadratic O(n2)
- polynomial O(nk), k 1
- exponential O(an), n > 1

• “Relatives” of the Big-Oh
− Ω(f(n)): Big Omega
− Θ(f(n)): Big Theta

11Analysis of Algorithms

Asymptotic Analysis of The
Running Time

• Use the Big-Oh notation to express the number of
primitive operations executed as a function of the
input size.

• For example, we say that thearrayMax algorithm
runs inO(n) time.

• Comparing the asymptotic running time
- an algorithm that runs inO(n) time is better than

one that runs inO(n2) time
- similarly, O(log n) is better thanO(n)
- hierarchy of functions:
- log n << n << n2 << n3 << 2n

• Caution!
- Beware of very large constant factors. An

algorithm running in time 1,000,000n is still O(n)
but might be less efficient on your data set than
one running in time 2n2, which isO(n2)

12Analysis of Algorithms

Example of Asymptotic Analysis
• An algorithm for computing prefix averages

Algorithm prefixAverages1(X):
Input: An n-element arrayX of numbers.
Output: An n-element array A of numbers such that

A[i] is the average of elementsX[0], ... ,X[i].
Let A be an array ofn numbers.
for i ← 0 to n - 1do

a ← 0
for j ← 0 to i do

a ← a + X[j]
A[i] ← a/(i + 1)

return array A

• Analysis ...

13Analysis of Algorithms

A Quick Math Review
• Arithmetic progressions:

- An example

- two visual representations

i 1 2 3 … n+ + + +=
i 1=

n

∑
n

2
n+

2
---------------=

1 n/2
0

1

2

n

3

2

n+1

...

1 2 n0

1

2

n

3

3

...

14Analysis of Algorithms

Another Example
• A better algorithm for computing prefix averages:

Algorithm prefixAverages2(X):
Input: An n-element arrayX of numbers.
Output: An n-element array A of numbers such that

A[i] is the average of elementsX[0], ... ,X[i].
Let A be an array ofn numbers.
s ← 0
for i ← 0 to n - 1do

s ← s+ X[i]
A[i] ← s/(i + 1)

return array A

• Analysis ...

15Analysis of Algorithms

Math You Need to Review
• Logarithms and Exponents

- properties oflogarithms:

logb(xy) = logbx + logby

logb(x/y) = logbx - logby

logbx
α = αlogbx

logxa

logxb

- properties ofexponentials:

a(b+c) = abac

abc = (ab)c

ab/ac = a(b-c)

b = a

bc = a

logba =

logab

c*logab

16Analysis of Algorithms

More Math to Review
• Floor

x = the largest integer ≤ x

• Ceiling

x = the smallest integer x

• Summations
- general definition:

- wheref is a function,s is the start index, andt is
the end index

• Geometric progression: f(i) = ai

- given an integern ≥ 0 and a real number 0 <a ≠ 1

- geometric progressions exhibit exponential growth

f i()
i s=

t

∑ f s() f s 1+() f s 2+() … f t()+ + + +=

ai 1 a a2 … an 1 an 1+–
1 a–

---------------------=+ + + +=
i 0=

n

∑

17Analysis of Algorithms

Advanced Topics: Simple
Justification Techniques

• By Example
- Find an example
- Find a counter example

• The “Contra” Attack
- Find a contradiction in the negative statement
- Contrapositive

• Induction
- Prove the base case
- Prove that any casen implies the next case (n + 1)

is also true

• Loop invariants
- Prove initial claimS0
- Show thatSi-1 impliesSi will be true after iteration

i

18Analysis of Algorithms

Advanced Topics: Other
Justification Techniques

• Proof by Excessive Waving of Hands

• Proof by Incomprehensible Diagram

• Proof by Very Large Bribes
- see instructor or TAs after class

• Proof by Violent Metaphor
- Don’t argue with anyone who always assumes a

sequence consists of hand grenades

• The Emperor’s New Clothes Method
- “This proof is so obvious only an idiot wouldn’t be

able to understand it.”

