Analysis of Algorithms

- Running Time
- Pseudo-Code
- Analysis of Algorithms
- Asymptotic Notation
- Asymptotic Analysis
- Mathematical facts

\[T(n) \]

Input \[n = 4 \] Algorithm Output
Average Case vs. Worst Case Running Time of an Algorithm

• An algorithm may run faster on certain data sets than on others.

• Finding the average case can be very difficult, so typically algorithms are measured by the worst-case time complexity.

• Also, in certain application domains (e.g., air traffic control, surgery, IP lookup) knowing the worst-case time complexity is of crucial importance.
Measuring the Running Time

• How should we measure the running time of an algorithm?

• Experimental Study
 - Write a program that implements the algorithm
 - Run the program with data sets of varying size and composition.
 - Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time.
 - The resulting data set should look something like:

<table>
<thead>
<tr>
<th>n</th>
<th>t (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

```
50 1000
```

Analysis of Algorithms 3
Beyond Experimental Studies

• Experimental studies have several limitations:
 - It is necessary to implement and test the algorithm in order to determine its running time.
 - Experiments can be done only on a limited set of inputs, and may not be indicative of the running time on other inputs not included in the experiment.
 - In order to compare two algorithms, the same hardware and software environments should be used.

• We will now develop a general methodology for analyzing the running time of algorithms that
 - Uses a high-level description of the algorithm instead of testing one of its implementations.
 - Takes into account all possible inputs.
 - Allows one to evaluate the efficiency of any algorithm in a way that is independent from the hardware and software environment.
Pseudo-Code

• Pseudo-code is a description of an algorithm that is more structured than usual prose but less formal than a programming language.

• Example: finding the maximum element of an array.

\[
\textbf{Algorithm} \ \text{arrayMax}(A, n): \\
\text{\hspace{1cm} Input:} \ \text{An array } A \ \text{storing } n \ \text{integers.} \\
\text{\hspace{1cm} Output:} \ \text{The maximum element in } A. \\
\text{currentMax} \leftarrow A[0] \\
\text{for } i \leftarrow 1 \ \text{to } n - 1 \ \text{do} \\
\text{\hspace{1cm} if } \text{currentMax} < A[i] \ \text{then} \\
\text{\hspace{2cm} currentMax} \leftarrow A[i] \\
\text{return currentMax}
\]

• Pseudo-code is our preferred notation for describing algorithms.

• However, pseudo-code hides program design issues.
What is Pseudo-Code?

• A mixture of natural language and high-level programming concepts that describes the main ideas behind a generic implementation of a data structure or algorithm.

- Expressions: use standard mathematical symbols to describe numeric and boolean expressions
 - use ← for assignment (“=” in Java)
 - use = for the equality relationship (“==” in Java)

- Method Declarations:
 - Algorithm name(param1, param2)

- Programming Constructs:
 - decision structures: if ... then ... [else ...]
 - while-loops: while ... do
 - repeat-loops: repeat ... until ...
 - for-loop: for ... do
 - array indexing: A[i]

- Methods:
 - calls: object method(args)
 - returns: return value
Analysis of Algorithms

• **Primitive Operations**: Low-level computations that are largely independent from the programming language and can be identified in pseudocode, e.g:
 - calling a method and returning from a method
 - performing an arithmetic operation (e.g. addition)
 - comparing two numbers, etc.

• By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm.

• Example:

```
Algorithm arrayMax(A, n):
    Input: An array A storing n integers.
    Output: The maximum element in A.
    currentMax ← A[0]
    for i ← 1 to n − 1 do
        if currentMax < A[i] then
            currentMax ← A[i]
    return currentMax
```

Asymptotic Notation

- Goal: to simplify analysis by getting rid of unneeded information
 - like “rounding” 1,000,001 ≈ 1,000,000
 - we want to say in a formal way $3n^2 \approx n^2$

- The “Big-Oh” Notation
 given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if and only if
 there are positive constants c and n_0 such that $f(n) \leq c g(n)$ for $n \geq n_0$
Another Example

- n^2 is not $O(n)$

- we cannot find c and n_0 such that $n^2 \leq c \cdot n$ for $n \geq n_0$
Asymptotic Notation (cont.)

• **Note:** Even though it is correct to say “7n - 3 is \(O(n^3)\)”, a better statement is “7n - 3 is \(O(n)\)”, that is, one should make the approximation as tight as possible.

• **Simple Rule:** Drop lower order terms and constant factors.
 - 7n - 3 is \(O(n)\)
 - \(8n^2 \log n + 5n^2 + n\) is \(O(n^2 \log n)\)

• Special classes of algorithms:
 - logarithmic: \(O(\log n)\)
 - linear \(O(n)\)
 - quadratic \(O(n^2)\)
 - polynomial \(O(n^k), k \geq 1\)
 - exponential \(O(a^n), n > 1\)

• “Relatives” of the Big-Oh
 – \(\Omega(f(n))\): Big Omega
 – \(\Theta(f(n))\): Big Theta
Asymptotic Analysis of The Running Time

• Use the Big-Oh notation to express the number of primitive operations executed as a function of the input size.

• For example, we say that the arrayMax algorithm runs in $O(n)$ time.

• Comparing the asymptotic running time
 - an algorithm that runs in $O(n)$ time is better than one that runs in $O(n^2)$ time
 - similarly, $O(\log n)$ is better than $O(n)$
 - hierarchy of functions:
 - $\log n << n << n^2 << n^3 << 2^n$

• Caution!
 - Beware of very large constant factors. An algorithm running in time 1,000,000 n is still $O(n)$ but might be less efficient on your data set than one running in time $2n^2$, which is $O(n^2)$
Example of Asymptotic Analysis

• An algorithm for computing prefix averages

Algorithm prefixAverages1(X):

Input: An n-element array X of numbers.

Output: An n-element array A of numbers such that $A[i]$ is the average of elements $X[0], \ldots, X[i]$.

Let A be an array of n numbers.

for $i \leftarrow 0$ to $n-1$ do

 $a \leftarrow 0$

 for $j \leftarrow 0$ to i do

 $a \leftarrow a + X[j]$

 $A[i] \leftarrow a / (i + 1)$

return array A

• Analysis ...
A Quick Math Review

- Arithmetic progressions:
 - An example

\[
\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{n^2 + n}{2}
\]

- two visual representations
Another Example

• A better algorithm for computing prefix averages:

Algorithm prefixAverages2(X):

Input: An n-element array X of numbers.

Output: An n-element array A of numbers such that $A[i]$ is the average of elements $X[0]$, ... , $X[i]$.

Let A be an array of n numbers.

$s \leftarrow 0$

for $i \leftarrow 0$ to $n - 1$ do

$s \leftarrow s + X[i]$

$A[i] \leftarrow s/(i + 1)$

return array A

• Analysis ...
Math You Need to Review

- Logarithms and Exponents
 - properties of logarithms:

 \[\log_b(xy) = \log_b x + \log_b y \]

 \[\log_b(x/y) = \log_b x - \log_b y \]

 \[\log_b x^\alpha = \alpha \log_b x \]

 \[\log_b a = \frac{\log_x a}{\log_x b} \]

 - properties of exponentials:

 \[a^{(b+c)} = a^b a^c \]

 \[a^{bc} = (a^b)^c \]

 \[a^b/a^c = a^{(b-c)} \]

 \[b = a^{\log_ab} \]

 \[b^c = a^{c \log_ab} \]
More Math to Review

• **Floor**
 \[
 \lfloor x \rfloor = \text{the largest integer } \leq x
 \]

• **Ceiling**
 \[
 \lceil x \rceil = \text{the smallest integer } x
 \]

• **Summations**
 - general definition:
 \[
 \sum_{i = s}^{t} f(i) = f(s) + f(s + 1) + f(s + 2) + \ldots + f(t)
 \]
 - where \(f \) is a function, \(s \) is the start index, and \(t \) is the end index

• **Geometric progression**: \(f(i) = a^i \)
 - given an integer \(n \geq 0 \) and a real number \(0 < a \neq 1 \)
 \[
 \sum_{i = 0}^{n} a^i = 1 + a + a^2 + \ldots + a^n = \frac{1 - a^{n+1}}{1 - a}
 \]
 - geometric progressions exhibit exponential growth
Advanced Topics: Simple Justification Techniques

• By Example
 - Find an example
 - Find a counter example

• The “Contra” Attack
 - Find a contradiction in the negative statement
 - Contrapositive

• Induction
 - Prove the base case
 - Prove that any case n implies the next case $(n + 1)$ is also true

• Loop invariants
 - Prove initial claim S_0
 - Show that S_{i-1} implies S_i will be true after iteration i
Advanced Topics: Other Justification Techniques

- Proof by Excessive Waving of Hands
- Proof by Incomprehensible Diagram
- Proof by Very Large Bribes
 - see instructor or TAs after class
- Proof by Violent Metaphor
 - Don’t argue with anyone who always assumes a sequence consists of hand grenades
- The Emperor’s New Clothes Method
 - “This proof is so obvious only an idiot wouldn’t be able to understand it.”