# Computer Science 308-250B EXTRA problems on Big-O notations 

Show the following

1. $f_{n}$ is $O\left(2^{n}\right)$ where $f_{n}$ is the $n^{\text {th }}$ Fibonacci number.

By mathematical induction. $\mathrm{f}_{\mathrm{n}}<2^{\mathrm{n}}$
Basis: $\mathrm{f}_{1}=1<2=2^{1}, \mathrm{f}_{2}=1<4=2^{2}$

## Induction step:

Let $\mathrm{n}>2$. Assume $\mathrm{f}_{\mathrm{n}-2}<2^{\mathrm{n}-2}$ and $\mathrm{f}_{\mathrm{n}-1}<2^{\mathrm{n}-1}$
$\mathrm{f}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}-1}+\mathrm{f}_{\mathrm{n}-2}<2^{\mathrm{n}-1}+2^{\mathrm{n}-2}=3^{*} 2^{\mathrm{n}-2}<4^{*} 2^{\mathrm{n}-2}=2^{\mathrm{n}}$.
2. $\mathrm{n}^{\mathrm{k}}$ is $\mathrm{O}\left(\mathrm{n}^{\log \log \mathrm{n}}\right)$ for any $\mathrm{k}>0$
$\mathrm{n}^{\mathrm{k}}<\mathrm{n}^{\log \log \mathrm{n}}$ iff $\mathrm{k}<\log \log \mathrm{n}$ iff $\mathrm{n}>2^{2^{K}}$
By setting $n_{0}=2^{2^{K}}$, we conclude $n^{\mathrm{k}}$ is $\mathrm{O}\left(\mathrm{n}^{\log \log \mathrm{n}}\right)$ for any $\mathrm{k}>0$

By the limit rule.
$\operatorname{Lim}_{n \square} n^{k} / a^{n}$
$=\operatorname{Lim}_{n \square} \mathrm{kn}^{\mathrm{k}-1} /(\ln \mathrm{a}) \mathrm{a}^{\mathrm{n}}$
$=\operatorname{Lim}_{n \square} \mathrm{k}(\mathrm{k}-1) \mathrm{n}^{\mathrm{k}-2} /(\ln \mathrm{a})^{2} \mathrm{a}^{\mathrm{n}}$
...
$=\operatorname{Lim}_{n \square} \mathrm{k}(\mathrm{k}-1)(\mathrm{k}-2) \ldots 1 /(\ln \mathrm{a})^{\mathrm{k}} \mathrm{a}^{\mathrm{n}}$
$=\operatorname{Lim}_{n \square} \mathrm{k}!/(\ln a)^{k} a^{n}=0$
which implies
$\mathrm{n}^{\mathrm{k}}$ is $\mathrm{O}\left(\mathrm{a}^{\mathrm{n}}\right)$ for any $\mathrm{k}>0, \mathrm{a}>1$
$a^{n}$ is not $O\left(n^{k}\right)$ for any $k>0, a>1$
!
4. $\log n!$ is $\square(n \log n)(\log n!$ is $\square(n \log n) \&$ is $O(n \log n))$

Notice that $\log \mathrm{n}!=\square_{\mathrm{i}=1 . . \mathrm{n}} \log \mathrm{i}<\square_{\mathrm{i}=1 . . \mathrm{n}} \log \mathrm{n}=\mathrm{n} \log \mathrm{n}$.
Also $\square_{\mathrm{i}=1 . . \mathrm{n}} \log \mathrm{i}>\square_{\mathrm{i}=n / 2 . \mathrm{n}} \log \mathrm{i}>\square_{\mathrm{i}=n / 2 . \mathrm{n}} \log \mathrm{n} / 2$
$=\mathrm{n} / 2 \log \mathrm{n} / 2$.
The results follow.

## 5. whenever $\mathrm{m}>\mathrm{k}, \mathrm{n}^{\mathrm{k}}$ is $\mathrm{O}\left(\mathrm{n}^{(\mathrm{m}-\mathrm{D})}\right.$, for some small $\upharpoonright>0$

!
Set $\square=(m-k) / 2>0$. Note that $m-\square=(m+k) / 2>k$, since $m>k$.

Thus $\mathrm{n}^{\mathrm{k}}$ is $\mathrm{O}\left(\mathrm{n}^{(\mathrm{m}-\mathrm{D}}\right)$.

Set $\square=(k-m) / 2>0$. Note that $m+\square=(k+m) / 2<k$, since $\mathrm{m}<\mathrm{k}$.

Thus $\mathrm{n}^{\mathrm{k}}$ is $\square\left(\mathrm{n}^{(\mathrm{m}+\mathrm{D}}\right)$.

Solve the following recurrences and express your solution with the big- $\square$ notation:

Solutions: We consider the general case

$$
T_{n}(a)=\left\{\begin{array}{cc}
c & \text { if } a=1 \\
\alpha 7(n / \beta)+f(a) & \text { if } a>1
\end{array}\right.
$$

by comparing the special function $A^{\log _{\beta^{c}}}$ to $\mathrm{f}(\mathrm{n})$ :

$$
\begin{gathered}
T_{A}(a)= \begin{cases}a & \text { if } a=1 \\
T_{A}(n / 2)+b n & \text { if } a>1\end{cases} \\
\square=1, \square=2, \mathrm{f}(\mathrm{n})=\mathrm{bn}, \mathrm{k}=1
\end{gathered}
$$

$$
n^{\log _{\beta^{u *}}}=1 \text { is } \mathrm{O}(\mathrm{bn}) \text { since } \log _{\square} \square<\mathrm{k}=1
$$

and thus by the Master Method (3.)

$$
\mathrm{T}_{\mathrm{A}}(\mathrm{n}) \text { is } \square(\mathrm{f}(\mathrm{n}))=\square(\mathrm{n})
$$

$$
\begin{aligned}
& T_{A}(n)= \begin{cases}a & \text { if } n=1 \\
T_{A}(n / 2)+b n & \text { if } n>1\end{cases} \\
& T_{B}(n)= \begin{cases}a & \text { if } a=1 \\
T_{B}(n / 2)+b t^{2} & \text { if } n>1\end{cases} \\
& T_{c^{(n)}}= \begin{cases}a & \text { if } n=1 \\
9 T_{z^{(n /}}(3)+n^{2} \log n+n+2 & \text { if } n>1\end{cases}
\end{aligned}
$$

$$
T_{B}(n)= \begin{cases}a & \text { in } \\ T_{B}(n / 2)+b t^{2} & \text { if } a>1\end{cases}
$$

$$
\begin{aligned}
& \square=1, \square=2, \mathrm{f}(\mathrm{n})=\mathrm{bn}^{2}, \mathrm{k}=2 \\
& { }^{\log _{\beta^{* / 2}}}=1 \text { is } \mathrm{O}\left(\mathrm{bn}^{2}\right) \text { since } \log _{\square} \square<\mathrm{k}=2 \\
& \text { and thus by the Master Method (3.) }
\end{aligned}
$$

$$
\mathrm{T}_{\mathrm{B}}(\mathrm{n}) \text { is } \square(\mathrm{f}(\mathrm{n}))=\square\left(\mathrm{n}^{2}\right)
$$

$$
T_{c^{(n)}}^{(n)}= \begin{cases}a & \text { if } n=1 \\ 9 T_{C_{0}(n / 3)+z^{2}}{ }^{2} \log z+n+2 & \text { if } n>1\end{cases}
$$

$$
\square=9, \square=3, f(n)=n^{2} \log n+n+2, k=2, m=1
$$

$$
n^{\log _{\beta^{*}}}=\mathrm{n}^{2} \text { and thus }
$$

${ }_{n}^{\log }{ }_{\beta^{2}} \log \mathrm{n}=\mathrm{n}^{2} \log \mathrm{n}$ is $\square\left(\mathrm{n}^{2} \log \mathrm{n}+\mathrm{n}+2\right)(\mathrm{k}=2, \mathrm{~m}=1)$ and thus by the Master Method (2.)
$\mathrm{T}_{\mathrm{C}}(\mathrm{n})$ is $\square\left(n^{\log _{\beta^{\prime}}} \log ^{2} \mathrm{n}\right)=\square\left(\mathrm{n}^{2} \log ^{2} \mathrm{n}\right)(\mathrm{k}=2, \mathrm{~m}+1=2)$

