Post Correspondence Problem

Post Correspondence Problem

Given words $x_1, x_2, ..., x_k$ and $y_1, y_2, ..., y_k$

Is there a sequence of indexes i1,i2,i3,...,in

such that $x_{i_1}x_{i_2}...x_{i_n}=y_{i_1}y_{i_2}...y_{i_n}$?

Post Correspondence Problem

Given words $x_1, x_2, ..., x_k$ and $y_1, y_2, ..., y_k$

Is there a sequence of indexes $i_1, i_2, i_3, ..., i_n$ such that $x_{i_1}x_{i_2}...x_{i_n}=y_{i_1}y_{i_2}...y_{i_n}$?

Theorem:

there cannot exist an algorithm that answers correctly on all instances of this problem.

PCP is undecidable

Is it k-colorable?

Is it 4-colorable ? yes, always ! (very hard theorem)

Is it 3-colorable ? yes, sometimes hard to tell, but easy to check

Is it 2-colorable? no, sometimes easy to tell, and easy to check

Plannar graphs (maps) Is it 2-colorable? easy to tell, and easy to check Plannar graphs 2-colorable in P

Is it <u>3-colorable</u>?
hard to tell, but easy to check
Plannar graphs 3-colorable in NP

Is it K-colorable ? K>3
easy to tell, and easy to check
Plannar graphs K-colorable in P

General graphs

Is it <u>2-colorable</u>? easy to tell, and easy to check General graphs 2-colorable in P

Is it <u>3-colorable</u>?
hard to tell, but easy to check
General graphs 3-colorable in NP

Is it K-colorable? K>3
hard to tell, but easy to check
General graphs K-colorable in NP

General graphs K-colorable, K>2 in NP

General graphs K-colorable, K>2 is NP-complete

meaning:
if
General graphs K-colorable, K>2
in P
then
every problem in NP is also in P.