Post Gorrespondence Problem

abacab	bbaa	b	ba	cab
cab	a	baba	ab	bac

b	abacab
baba	cab

Post Gorrespondence Problem

Is there a sequence of indexes ingi2,i3goo.gin

such that $x_{i_{1}} x_{i_{2}} \bullet \bullet \cdot x_{i_{n}}=Y_{i_{1}} Y_{i_{2}} \bullet \bullet \cdot Y_{i_{n}}$?

Post Gorrespondence Problem

Given words $\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}, 0,0, \mathbf{X}_{\mathbf{k}}$ and $\mathbf{Y}_{\mathbf{1}}, \mathbf{Y}_{\mathbf{2}}, 0,0, \mathbf{Y}_{\mathbf{k}}$

Is there a sequence of indexes in ,in,i3,o.o,in such that $X_{i_{1}} X_{i_{2}} \bullet \bullet X_{i_{n}}=Y_{i_{1}} Y_{i_{2}} \bullet \bullet \cdot Y_{i_{n}}{ }^{2}$

Theorem:
there cannot exist an algorithm that answers coprectly on all instances of this problem.

PEP is undecidable

Plannar graphs (maps)
Is it 2-colorable?
easy to tell, and easy to check Plannar graphs 2-colorable in P

Is it 3-colorable ?

hard to tell, but easy to check Plannar graphs 3-colorable in NP

Is it K-colorable 2 K>3
easy to tell, and easy to check Plannar graphs K-colorable in P

General craphs

Is it 2-colorable ?

easy to tell, and easy to check General graphs 2-colorable in \mathbf{P}

Is it 3-colorable?

hard to tell, but easy to check General graphs 3-colorable in NP

$$
\text { Is it K-colorable } 2 \text { K>3 }
$$

hard to tell, but easy to check General graphs K-colorable in NP

General spaphs K-colorable, K>2 in NP

General spaphs K-colorable, K>2 is NP-complete

meaning:

if
General graphs K-colorable, K>2 in P
then
every problem in NP is also in P.

