Welcome to...

Convex Hell

er, that's HULL

- Convexivity
- Package-Wrap Algorithm
- Graham Scan
- Dynamic Convex Hull

What is the Convex Hull?

Let **S** be a set of points in the plane.

Intuition: Imagine the points of **S** as being pegs; the *convex hull* of **S** is the shape of a rubber-band stretched around the pegs.

You know what *convex* means, right?

A polygon **P** is said to be **convex** if:

- 1. *P* is non-intersecting; and
- 2. for any two points *p* and *q* on the boundary of *P*, segment *pq* lies entirely inside *P*

Package Wrap

- given the current point, how do we compute the next point?
- set up an orientation tournament using the current point as the anchor-point...
- the next point is selected as the point that beats all other points at CCW orientation, i.e., for any other point, we have

Time Complexity of Package Wrap

- For every point on the hull we examine all the other points to determine the next point
- Notation:
 - N: number of points
 - *M*: number of hull points ($M \le N$)
- Time complexity:
 - Θ(<u>MN</u>)
- Worst case: $\Theta(N^2)$
 - all the points are on the hull (*M*=*N*)
- Average case: $\Theta(N \log N) \Theta(N^{4/3})$
 - for points randomly distributed inside a *square*, $M = \Theta(\log N)$ on average
 - for points randomly distributed inside a *circle*, $M = \Theta(N^{1/3})$ on average

Package Wrap has worst-case time complexity $O(N^2)$

Which is bad...

But in 1972, Nabisco needed a better cookie - so they hired R. L. Graham, who came up with...

Graham Scan

• Form a simple polygon (connect the dots as before)

Graham Scan: Phase 1

Now, form a closed simple path traversing the points by increasing angle with respect to the anchor point

Graham Scan: Phase 2

The anchor point and the next point on the path must be on the hull (why?)

Graham Scan: Phase 2

- keep the path and the hull points in two sequences
- elements are removed from the beginning of the path sequence and are inserted and deleted from the end of the hull sequence
- orientation is used to decide whether to accept or reject the next point

CS 16: Convex Hull Au-

Time Complexity of Graham Scan

- Phase 1 takes time O(N logN)
 - points are sorted by angle around the anchor
- Phase 2 takes time O(N)
 - each point is inserted into the sequence exactly once, and
 - each point is removed from the sequence at most once
- Total time complexity O(N log N)

How to Increase Speed

- Wipe out a lot of the points you know won't be on the hull! This is *interior elimination*
- Here's a good way to do interior elimination if the points are randomly distributed in a square with horizontal and verticall sides:
 - Find the farthest points in the SW, NW, NE, and SE directions
 - Eliminate the points inside the quadrilateral (SW, NW, NE, SE)
 - Do Package Wrap or Graham Scan on the remaining points (only O(√N) points are left on average!)

Dynamic Convex Hull a.k.a. the Wrath of Khan

- The basic convex hull algorithms were fairly interesting, but you may have noticed that you can't draw the hull until after all of the points have been specified.
- Is there an *interactive* way to add points to the hull and redraw it while maintaining an optimal time complexity?

Two Halves = One Hull

- For this algorithm, we consider a convex hull as being two parts:
 - An upper hull:

- and a lower hull:

В

A

Adding points: Case 1

- Case 1: the new point is within the horizontal span of the hull
 - Upper Hull 1a:

If the new point is above the upper hull, then it should be added to the upper hull and some upper-hull points may be removed.

- Upper Hull 1b: If the new point is below the upper hull, no changes need to be made.

Case 1 (cont.)

- The cases for the lower hull are similar.
 - Lower Hull 1a:

If the new point is below the lower hull, then it is added to the lower hull and some lowerhull points may be removed.

- Lower Hull 1b: If the added point is above the existing point, it is inside the existing lower hull, and no changes need be made.

Adding Points: Case 2

- Case 2: the new point is outside the horizontal span of the hull
 - We must modify both the upper and lower hulls accordingly.

Hull Modification

• In Case 1, we determine the vertices *l* and *r* of the upper or lower hulls immediately preceding/following the new point *p* in the *x*-order.

• If *p* has been added to the upper hull, examine the upper hull rightward starting at *r*. If *p* makes a CCW turn with *r* and its right neighbor, remove *r*. Continue until there are no more CCW turns. Repeat for point *l* examining the upper hull leftward. The computation for the bottom hull is similar.

