
Heaps



Binary heaps :

Heap Storage Rules

If the elements of a set can be compared with a
total order semantics, then these elements can be
stored in a heap. A heap is a binary tree in which
two rules are followed :

1. • In a max-heap, the element contained by
a node is greater than or equal to the
elements of that node’s children.

• In a min-heap, the element contained
by a node is lesser than or equal to the
elements of that node’s children.

2. The tree is a complete binary tree: thus every
level, except the deepest, must contain as
many nodes as possible; and at the deepest
level, all nodes are as far left as possible.



Representation :

Although heaps can be represented in exactly the same
manner as the binary search tree using dynamic memory
structure, we can take advantage of the fact that they
are almost complete trees to represent them using an
array.

An array A that represents a heap is an object with two
attributes: length[A], which is the number of elements
in the array, and heap-size[A], the number of elements
in the heap stored within array A. That is, although
A[1 . . . length[A]] may contain valid numbers , no element
past A[heap-size[A]], where heap-size[A] ≤ length[A], is
an element of the heap.

The root of the tree is A[1], and given the index i of a
node, the indices of its PARENT(i), left child LEFT(i)
and right child RIGHT(i) can be computed simply:

function PARENT(i)
return bi/2c

function LEFT(i)
return 2i

function RIGHT(i)
return 2i + 1

The heap property #1 is therefore restated as :

A[PARENT(i)] ≥ A[i] in a max-heap

or

A[PARENT(i)] ≤ A[i] in a min-heap



The five basic procedures on maximal heaps

are :

• Heapify: The procedure which maintains the heap

property, runs in O(lgn).

• Build-Heap: Creates a heap from an unordered in-
put array in linear time.

• Heapsort: Sorts an array in O(n lgn).

• Extract-Max and Insert : allows, in O(lgn), to use
a heap as a priority queue.

Note that a minimal heap would use
Extract-Min instead of Extract-Max.

In the following transparencies we will consider only
the operations for a maximal heap.



Heapify:

Heapify is used to insure the heap property of the tree
after a manipulation. It takes as parameter an array A
and an index i into the array. Heapify assumes that the
trees LEFT(i) and RIGHT(i) are heaps, but that A[i]
may be smaller than its children, thus violating the heap
property. The function of this algorithm is therefore to
let the value at A[i] “flow down” in the heap so that
the subtree rooted at index i becomes a heap.

function HEAPIFY (A, i)
l← LEFT(i)
r ← RIGHT(i)
if l ≤ heap-size[A] and A[l] > A[i]

then largest← l
else largest← i

if r ≤ heap-size[A] and A[r] > A[largest]
then largest← r

if largest 6= i
then

exchangeA[i]↔ A[largest]
HEAPIFY (A, largest)

Since in the worst case the value at A[i] will drift down

the entire tree, the running time of the algorithm is in

O(h) where h is the height of the tree. Since h is lgn,

the algorithm runs in O(lgn).



Building a heap :

Having just defined the procedure HEAPIFY , we can
use it to convert an array A[1 . . . n], where n = length[A],
into a heap.

• Since the elements in the subarray A[(bn/2c+1) . . . n]
are all leaves of the tree, each acts as a 1-element
heap.

• Starting from the parents of these leaves and going
all the way back to the root, apply the HEAPIFY
algorithm.

function BUILD-HEAP(A)
heap-size[A]← length[A]
for i← blength[A]/2c downto 1 do

HEAPIFY (A, i)

Although we know that there are n elements and that

HEAPIFY runs in O(lgn), we can deduce a closer bound

then O(n lgn).



We know that the running time of HEAPIFY is O(h)
where h is the height of the tree. However, HEAPIFY
is being executed on sub-trees of A, the height of which
are often much smaller then lgn.

When looking at a complete tree, we realise that at
most dn/2h+1e nodes can be of height h. The running
time of the BUILD-HEAP algorithm can therefore be
expressed as :

blgnc
∑

h=0

d
n

2h+1
eO(h) = 0



n

blgnc
∑

h=0

h

2h





however

∞
∑

h=0

h

2h
=

1/2

(1− 1/2)
2

= 2

thus

blgnc
∑

h=0

d
n

2h+1
eO(h) = 0



n

blgnc
∑

h=0

h

2h



= 0

(

n

∞
∑

h=0

h

2h

)

= O(n)

Hence, we can build a heap from an unordered array in
linear time.



Heapsort algorithm :

The heapsort algorithm starts by using BUILD-HEAP

to transform the array into a heap, it then takes the
biggest element (the root), outputs it, swaps it with
the element at position heap-size(A), decrements by one
this value (thus eliminating the biggest value), and ap-
plies HEAPIFY to the tree. By repeating this process
n times, the running time of the algorithm is ∈ O(n lgn).

function HEAPSORT(A)
BUILDHEAP(A)
for i← length[A] downto 2 do

output(A[1])
exchange A[1]↔ A[i]
heapsize[A]← heapsize[A]− 1
HEAPIFY (A,1)



Priority queues:

A priority queue is a data structure for maintaining a set
S of elements, each with an associated value called a
key. A priority queue supports the following operations:

• INSERT(S, x) inserts the element x into the set S.
This operation could be written as S ← S ∪ {x}.

• MAXIMUM(S) returns the element of S with the
largest key.

• EXTRACT-MAX(S) removes and returns the ele-
ment of S with the largest key.

Priority queues are often used in job scheduling on shared

computers. The priority queue keeps track of the jobs

to be performed and their relative priorities. When a

job is finished or interrupted, the highest-priority job is

selected from those pending using EXTRACT-MAX. A

new job can be added to the queue at any moment using

INSERT .



Priority queues can easily be implemented using heaps.
The functions HEAP-MAXIMUM returns the maximum
heap element in θ(1) by returning A[1].

function HEAP-EXTRACT-MAX(A)
if heap-size[A] < 1 then

error “heap underflow′′

max← A[1]
A[1]← A[heap-size[A]]
heap-size[A]← heap-size[A]− 1
HEAPIFY (A,1)
return max

The running time of HEAP-EXTRACT-MAX is ∈ O(lgn)
since it performs a constant number of steps on top of
the call to HEAPIFY .

function HEAP-INSERT(A, key)
heapsize[A]← heapsize[A] + 1
i← heapsize[A]
while i > 1 and A[PARENT(i)] < key do

A[i]← A[PARENT(i)]
i← PARENT(i)

A[i]← key

Since the path traced from the new leaf to the root is
of length O(lgn), this algorithm is also ∈ O(lgn).


