HEAPS ||

* Implementation

 HeapSort

* Bottom-Up Heap Construction

e | ocators

o
o®e_o

) [
o ..mmuwwo ..
o QQOOOOWO
0 000 0000 o

6.1

Heaps Il

Implementation of a Heap

public class HeapPriorityQueue implements PriorityQueue
{
BinaryTree T;

Position last;
Comparator comparator;

-
(= (S
heap last

- J

Heaps Il 6.2

Implementation of a Heap(cont.)

e Two ways to find the insertion position z in a heap:

Go ©» @ @D
@GOG @D [

A4

Heaps Il 6.3

Vector Based Implementation

o Updates in the underlying tree occur only at the “last
element”

* A heap can be represented by a vector, where the
node at rank has

- left child at rank 2and
- right child at rank R+ 1

 The leaves do no need to be explicitly stored

 Insertion and removals into/from the heap
correspond tasertLast andremoveLast on the
vector, respectively

Heaps Il 6.4

Heap Sort

 All heap methods run in logarithmic time or better

e If we implement PriorityQueueSort using a heap for
our priority queueinsertitem andremoveMin each
take O(logk), k being the number of elements in the
heap at a given time.

« We always have at mostelements in the heap, so
the worst case time complexity of these methods|is
O(logn).

* Thus each phase takesxdqgg n) time, so the
algorithm runs in Qflog n) time also.

e This sort is known alseap-sort

« TheO(nlog n) run timeof heap-sort is much better
than the Of%) run time of selection and insertion
sort.

In-Place Heap-Sort

Do not use an external heap

 Embed the heap into the sequence, using the vectc
representation

Heaps Il 6.5

Bottom-Up Heap Construction

 build (n + 1)/2 trivial one-element heaps

- N

\
l
\
l

I) \
\ \ \

/

/
\ \
N4 /
\ \

‘/

/

§8 a0 aRen

e now build three-element heaps on top of them
;)

- __l\

- ~

~
/’ ~
- ~

\ \ !

_,\

A0 4 A

Heaps Il 6.6

Bottom-Up Heap Construction

e downheapto preserve the order property

~~
f \
’/_/\\
- ~
- \\
-~ ~

~
-~ _~ N 7

[\ I \

1 @ &) @ W O @ @

* now form seven-element heaps

- N
R

Heaps Il 6.7

Bottom-Up Heap Construction

1 @ (9 @ @ () @ @7

Heaps Il 6.8

Bottom-Up Heap Construction
(cont.)

(15 O (74 20
19 (@ W @ @ () @ @7

The End

Heaps Il 6.9

Analysis of Bottom-Up Heap
Construction

* Proposition Bottom-up heap construction with
keys take®©(n) time.

- Insert i + 1)/2 nodes
Insert (+ 1)/4 nodes and downheap them
Insert (+ 1)/8 nodes and downheap them

visual analysis:

* ninsertsn/2 upheaps with tot&(n) running time

Heaps Il 6.10

Locators

» Locators can be used to keep track of elements gs
they are moved around inside a container.

» A locatorsticks with a specific element, even if that
element changes positions in the container.

* The locator ADT supports the following
fundamental methods:

- element()return the element of the item
associated with thiecator

- key():return the key of the item assocated with the
locator

m

« Using locators, we define additional methods for tl
priority queue ADT

- Insertk,e): insert k,e) into P and return itsocator

- min(): return thelocatorof an element witih
smallest key

- removel): remove the element withcatorl

* In the stock trading application, we return a locator
when an order is placed. The locator allows to
specify unambiguously an order when a cancellatipr
IS requested

Heaps Il 6.11

Positions and Locators

o At this point, you may be wondering what the
difference is between locators and positions, and
why we need to distinguish between them.

e It’s true that they have very similar methods
* The difference is in their primary usage

» Positionsabstract the specific implementation of
accessors to elements (indices vs. nodes).

» Positionsare defined relatively to each other (e.g.,
previous-next, parent-child)

» Locatorskeep track of where elements are stored.
the implementation of an ADT withy locators, a
locator typically holds the current position of the
element.

» Locatorsassociate elements with their keys

Heaps Il 6.12

Locators and Positions at Work

* For example, consider the CS16 Valet Parking
Service (started by the TA staff because they had to
much free time on their hands).

 When they began their business, Andy and Devin
decided to create a data structure to keep track of
where exactly the cars were.

« Andy suggested havingpsitionrepresent what
parking spacehe car was in.

 However, Devin knew that the TAs were driving the
customers’ cars around campus and would not
always park them back into the same spot.

* So they decided to installlacator (awireless
tracking devicg in each car. Each locator had a
unique code, which was written on the claim chegk

 When a customer demanded her car, the HTAS
activated the locator. The horn of the car would honk
and the lights would flash.

e |f the car was parked, Andy and Devin would know
where to retrieve it in the lot.

|~4

e Otherwise, the TA driving the car knew it was time
to bring it back.

Heaps Il 6.13

