
6.1Heaps II

HEAPS II
• Implementation

• HeapSort

• Bottom-Up Heap Construction

• Locators



6.2Heaps II

Implementation of a Heap
public class HeapPriorityQueue implements PriorityQueue
{

BinaryTree T;

Position last;

Comparator comparator;

...

}

lastheap

(4,C)

(6,Z)

(20,B)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

comp

<
=
>



6.3Heaps II

Implementation of a Heap(cont.)
• Two ways to find the insertion position z in a heap:

(2,C)

(4,C)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B) (10,L)

z

(4,C)

(6,Z)

(20,B)(7,Q)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)
w z

u



6.4Heaps II

Vector Based Implementation
• Updates in the underlying tree occur only at the “last

element”

• A heap can be represented by a vector, where the
node at ranki has
- left child at rank 2i and
- right child at rank 2i + 1

• The leaves do no need to be explicitly stored

• Insertion and removals into/from the heap
correspond toinsertLast andremoveLast on the
vector, respectively

1

2

5 6 7

3

4

8 9 10 11 12 13



6.5Heaps II

Heap Sort
• All heap methods run in logarithmic time or better

• If we implement PriorityQueueSort using a heap for
our priority queue,insertItem andremoveMin each
take O(logk), k being the number of elements in the
heap at a given time.

• We always have at mostn elements in the heap, so
the worst case time complexity of these methods is
O(logn).

• Thus each phase takes O(n log n) time, so the
algorithm runs in O(n log n) time also.

• This sort is known asheap-sort.

• TheO(n log n) run timeof heap-sort is much better
than the O(n2) run time of selection and insertion
sort.

In-Place Heap-Sort
• Do not use an external heap

• Embed the heap into the sequence, using the vector
representation



6.6Heaps II

Bottom-Up Heap Construction
• build (n + 1)/2 trivial one-element heaps

• now build three-element heaps on top of them

61216 23 204 715

27

612

25

16 23 204

5

7

11

15



6.7Heaps II

Bottom-Up Heap Construction
• downheap to preserve the order property

• now form seven-element heaps

20

1112

15

2516 23 275

4

7

6

20

8

1112

15

2516 23 275

9

4

7

6



6.8Heaps II

Bottom-Up Heap Construction
(cont.)

6

207

81112

15

2516 23 27

5

9

4

6

207

81112

14

15

2516 23 27

5

9

4



6.9Heaps II

Bottom-Up Heap Construction
(cont.)

The End

4

6

207

811

5

9

1214

15

2516 23 27



6.10Heaps II

Analysis of Bottom-Up Heap
Construction

• Proposition: Bottom-up heap construction withn
keys takesO(n) time.
- Insert (n + 1)/2 nodes
- Insert (n + 1)/4 nodes and downheap them
- Insert (n + 1)/8 nodes and downheap them
- ...
- visual analysis:

• n inserts,n/2 upheaps with totalO(n) running time

4

6

207

811

5

9

1214

15

2516 23 27



6.11Heaps II

Locators
• Locators can be used to keep track of elements as

they are moved around inside a container.

• A locatorsticks with a specific element, even if that
element changes positions in the container.

• The locator ADT supports the following
fundamental methods:
- element(): return the element of the item

associated with thelocator.
- key(): return the key of the item assocated with the

locator.

• Using locators, we define additional methods for the
priority queue ADT
- insert(k,e): insert (k,e) into P and return itslocator
- min(): return thelocator of an element witih

smallest key
- remove(l): remove the element withlocatorl

• In the stock trading application, we return a locator
when an order is placed. The locator allows to
specify unambiguously an order when a cancellation
is requested



6.12Heaps II

Positions and Locators
• At this point, you may be wondering what the

difference is between locators and positions, and
why we need to distinguish between them.

• It’s true that they have very similar methods

• The difference is in their primary usage

• Positions abstract the specific implementation of
accessors to elements (indices vs. nodes).

• Positions are defined relatively to each other (e.g.,
previous-next, parent-child)

• Locatorskeep track of where elements are stored. In
the implementation of an ADT withy locators, a
locator typically holds the current position of the
element.

• Locators associate elements with their keys



6.13Heaps II

Locators and Positions at Work
• For example, consider the CS16 Valet Parking

Service (started by the TA staff because they had too
much free time on their hands).

• When they began their business, Andy and Devin
decided to create a data structure to keep track of
where exactly the cars were.

• Andy suggested having aposition represent what
parking space the car was in.

• However, Devin knew that the TAs were driving the
customers’ cars around campus and would not
always park them back into the same spot.

• So they decided to install alocator (awireless
tracking device) in each car. Each locator had a
unique code, which was written on the claim check.

• When a customer demanded her car, the HTAs
activated the locator. The horn of the car would honk
and the lights would flash.

• If the car was parked, Andy and Devin would know
where to retrieve it in the lot.

• Otherwise, the TA driving the car knew it was time
to bring it back.


