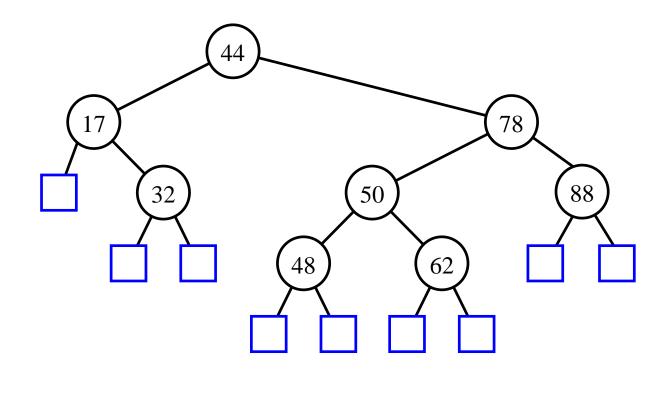
SEARCHING

- the dictionary ADT
- binary search
- binary search trees

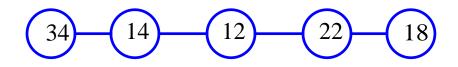


The Dictionary ADT

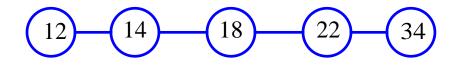
- a dictionary is an abstract model of a database
- like a priority queue, a dictionary stores key-element pairs
- the main operation supported by a dictionary is searching by key
- simple container methods:
 - size()
 - isEmpty()
 - elements()
- query methods:
 - findElement(k)
 - findAllElements(k)
- update methods:
 - insertItem(k, e)
 - removeElement(k)
 - removeAllElements(k)
- special element
 - NO_SUCH_KEY, returned by an unsuccessful search

Implementing a Dictionary with a Sequence

unordered sequence



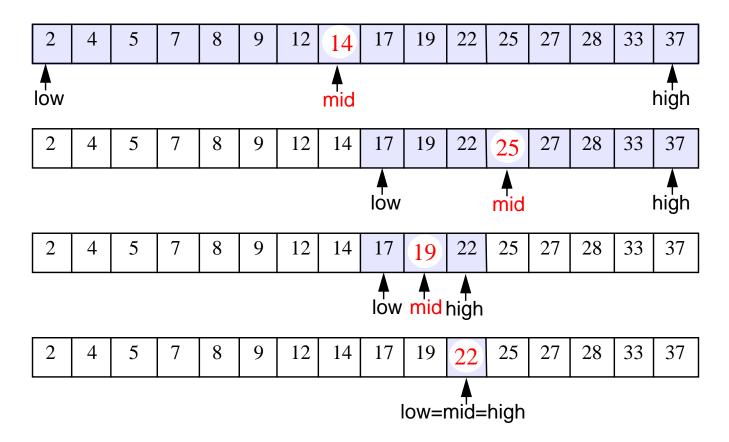
- searching and removing takes O(n) time
- inserting takes O(1) time
- applications to log files (frequent insertions, rare searches and removals)
- *array-based ordered sequence* (assumes keys can be ordered)



- searching takes O(log *n*) time (*binary search*)
- inserting and removing takes O(n) time
- application to look-up tables (frequent searches, rare insertions and removals)

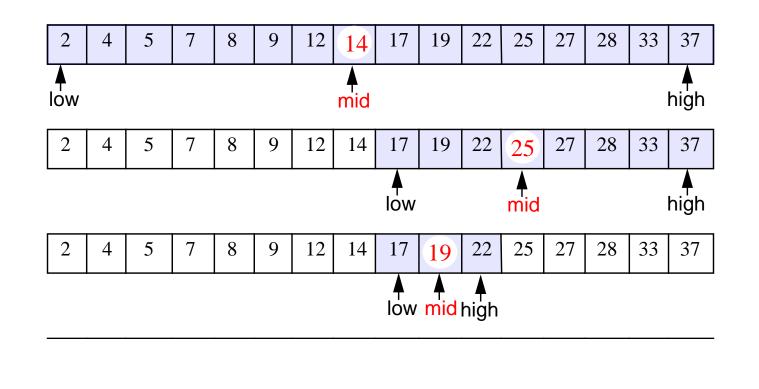
Binary Search

- narrow down the search range in stages
- "high-low" game
- findElement(22)



Pseudocode for Binary Search

Algorithm BinarySearch(S, k, low, high) if low > high then return NO_SUCH_KEY else mid ← (low+high) / 2 if k = key(mid) then return key(mid) else if k < key(mid) then return BinarySearch(S, k, low, mid−1) else return BinarySearch(S, k, mid+1, high)



Running Time of Binary Search

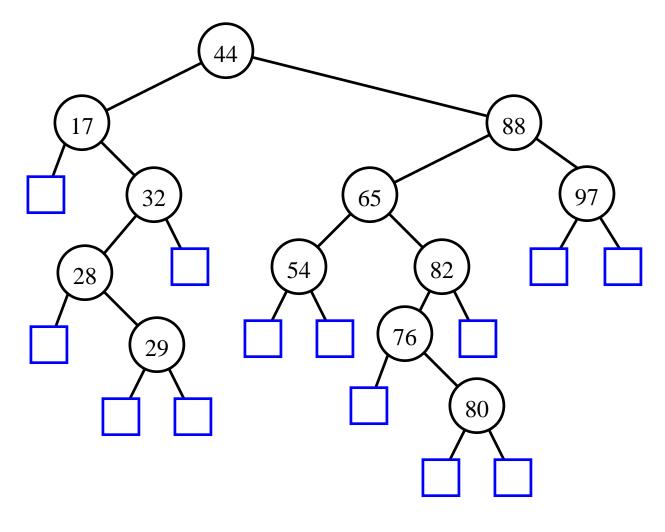
• The range of candidate items to be searched is *halved after each comarison*

comparison	search range
0	n
1	n/2
2	<i>n</i> /4
•••	•••
2^i	$n/2^i$
$\log_2 n$	1

 In the array-based implementation, access by rank takes O(1) time, thus binary search runs in O(log n) time

Binary Search Trees

- A binary search tree is a binary tree T such that
 - each internal node stores an item (k, e) of a dictionary.
 - keys stored at nodes in the left subtree of v are less than or equal to k.
 - keys stored at nodes in the right subtree of v are greater than or equal to k.
 - kxternal nodes do not hold elements but serve as place holders.



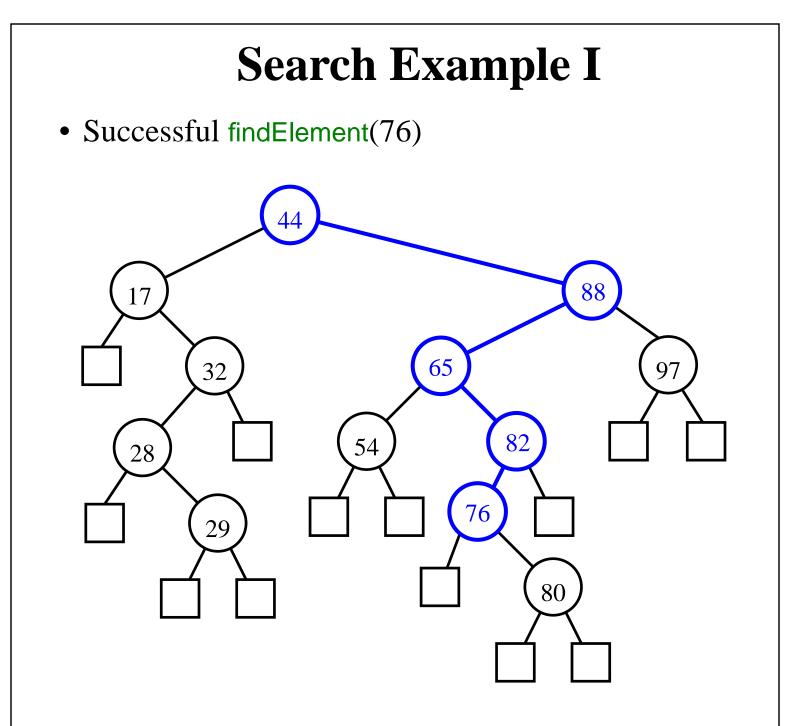
Search

- A binary search tree *T* is a *decision tree*, where the question asked at an internal node *v* is whether the search key *k* is less than, equal to, or greater than the key stored at *v*.
- Pseudocode:
 - **Algorithm TreeSearch**(*k*, *v*):
 - **Input**: A search key *k* and a node *v* of a binary search tree *T*.
 - **Ouput**: A node w of the subtree T(v) of *T* rooted at *v*, such that either w is an internal node storing key *k* or w is the external node encountered in the inorder traversal of T(v) after all the inter nal nodes with keys smaller than *k* and before all the internal nodes with keys greater than *k*.
 - if v is an external node then
 - return v
 - if k = key(v) then
 - return v
 - else if k < key(v) then

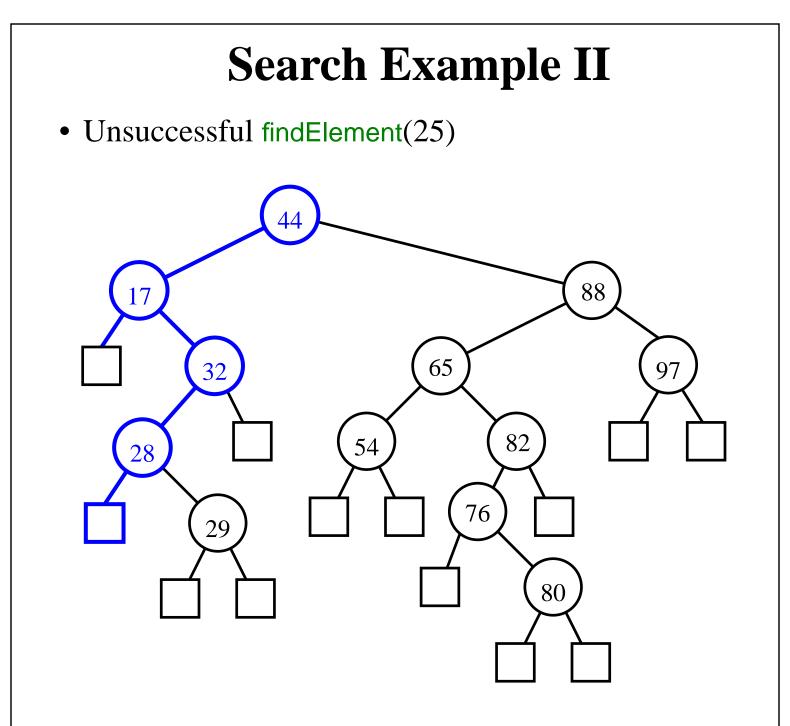
```
return TreeSearch(k, T.leftChild(v))
```

else

```
{ k > key(v) }
return TreeSearch(k, T.rightChild(v))
```



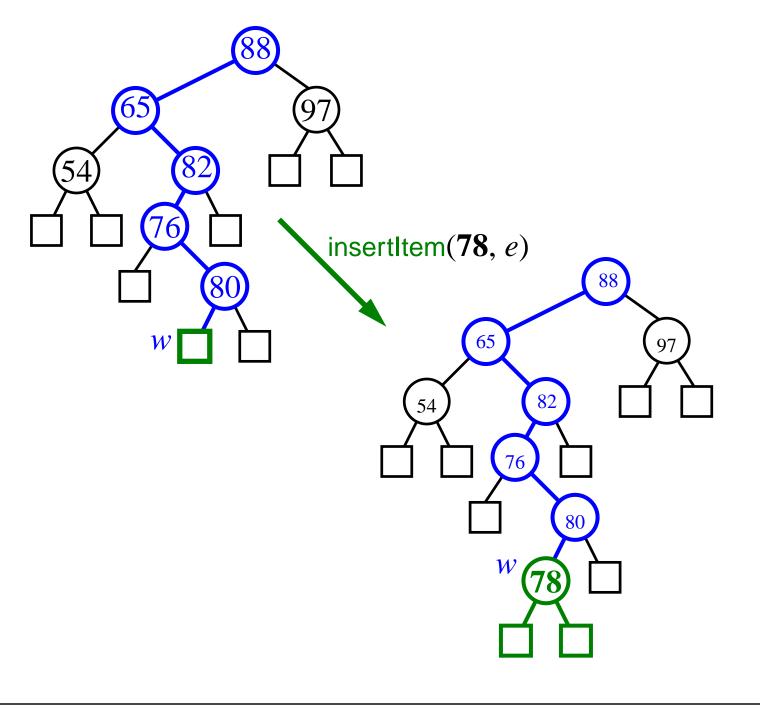
- A successful search traverses a path starting at the root and ending at an internal node
- How about findAllelements(*k*)?



• An unsuccessful search traverses a path starting at the root and ending at an external node

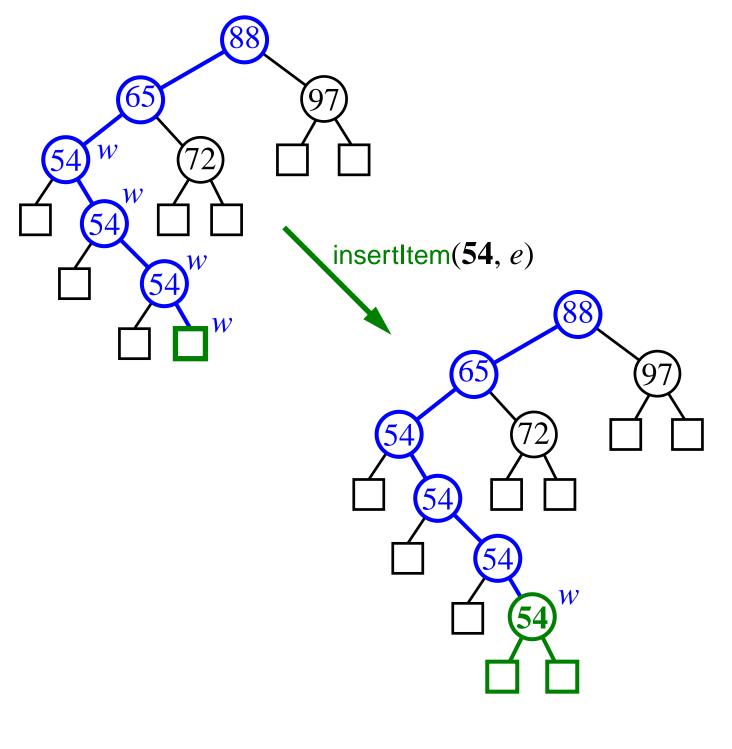
Insertion

- To perform insertItem(*k*, *e*), let *w* be the node returned by TreeSearch(*k*, *T*.root())
- If *w* is external, we know that *k* is not stored in *T*. We call expandExternal(*w*) on *T* and store (*k*, *e*) in *w*



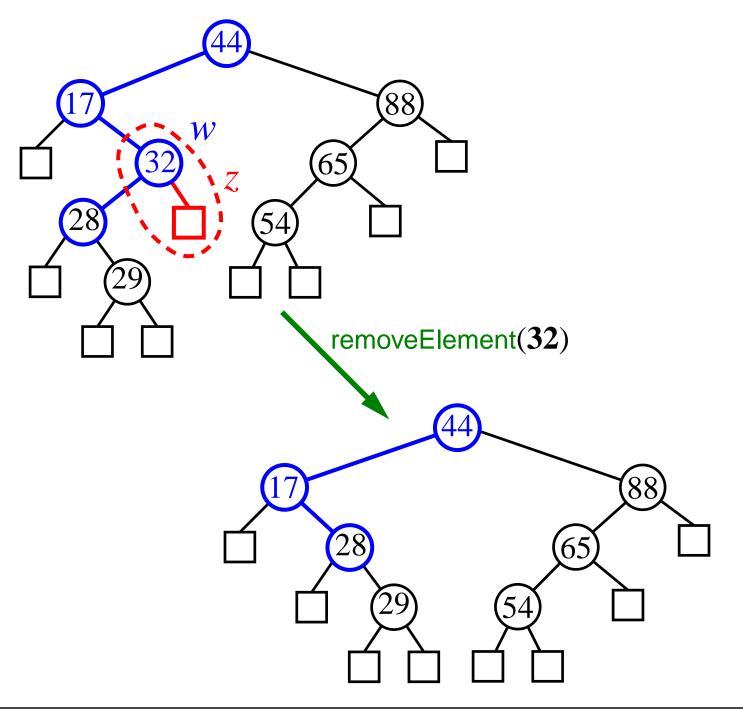
Insertion II

• If *w* is internal, we know another item with key *k* is stored at *w*. We call the algorithm recursively starting at *T*.rightChild(*w*) or *T*.leftChild(*w*)



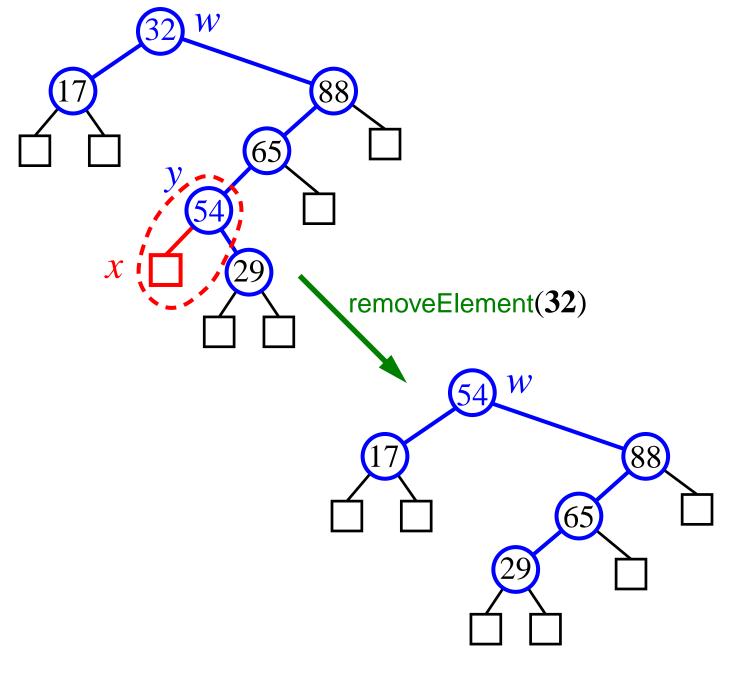
Removal I

- We locate the node *w* where the key is stored with algorithm TreeSearch
- If *w* has an external child *z*, we remove *w* and *z* with removeAboveExternal(*z*)



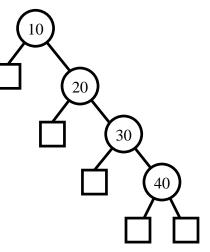
Removal II

- If w has an no external children:
 - find the internal node y following w in inorder
 - move the item at y into w
 - perform removeAboveExternal(x), where x is the left child of y (guaranteed to be external)



Time Complexity

- A search, insertion, or removal, visits the nodes along a *root-to leaf path*, plus possibly the *siblings* of such nodes
- Time O(1) is spent at each node
- The running time of each operation is O(*h*), where *h* is the height of the tree
- The height of binary serch tree is in *n* in the worst case, where a binary search tree looks like a sorted sequence



- To achive good running time, we need to keep the tree *balanced*, i.e., with O(log *n*) height
- Various balancing schemes will be explored in the next lectures