SEARCHING

- the dictionary ADT
- binary search
- binary search trees
The Dictionary ADT

• a dictionary is an abstract model of a database

• like a priority queue, a dictionary stores key-element pairs

• the main operation supported by a dictionary is searching by key

• simple container methods:
 - size()
 - isEmpty()
 - elements()

• query methods:
 - findElement(k)
 - findAllElements(k)

• update methods:
 - insertItem(k, e)
 - removeElement(k)
 - removeAllElements(k)

• special element
 - NO_SUCH_KEY, returned by an unsuccessful search
Implementing a Dictionary with a Sequence

• **unordered sequence**
 - searching and removing takes $O(n)$ time
 - inserting takes $O(1)$ time
 - applications to log files (frequent insertions, rare searches and removals)

• **array-based ordered sequence** (assumes keys can be ordered)
 - searching takes $O(\log n)$ time (*binary search*)
 - inserting and removing takes $O(n)$ time
 - application to look-up tables (frequent searches, rare insertions and removals)
Binary Search

- narrow down the search range in stages
- “high-low” game
- `findElement(22)`

```
2  4  5  7  8  9 12 14 17 19 22 25 27 28 33 37
```

low mid high

```
2  4  5  7  8  9 12 14 17 19 22 25 27 28 33 37
```

low mid high

```
2  4  5  7  8  9 12 14 17 19 22 25 27 28 33 37
```

low mid high

```
2  4  5  7  8  9 12 14 17 19 22 25 27 28 33 37
```

low=mid=high
Pseudocode for Binary Search

Algorithm BinarySearch(S, k, low, high)
if low > high then
 return NO_SUCH_KEY
else
 mid ← (low+high) / 2
 if k = key(mid) then
 return key(mid)
 else if k < key(mid) then
 return BinarySearch(S, k, low, mid−1)
 else
 return BinarySearch(S, k, mid+1, high)

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37
 low mid high

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37
 low mid high

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37
 low mid

Running Time of Binary Search

• The range of candidate items to be searched is *halved after each comparison*

<table>
<thead>
<tr>
<th>comparison</th>
<th>search range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>$n/2$</td>
</tr>
<tr>
<td>2</td>
<td>$n/4$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2^i</td>
<td>$n/2^i$</td>
</tr>
<tr>
<td>$\log_2 n$</td>
<td>1</td>
</tr>
</tbody>
</table>

• In the array-based implementation, access by rank takes $O(1)$ time, thus *binary search runs in $O(\log n)$ time*
Binary Search Trees

- A binary search tree is a binary tree T such that
 - each internal node stores an item (k, e) of a dictionary.
 - keys stored at nodes in the left subtree of v are less than or equal to k.
 - keys stored at nodes in the right subtree of v are greater than or equal to k.
 - leaf nodes do not hold elements but serve as placeholders.
Search

• A binary search tree T is a decision tree, where the question asked at an internal node v is whether the search key k is less than, equal to, or greater than the key stored at v.

• Pseudocode:

 Algorithm TreeSearch(k, v):
 Input: A search key k and a node v of a binary search tree T.
 Output: A node w of the subtree $T(v)$ of T rooted at v, such that either w is an internal node storing key k or w is the external node encountered in the inorder traversal of $T(v)$ after all the internal nodes with keys smaller than k and before all the internal nodes with keys greater than k.

 if v is an external node then
 return v
 if $k = \text{key}(v)$ then
 return v
 else if $k < \text{key}(v)$ then
 return TreeSearch(k, T.leftChild(v))
 else
 { $k > \text{key}(v)$ }
 return TreeSearch(k, T.rightChild(v))
Search Example I

• Successful `findElement(76)`

• A successful search traverses a path starting at the root and ending at an internal node

• How about `findAllelements(k)`?
Search Example II

• Unsuccessful `findElement(25)`

• An unsuccessful search traverses a path starting at the root and ending at an external node
Insertion

- To perform `insertItem(k, e)`, let w be the node returned by `TreeSearch(k, T.root())`

- If w is external, we know that k is not stored in T. We call `expandExternal(w)` on T and store (k, e) in w
Insertion II

- If \(w \) is internal, we know another item with key \(k \) is stored at \(w \). We call the algorithm recursively starting at \(T.\text{rightChild}(w) \) or \(T.\text{leftChild}(w) \)

```
insertItem(54, e)
```
Removal I

- We locate the node \(w \) where the key is stored with algorithm TreeSearch.
- If \(w \) has an external child \(z \), we remove \(w \) and \(z \) with \text{removeAboveExternal}(z).

Diagram:

- Node 32 is removed, with its parent node 44 remaining.
- The tree structure after removal is shown.

Code:

removeElement(32)
Removal II

• If w has no external children:
 - find the internal node y following w in inorder
 - move the item at y into w
 - perform $\text{removeAboveExternal}(x)$, where x is the left child of y (guaranteed to be external)

```
32  w
  17
  88
  65
  54
  29
```

```
54  w
  17
  88
  65
  29
```
Time Complexity

• A search, insertion, or removal, visits the nodes along a \textit{root-to leaf path}, plus possibly the \textit{siblings} of such nodes

• Time $O(1)$ is spent at each node

• The running time of each operation is $O(h)$, where h is the height of the tree

• The height of binary search tree is in n in the worst case, where a binary search tree looks like a sorted sequence

• To achieve good running time, we need to keep the tree \textit{balanced}, i.e., with $O(\log n)$ height

• Various balancing schemes will be explored in the next lectures