
1Searching

SEARCHING

• the dictionary ADT

• binary search

• binary search trees

88

44

17 78

32 50

48 62

2Searching

The Dictionary ADT
• a dictionary is an abstract model of a database

• like a priority queue, a dictionary stores key-element
pairs

• the main operation supported by a dictionary is
searching by key

• simple container methods:
- size()
- isEmpty()
- elements()

• query methods:
- findElement(k)
- findAllElements(k)

• update methods:
- insertItem(k, e)
- removeElement(k)
- removeAllElements(k)

• special element
- NO_SUCH_KEY, returned by an unsuccessful

search

3Searching

Implementing a Dictionary with
a Sequence

• unordered sequence

- searching and removing takes O(n) time
- inserting takes O(1) time
- applications to log files (frequent insertions, rare

searches and removals)

• array-based ordered sequence(assumes keys can be
ordered)

- searching takes O(logn) time (binary search)
- inserting and removing takes O(n) time
- application to look-up tables (frequent searches,

rare insertions and removals)

34 14 12 22 18

12 14 18 22 34

4Searching

Binary Search
• narrow down the search range in stages

• “high-low” game

• findElement(22)

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 2225 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 1922 25 27 28 33 37

low highmid

highmidlow

highlow mid

low=mid=high

5Searching

Pseudocode for Binary Search

Algorithm BinarySearch(S, k, low, high)
if low > highthen

return NO_SUCH_KEY
else

mid ← (low+high) / 2
if k = key(mid)then

return key(mid)
else if k < key(mid)then

return BinarySearch(S, k, low, mid−1)
else

return BinarySearch(S, k, mid+1, high)

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 2225 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

low highmid

highmidlow

highlow mid

6Searching

Running Time of Binary Search
• The range of candidate items to be searched is

halved after each comarison

• In the array-based implementation, access by rank
takes O(1) time, thusbinary search runs inO(log n)
time

comparison search range
0 n

1 n/2

2 n/4

... ...

2i n/2i

log2 n 1

7Searching

Binary Search Trees
• A binary search tree is a binary tree T such that

- each internal node stores an item (k, e) of a
dictionary.

- keys stored at nodes in the left subtree of v are less
than or equal to k.

- keys stored at nodes in the right subtree of v are
greater than or equal to k.

- kxternal nodes do not hold elements but serve as
place holders.

97

44

17 88

32 65

54 8228

29 76

80

8Searching

Search
• A binary search treeT is adecision tree, where the

question asked at an internal nodev is whether the
search keyk is less than, equal to, or greater than the
key stored atv.

• Pseudocode:
Algorithm TreeSearch(k, v):

Input : A search keyk and a nodev of a binary search
treeT.

Ouput: A node w of the subtreeT(v) of T rooted atv,
such that either w is an internal node storing
key k or w is the external node encountered in
the inorder traversal ofT(v) after all the inter
nal nodes with keys smaller thank and before
all the internal nodes with keys greater thank.

if v is an external nodethen
return v

if k = key(v) then
return v

else ifk < key(v) then
return TreeSearch(k, T.leftChild(v))

else
{ k > key(v) }
return TreeSearch(k, T.rightChild(v))

9Searching

Search Example I
• SuccessfulfindElement(76)

• A successful search traverses a path starting at the
root and ending at an internal node

• How aboutfindAllelements(k)?

97

44

17 88

32 65

54 8228

29
76

80

10Searching

Search Example II
• UnsuccessfulfindElement(25)

• An unsuccessful search traverses a path starting at
the root and ending at an external node

97

44

17 88

32 65

54 8228

29
76

80

11Searching

Insertion
• To performinsertItem(k, e), letw be the node

returned byTreeSearch(k, T.root())

• If w is external, we know thatk is not stored inT. We
call expandExternal(w) onT and store (k, e) in w

97

88

65

54 82

76

80

97

88

65

54 82

76

80

78

w

w

insertItem(78, e)

12Searching

Insertion II
• If w is internal, we know another item with keyk is

stored atw. We call the algorithm recursively
starting atT.rightChild(w) or T.leftChild(w)

97

88

65

72

54

54
w insertItem(54, e)

54
w

w

w

97

88

65

72

54

54

54

w
54

13Searching

Removal I
• We locate the nodew where the key is stored with

algorithmTreeSearch

• If w has an external childz, we removew andz
with removeAboveExternal(z)

44

17 88

32 65

5428

29

w
z

44

17 88

65

54

28

29

removeElement(32)

14Searching

Removal II
• If w has an no external children:

- find the internal nodey following w in inorder
- move the item aty into w
- performremoveAboveExternal(x), wherex is the left

child of y (guaranteed to be external)

32

17 88

65

54

29

w

x
removeElement(32)

y

54

17 88

65

29

w

15Searching

Time Complexity
• A search, insertion, or removal, visits the nodes

along aroot-to leaf path, plus possibly thesiblings
of such nodes

• Time O(1) is spent at each node

• The running time of each operation is O(h), whereh
is the height of the tree

• The height of binary serch tree is inn in the worst
case, where a binary search tree looks like a sorted
sequence

• To achive good running time, we need to keep the
treebalanced, i.e., with O(logn) height

• Various balancing schemes will be explored in the
next lectures

10

20

30

40

