DEPTH-FIRST SEARCH

- Graph Traversals
- Depth-First Search

Exploring a Labyrinth Without Getting Lost

- A depth-first search (DFS) in an undirected graph G is like wandering in a labyrinth with a string and a can of red paint without getting lost.
- We start at vertex s, tying the end of our string to the point and painting s "visited". Next we label s as our current vertex called u.
- Now we travel along an arbitrary edge (u, v).
- If edge (u, v) leads us to an already visited vertex v we return to u.
- If vertex v is unvisited, we unroll our string and move to v, paint v "visited", set v as our current vertex, and repeat the previous steps.
- Eventually, we will get to a point where all incident edges on u lead to visited vertices. We then backtrack by unrolling our string to a previously visited vertex v. Then v becomes our current vertex and we repeat the previous steps.

Exploring a Labyrinth Without Getting Lost (cont.)

- Then, if we all incident edges on v lead to visited vertices, we backtrack as we did before. We continue to backtrack along the path we have traveled, finding and exploring unexplored edges, and repeating the procedure.
- When we backtrack to vertex s and there are no more unexplored edges incident on s, we have finished our DFS search.

Depth-First Search

Algorithm DFS(v);
Input: A vertex v in a graph
Output: A labeling of the edges as "discovery" edges and "backedges"
for each edge e incident on v do if edge e is unexplored then
let w be the other endpoint of e
if vertex w is unexplored then
label e as a discovery edge
recursively call DFS(w)
else
label e as a backedge
unvisited vertex
visited vertex
traversed edge

Determining Incident Edges

- DFS depends on how you obtain the incident edges.
- If we start at A and we examine the edge to F , then to B , then E, C, and finally G

The resulting graph is:

If we instead examine the tree starting at A and looking at F , the C , then E, B, and finally F ,

the resulting set of backEdges, discoveryEdges and recursion points is different.

- Now an example of a DFS.

$$
\mathrm{A} \rightarrow\langle\hat{\mathrm{~F}}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{e}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow \mathrm{\square}
$$

$$
B \rightarrow\langle\Delta\rangle \rightarrow \square \quad \text { Step 4: } \quad \text { Back Edge }
$$

$$
\xrightarrow[C]{C} \rightarrow\langle\wedge \rightarrow \square
$$

$$
\mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \mathrm{D}
$$

$$
\mathrm{E} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \rightarrow \square \quad \text { D }-\overline{\mathrm{E}}
$$

$$
\mathrm{F} \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \quad \mathrm{F}
$$

$$
\mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow \mathrm{\square} \\
& \begin{array}{l}
\mathrm{B} \rightarrow\langle\hat{A}\rangle \rightarrow \square \\
\mathrm{C} \rightarrow\langle\hat{A}\rangle \rightarrow \square
\end{array} \\
& \mathrm{D} \rightarrow\langle\mathrm{~F}\rangle\langle\mathrm{E}\rangle \rightarrow \mathrm{\square} \\
& \mathrm{E} \rightarrow\langle\mathrm{G}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \rightarrow \square \\
& \mathrm{F} \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \quad \mathrm{F} \\
& \mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{aligned}
$$

$\mathrm{A} \rightarrow\langle\mathrm{F}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square$ $B \rightarrow\langle\Delta\rangle \rightarrow \square$
$\square \rightarrow\langle\Delta\rangle \rightarrow \square$

$$
\mathrm{D} \rightarrow\langle\hat{\mathrm{~F}}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
$$

$$
B \rightarrow\langle A\rangle \rightarrow \square
$$

$$
\square \rightarrow\langle\hat{A}\rangle \rightarrow \square
$$

Step 12:

$$
\mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
$$

$\mathrm{A} \rightarrow\langle\mathrm{F}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow \mathrm{D}$ $B \rightarrow\langle\Delta\rangle \rightarrow \square$
$\square \rightarrow\langle A\rangle \rightarrow \square$

$$
\mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
$$

$B \rightarrow\langle\Delta\rangle \rightarrow \square$

$$
\square \rightarrow\langle\Delta\rangle \rightarrow \square
$$

$$
\mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
$$

$$
\begin{aligned}
& \mathrm{E} \rightarrow\langle\hat{\mathrm{H}}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \\
& \mathrm{F} \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square
\end{aligned}
$$

$$
\mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
$$

DFS Properties

- Proposition 9.12 : Let G be an undirected graph on which a DFS traversal starting at a vertex s has been preformed. Then:

1) The traversal visits all vertices in the connected component of s
2) The discovery edges form a spanning tree of the connected component of s

- Justification of 1):
- Let's use a contradiction argument: suppose there is at least on vertex v not visited and let w be the first unvisited vertex on some path from s to v.
- Because w was the first unvisited vertex on the path, there is a neighbor u that has been visited.
- But when we visited u we must have looked at edge (u, w). Therefore w must have been visited.
- and justification
- Justification of 2):
- We only mark edges from when we go to unvisited vertices. So we never form a cycle of discovery edges, i.e. discovery edges form a tree.
- This is a spanning tree because DFS visits each vertex in the connected component of s

Running Time Analysis

- Remember:
- DFS is called on each vertex exactly once.
- Every edge is examined exactly twice, once from each of its vertices
- For n_{s} vertices and m_{s} edges in the connected component of the vertex s, a DFS starting at s runs in $\mathrm{O}\left(n_{s}+m_{s}\right)$ time if:
- The graph is represented in a data structure, like the adjacency list, where vertex and edge methods take constant time
- Marking a vertex as explored and testing to see if a vertex has been explored takes O (degree)
- By marking visited nodes, we can systematically consider the edges incident on the current vertex so we do not examine the same edge more than once.

Marking Vertices

- Let's look at ways to mark vertices in a way that satisfies the above condition.
- Extend vertex positions to store a variable for marking

- Use a hash table mechanism which satisfies the above condition is the probabilistic sense, because is supports the mark and test operations in $\mathrm{O}(1)$ expected time

