
1Depth-First Search

DEPTH-FIRST SEARCH

• Graph Traversals

• Depth-First Search

M N O P

I J K L

E F G H

A B C D

2Depth-First Search

Exploring a Labyrinth Without
Getting Lost

• A depth-first search (DFS) in an undirected graph
G is like wandering in a labyrinth with a string and a
can of red paint without getting lost.

• We start at vertexs, tying the end of our string to the
point and paintings “visited”. Next we labelsas our
current vertex calledu.

• Now we travel along an arbitrary edge(u,v).

• If edge(u,v) leads us to an already visited vertexv
we return tou.

• If vertexv is unvisited, we unroll our string and
move tov, paintv “visited”, setv as our current
vertex, and repeat the previous steps.

• Eventually, we will get to a point where all incident
edges onu lead to visited vertices. We then
backtrack by unrolling our string to a previously
visited vertexv. Thenv becomes our current vertex
and we repeat the previous steps.

3Depth-First Search

Exploring a Labyrinth Without
Getting Lost (cont.)

• Then, if we all incident edges onv lead to visited
vertices, we backtrack as we did before. We
continue to backtrack along the path we have
traveled, finding and exploring unexplored edges,
and repeating the procedure.

• When we backtrack to vertexs and there are no
more unexplored edges incident ons, we have
finished ourDFS search.

4Depth-First Search

Depth-First Search

Algorithm DFS(v);
Input : A vertexv in a graph
Output : A labeling of the edges as “discovery” edges

and “backedges”
for each edgee incident onv do

if edgee is unexploredthen
let w be the other endpoint ofe
if vertexw is unexploredthen

labele as a discovery edge
recursively callDFS(w)

else

labele as a backedge

B C

D E

F

G

unvisited vertex

A

traversed edge

F

current Vertex

adjacent Vertex

visited vertex

5Depth-First Search

Determining Incident Edges
• DFS depends on how you obtain the incident edges.

• If we start at A and we examine the edge to F, then
to B, then E, C, and finally G

The resulting graph is:
discoveryEdge
backEdge
return from
dead end

If we instead examine the tree starting at A and
looking at F, the C, then E, B, and finally F,

the resulting set of backEdges, discoveryEdges and
recursion points is different.

• Now an example of a DFS.

A F B E C G

A G C E B F

A

F

ED

B
C

G

6Depth-First Search

B C

D E

G

A

F

A

C

B

D

F

G

Step 1:

B C

D E

G

A

F

A

Step 2:

F B E C G

A

A

F E

E D A

A E

F B E C G

B A

C A

D F E

F E D A

G A E

E G D FA

E G D FA

7Depth-First Search

B C

D

G

A

F

A

Step 3:

F B E C G

B A

C A

D F E

E G D F

F E D A

G A E

E

B C

D

A

F

A

Step 4:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

A

E G D FA

Back Edge

8Depth-First Search

B C

D

A

F

A

Step 5:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA

B C

D

A

F

A

Step 6:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA

9Depth-First Search

B C

D

A

F

A

Step 7:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA

B C

A

F

A

Step 8:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

10Depth-First Search

B C

A

F

A

Step 10:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B C

A

F

A

Step 9:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

11Depth-First Search

B C

A

F

A

Step 11:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B C

A

F

A

Step 12:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

12Depth-First Search

B
C

A

F

A

Step 13:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

C

A

F

A

Step 14:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B

13Depth-First Search

C

A

F

A

Step 15:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B

C

A

F

A

Step 16:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B

14Depth-First Search

A

F

A

Step 17:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
C

A

F

A

Step 18:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
C

15Depth-First Search

A

F

A

Step 19:

F B E C G

B A

C A

D F E

F E D A

G A E

E

G

E G D FA D

B
C

And we’re done!

16Depth-First Search

DFS Properties
• Proposition 9.12 : LetG be an undirected graph on

which aDFStraversal starting at a vertexshas been
preformed. Then:

1) The traversal visits all vertices in the
 connected component ofs

2) The discovery edges form a spanning tree of
 the connected component ofs

• Justification of 1):
- Let’s use a contradiction argument: suppose there

is at least on vertexv not visited and letw be the
first unvisited vertex on some path froms to v.

- Becausew was the first unvisited vertex on the
path, there is a neighboru that has been visited.

- But when we visitedu we must have looked at
edge(u, w). Thereforew must have been visited.

- and justification

• Justification of 2):
- We only mark edges from when we go to unvisited

vertices. So we never form a cycle of discovery
edges, i.e. discovery edges form a tree.

- This is a spanning tree becauseDFS visits each
vertex in the connected component ofs

17Depth-First Search

Running Time Analysis
• Remember:

- DFS is called on each vertex exactly once.
- Every edge is examined exactly twice, once from

each of its vertices

• For ns vertices andms edges in the connected
component of the vertexs, aDFSstarting atsruns in
O(ns +ms) time if:
- The graph is represented in a data structure, like

the adjacency list, where vertex and edge methods
take constant time

- Marking a vertex as explored and testing to see if a
vertex has been explored takes O(degree)

- By marking visited nodes, we can systematically
consider the edges incident on the current vertex
so we do not examine the same edge more than
once.

18Depth-First Search

Marking Vertices
• Let’s look at ways to mark vertices in a way that

satisfies the above condition.

• Extend vertex positions to store a variable for
marking

• Use a hash table mechanism which satisfies the
above condition is the probabilistic sense, because is
supports the mark and test operations in O(1)
expected time

Before
Position

Element

After
Position

Element isMarked

