Depth-First Search

- Graph Traversals
- Depth-First Search

![Diagram of a graph showing Depth-First Search]
Exploring a Labyrinth Without Getting Lost

• A **depth-first search (DFS)** in an undirected graph G is like wandering in a labyrinth with a string and a can of red paint without getting lost.

• We start at vertex *s*, tying the end of our string to the point and painting *s* “visited”. Next we label *s* as our current vertex called *u*.

• Now we travel along an arbitrary edge (*u,v*).

• If edge (*u,v*) leads us to an already visited vertex *v* we return to *u*.

• If vertex *v* is unvisited, we unroll our string and move to *v*, paint *v* “visited”, set *v* as our current vertex, and repeat the previous steps.

• Eventually, we will get to a point where all incident edges on *u* lead to visited vertices. We then backtrack by unrolling our string to a previously visited vertex *v*. Then *v* becomes our current vertex and we repeat the previous steps.
Exploring a Labyrinth Without Getting Lost (cont.)

• Then, if we all incident edges on v lead to visited vertices, we backtrack as we did before. We continue to backtrack along the path we have traveled, finding and exploring unexplored edges, and repeating the procedure.

• When we backtrack to vertex s and there are no more unexplored edges incident on s, we have finished our DFS search.
Depth-First Search

Algorithm DFS(v);
- **Input:** A vertex \(v \) in a graph
- **Output:** A labeling of the edges as “discovery” edges and “backedges”

for each edge \(e \) incident on \(v \) **do**
- **if** edge \(e \) is unexplored **then**
 - let \(w \) be the other endpoint of \(e \)
 - **if** vertex \(w \) is unexplored **then**
 - label \(e \) as a discovery edge
 - recursively call DFS(\(w \))
 - **else**
 - label \(e \) as a backedge
Determining Incident Edges

- DFS depends on how you obtain the incident edges.

- If we start at A and we examine the edge to F, then to B, then E, C, and finally G

![Graph showing the order of visiting vertices](image)

The resulting graph is:
- discoveryEdge
- backEdge
- return from dead end

If we instead examine the tree starting at A and looking at F, the C, then E, B, and finally F,

![Graph showing the opposite order of visiting vertices](image)

the resulting set of backEdges, discoveryEdges and recursion points is different.

- Now an example of a DFS.
Depth-First Search

Step 1:

Step 2:
Depth-First Search

Step 3:

Step 4:
Back Edge
Step 5:

Step 6:
Step 7:

Step 8:
Step 9:

Step 10:
Step 11:

Step 12:
Step 13:

Step 14:
Step 17:

Step 18:

Depth-First Search
And we’re done!
DFS Properties

• Proposition 9.12: Let G be an undirected graph on which a DFS traversal starting at a vertex s has been performed. Then:
 1) The traversal visits all vertices in the connected component of s
 2) The discovery edges form a spanning tree of the connected component of s

• Justification of 1):
 - Let’s use a contradiction argument: suppose there is at least one vertex v not visited and let w be the first unvisited vertex on some path from s to v.
 - Because w was the first unvisited vertex on the path, there is a neighbor u that has been visited.
 - But when we visited u we must have looked at edge (u, w). Therefore w must have been visited.
 - And justification

• Justification of 2):
 - We only mark edges from when we go to unvisited vertices. So we never form a cycle of discovery edges, i.e. discovery edges form a tree.
 - This is a spanning tree because DFS visits each vertex in the connected component of s
Running Time Analysis

• Remember:
 - DFS is called on each vertex exactly once.
 - Every edge is examined exactly twice, once from each of its vertices

• For n_s vertices and m_s edges in the connected component of the vertex s, a DFS starting at s runs in $O(n_s + m_s)$ time if:
 - The graph is represented in a data structure, like the adjacency list, where vertex and edge methods take constant time
 - Marking a vertex as explored and testing to see if a vertex has been explored takes $O(\text{degree})$
 - By marking visited nodes, we can systematically consider the edges incident on the current vertex so we do not examine the same edge more than once.
Marking Vertices

• Let’s look at ways to mark vertices in a way that satisfies the above condition.

• Extend vertex positions to store a variable for marking

<table>
<thead>
<tr>
<th>Before Position</th>
<th>After Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>Element isMarked</td>
</tr>
</tbody>
</table>

• Use a hash table mechanism which satisfies the above condition is the probabilistic sense, because it supports the mark and test operations in O(1) expected time