Breadth-First Search

-Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so definesaspanningtreewithseveralusefulproperties
-The starting vertex s has level 0 , and, as in DFS, defines that point as an "anchor."
-In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited.
-These edges are placed into level 1
-In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and placed in level 2.
-This continues until every vertex has been assigned a level.
-The label of any vertex v corresponds to the length of the shortest path from s to v.

BFS - A Graphical Representation

c)

Generic DFS and BFS

More BFS

e)
f)

BFS Pseudo-Code

Algorithm BFS(s):
Input: A vertex s in a graph
Output:Alabelingoftheedgesas"discovery"edges and "cross edges"
initialize container L_{0} to contain vertex s
$i \leftarrow 0$
while L_{i} is not empty do
create container $\mathrm{L}_{\mathrm{i}+1}$ to initially be empty for each vertex v in L_{i} do
for eachedge e incident on v do
if edge e is unexplored then
let w be the other endpoint of e
if vertex w is unexplored then
label e as a discovery edge
insert w into $\mathrm{L}_{\mathrm{i}+1}$
else
label e as a cross edge
$i \leftarrow i+1$

Properties of BFS

- Proposition:Let G be an undirected graph on which a BFS traversal starting at vertex s has been performed. Then
-The traversal visits all vertices in the connected component of s.
-The discovery-edges form a spanning tree T, which we call the BFS tree, of the connected component of s
-For each vertex v at level i, the path of the BFS tree T between s and v has i edges, and any other path of G between s and v has at least i edges.
- I $f(u, v)$ is an edge that is not in the BFS tree, then the level numbers of u and v differ by at most one.
- Proposition: Let G be a graph with n vertices and m edges. A BFS traversal of G takes time $\mathrm{O}(n+m)$.
Also, there exist $\mathrm{O}(n+m)$ time algorithms based on BFS for the following problems:
-Testing whether G is connected.
-Computing a spanning tree of G
-Computing the connected components of G
-Computing, for every vertex v of G, the minimum number of edges of any path between s and v.

