Binary search trees



Binary search trees :

Search trees are data structures that generally offer the
following dynamic-set operations :

e SEARCH e PREDECESSOR
e SUCCESSOR

e MINIMUM

e MAXIMUM e INSERT
e DELETE

Basic operations on these trees take time proportional
to the height of the tree. For complete balanced trees
with n nodes, this height is of log n. However, since
trees are not always balanced, the worst case is in 6(n).

To represent the nodes of these tree, we usually use
linked data structures in which each node of the tree is
an object. These have the following fields :

key: The usual value used to compare the
different objects.
p : The parent of the current node.
left : The left child of the current node.
right : The right child of the current node.




Binary-search-tree property -

Let x be a node in a binary search tree.

e If y is a node in the left subtree of
x, then keyly] < key[x].

e If y is a node in the right subtree of
x, then keylz] < keyly].

This property allows us to easily output all the keys in
a binary search tree in sorted order :

function INORDER — TREE — WALK (x)
if ¢ £ NIL
then
INORDER — TREE — WALK (left[z])
print key[x]
INORDER — TREE — WALK (right[z])

Note that the name inorder tree walk comes from the
fact that this algorithm prints the value of the key of
the current node between the values of the left subtree
and the values of the right subtree.

Similarly, a preorder tree walk prints the root before the
values in either subtree, and a postorder tree walk prints
the root after the values in its subtrees.



Searching :

function TREFE — SEARCH (x,k)
if x = NIL or k = key|x]
then return x
if k < key[x]
then return TREE — SEARCH (left[x], k)
else return TREFE — SEARCH (right[z], k)

This algorithm starts at node x and traces its way down-
ward until it finds the node with the key equal to k or
determines that no such node exist.

The maximum number of keys encountered during the
recursive search is the length of the path going from =«
to the node with key k. The running time is therefore
in O(h), where h is the height of the tree.

function ITERATIVE — TREE — SEARCH ((x, k)
while x = NIL and k # key[z]
do if k < key[x]
then x « left[x]
else x < right[x]




Minimum and Maximum

The minimum in a binary-search-tree can always be
found by following the left pointers from the root until

a NIL is encountered.

function TREE — MINIMUM (x)

while left[x] &= NIL
do x « left[x]
return x

Similarly, the maximum can be found by following the
right pointers until a NIL is found.

function TREE — MAXIMUM (x)

while right[x] = NIL
do x « right[z]
return x

Both of these algorithms are in O(h) since they trace

paths downward in the tree.



Predecessor and Successor :

If all keys are distinct, the successor of a node x is the
node with the smallest key greater then key[x]. The
following algorithm returns this successor or NIL if the
key of x is the largest key in the tree.

function TREFE — SUCCESSOR(x)
if right[xr] = NIL
then return TREE — MINIMU M (right[z])
y «— p[z]
while y &= NIL and = = right[y] do
T — Yy
y — plyl
return y

If the right subtree of = is not NIL, then the sucessor is
the minimum of this subtree. Otherwise, the returned
value is the closest ancestor who's left subtree includes
X.

The algorithm for TREE - PREDFECESSOR is the sym-
metry of the TREE — SUCCESSOR algorithm.

The running time for a tree of height h is O(h).



Insertion :

This algorithm starts at the root of the tree and traces
a path downward. The pointer x traces this path while
the pointer y is maintained as the parent of x.
x is found to be NIL then the appropriate position has
been found and the new value can be inserted as a child

of y.

Like the previous algorithms, TREE — INSERT is in

O(h).

function TREE — INSERT(T, z)
y<«— NIL
x «— root[T]
while z = NIL do
Yy — @
if keylz] < key[z]
then x «— left[x]
else = <« right[x]
plz] —y
if y= NIL
then root[T] « z
else
if keylz] < key[y]
then lefty] < z
else rightly] <« z




Deletion :

function TREE — DELETE(T, z)
if left[z] = NIL or right[z] = NIL
then y < 2
else y«— TREFE — SUCCESSOR(z)
if left[y] & NIL
then z « left[y]
else x «— right[y]
if o~ NIL
then plz] < ply]
if ply] = NIL
then root[T] «— x
else
if y = left[p[y]]
then left[ply]] «— =
else right[ply]] «— =
if y# 2z
then key|z] «— key[y]
\\ If y has other fields, copy them, too.
return y

This algorithm, like all others, is in O(h).



