
Binary search trees



Binary search trees :

Search trees are data structures that generally offer the
following dynamic-set operations :

• SEARCH
• MINIMUM
• MAXIMUM

• PREDECESSOR
• SUCCESSOR
• INSERT
• DELETE

Basic operations on these trees take time proportional
to the height of the tree. For complete balanced trees
with n nodes, this height is of log n. However, since
trees are not always balanced, the worst case is in θ(n).

To represent the nodes of these tree, we usually use
linked data structures in which each node of the tree is
an object. These have the following fields :

key : The usual value used to compare the
different objects.

p : The parent of the current node.
left : The left child of the current node.

right : The right child of the current node.



Binary-search-tree property :

Let x be a node in a binary search tree.
• If y is a node in the left subtree of

x, then key[y] ≤ key[x].
• If y is a node in the right subtree of

x, then key[x] ≤ key[y].

This property allows us to easily output all the keys in
a binary search tree in sorted order :

function INORDER− TREE −WALK(x)
if x 6= NIL

then

INORDER− TREE −WALK(left[x])
print key[x]
INORDER− TREE −WALK(right[x])

Note that the name inorder tree walk comes from the
fact that this algorithm prints the value of the key of
the current node between the values of the left subtree
and the values of the right subtree.

Similarly, a preorder tree walk prints the root before the
values in either subtree, and a postorder tree walk prints
the root after the values in its subtrees.



Searching :

function TREE − SEARCH(x, k)
if x = NIL or k = key[x]

then return x

if k < key[x]
then return TREE − SEARCH(left[x], k)
else return TREE − SEARCH(right[x], k)

This algorithm starts at node x and traces its way down-
ward until it finds the node with the key equal to k or
determines that no such node exist.

The maximum number of keys encountered during the
recursive search is the length of the path going from x
to the node with key k. The running time is therefore
in O(h), where h is the height of the tree.

function ITERATIV E − TREE − SEARCH(x, k)
while x 6= NIL and k 6= key[x]

do if k < key[x]
then x← left[x]
else x← right[x]



Minimum and Maximum :

The minimum in a binary-search-tree can always be
found by following the left pointers from the root until
a NIL is encountered.

function TREE −MINIMUM(x)
while left[x] 6= NIL

do x← left[x]
return x

Similarly, the maximum can be found by following the
right pointers until a NIL is found.

function TREE −MAXIMUM(x)
while right[x] 6= NIL

do x← right[x]
return x

Both of these algorithms are in O(h) since they trace

paths downward in the tree.



Predecessor and Successor :

If all keys are distinct, the successor of a node x is the
node with the smallest key greater then key[x]. The
following algorithm returns this successor or NIL if the
key of x is the largest key in the tree.

function TREE − SUCCESSOR(x)
if right[x] 6= NIL

then return TREE −MINIMUM(right[x])
y ← p[x]
while y 6= NIL and x = right[y] do

x← y

y ← p[y]
return y

If the right subtree of x is not NIL, then the sucessor is
the minimum of this subtree. Otherwise, the returned
value is the closest ancestor who’s left subtree includes
x.

The algorithm for TREE−PREDECESSOR is the sym-
metry of the TREE − SUCCESSOR algorithm.

The running time for a tree of height h is O(h).



Insertion :

function TREE − INSERT(T, z)
y ← NIL
x← root[T ]
while x 6= NIL do

y ← x

if key[z] < key[x]
then x← left[x]
else x← right[x]

p[z]← y
if y = NIL

then root[T ]← z
else

if key[z] < key[y]
then left[y]← z

else right[y]← z

This algorithm starts at the root of the tree and traces
a path downward. The pointer x traces this path while
the pointer y is maintained as the parent of x. When
x is found to be NIL then the appropriate position has
been found and the new value can be inserted as a child
of y.

Like the previous algorithms, TREE − INSERT is in

O(h).



Deletion :

function TREE −DELETE(T, z)
if left[z] = NIL or right[z] = NIL

then y ← z

else y ← TREE − SUCCESSOR(z)
if left[y] 6= NIL

then x← left[y]
else x← right[y]

if x 6= NIL

then p[x]← p[y]
if p[y] = NIL

then root[T ]← x

else

if y = left[p[y]]
then left[p[y]]← x
else right[p[y]]← x

if y 6= z
then key[z]← key[y]
\\ If y has other fields, copy them, too.

return y

This algorithm, like all others, is in O(h).


