
1Graphs

GRAPHS

• Definitions

• Examples

• The Graph ADT

LAX

PVD

LAX

DFW

FTL

STL

HNL

2Graphs

What is a Graph?
• A graph G = (V,E) is composed of:

V: set ofvertices

E: set ofedges connecting thevertices in V

• An edge e = (u,v) is a pair ofvertices

• Example:

a b

c

d e

V= {a,b,c,d,e}

E=
{(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e),
(d,e)}

3Graphs

Applications
• electronic circuits

find the path of least resistance to CS16

• networks (roads, flights, communications)

CS16

start

LAX

PVD

LAX

DFW

FTL

STL

HNL

4Graphs

mo’ better examples
A Spike Lee Joint Production

• scheduling (project planning)

wake up

eat

work

cs16 meditation

more cs16

play

make cookies
for cs16 HTA

sleep

dream of cs16

cs16 program

A typical student day

battletris

5Graphs

Graph Terminology
• adjacent vertices: connected by an edge

• degree (of avertex): # of adjacent vertices

path: sequence of vertices v1,v2,. . .vk such that
consecutive vertices vi and vi+1 are adjacent.

a b

c

d e

a b

c

d e

a b e d c b e d c

3

3 3

3

2
Σ deg(v) = 2(# edges)
v∈V

• Since adjacent vertices
each count the
adjoining edge, it will
be counted twice

6Graphs

More Graph Terminology
• simple path: no repeated vertices

• cycle: simple path, except that the last vertex is the
same as the first vertex

a b

c

d e

b e c

a c d a

a b

c

d e

7Graphs

Even More Terminology
• connected graph: any two vertices are connected by

some path

• subgraph: subset of vertices and edges forming a
graph

• connected component:maximal connected
subgraph. E.g., the graph below has 3 connected
components.

connected not connected

8Graphs

¡Caramba! Another
Terminology Slide!

• (free) tree- connected graph without cycles

• forest - collection of trees

tree

forest

tree

tree

tree

9Graphs

Connectivity
Let n = #vertices

m = #edges

- complete graph - all pairs of vertices are adjacent

m= (1/2)Σdeg(v) = (1/2)Σ(n - 1) =n(n-1)/2
v∈V v∈V

• Each of then vertices is incident ton - 1 edges,
however, we would have counted each edge twice!!!
Therefore, intuitively,m = n(n-1)/2.

• Therefore, if a graph isnot complete,
m < n(n-1)/2

n = 5
m = (5 ∗ 4)/2 = 10

10Graphs

More Connectivity
n = #vertices
m = #edges

• For a treem = n - 1

• If m < n - 1, G is not connected

n = 5
m = 4

n = 5
m = 3

11Graphs

Spanning Tree
• A spanning tree of G is a subgraph which

- is a tree
- contains all vertices ofG

• Failure on any edge disconnects system (least fault
tolerant)

G spanning tree of G

12Graphs

AT&T vs. RT&T
(Roberto Tamassia & Telephone)

• Roberto wants to call the TA’s to suggest an
extension for the next program...

• One fault will disconnect part of graph!!

• A cycle would be more fault tolerant and only
requiresn edges

TA

TA

TA

TA

TA

But Plant-Ops
‘accidentally’ cuts
a phone cable!!!

13Graphs

Euler and the Bridges of
Koenigsberg

• Consider if you were a UPS driver, and you didn’t
want to retrace your steps.

• In 1736, Euler proved that this is not possible

A

B

C

DPregal River

Can one walk across each bridge
exactly once and return at the
starting point?

Gilligan’s Isle?

14Graphs

Graph Model(with parallel
edges)

• Eulerian Tour: path that traverses every edge
exactly once and returns to the first vertex

• Euler’s Theorem:A graph has a Eulerian Tour if and
only if all vertices have even degree

C

A

B

D

15Graphs

The Graph ADT
• TheGraph ADT is apositional container whose

positions are the vertices and the edges of the graph.

- size() Return the number of vertices plus the
number of edges ofG.

- isEmpty()
- elements()
- positions()
- swap()
- replaceElement()

Notation: GraphG; Verticesv, w; Edgee; Objecto
- numVertices()

Return the number of vertices ofG.
- numEdges()

Return the number of edges ofG.
- vertices() Return an enumeration of the vertices

of G.
- edges() Return an enumeration of the edges of

G.

16Graphs

The Graph ADT (contd.)
- directedEdges()

Return an enumeration of all directed
edges inG.

- undirectedEdges()
Return an enumeration of all
undirected edges inG.

- incidentEdges(v)
Return an enumeration of all edges
incident onv.

- inIncidentEdges(v)
Return an enumeration of all the
incoming edges tov.

- outIncidentEdges(v)
Return an enumeration of all the
outgoing edges fromv.

- opposite(v, e)
Return an endpoint ofe distinct fromv

- degree(v)
Return the degree ofv.

- inDegree(v)
Return the in-degree ofv.

- outDegree(v)
Return the out-degree ofv.

17Graphs

More Methods ...
- adjacentVertices(v)

Return an enumeration of the vertices
adjacent tov.

- inAdjacentVertices(v)
Return an enumeration of the vertices
adjacent tov along incoming edges.

- outAdjacentVertices(v)
Return an enumeration of the vertices
adjacent tov along outgoing edges.

- areAdjacent(v,w)
Return whether verticesv and w are
adjacent.

- endVertices(e)
Return an array of size 2 storing the
end vertices ofe.

- origin(e)
Return the end vertex from whiche
leaves.

- destination(e)
Return the end vertex at whiche
arrives.

- isDirected(e)
Return true iffe is directed.

18Graphs

Update Methods
- makeUndirected(e)

Sete to be an undirected edge.
- reverseDirection(e)

Switch the origin and destination
vertices ofe.

- setDirectionFrom(e, v)
Sets the direction ofeaway fromv, one
of its end vertices.

- setDirectionTo(e, v)
Sets the direction ofe towardv, one of
its end vertices.

- insertEdge(v, w, o)
Insert and return an undirected edge
betweenv andw, storingo at this
position.

- insertDirectedEdge(v, w, o)
Insert and return a directed edge
betweenv andw, storingo at this
position.

- insertVertex(o)
Insert and return a new (isolated)
vertex storingo at this position.

- removeEdge(e)
Remove edgee.

