GRAPHS

- Definitions
- Examples
- The Graph ADT
What is a Graph?

- A graph $G = (V,E)$ is composed of:
 - V: set of vertices
 - E: set of edges connecting the vertices in V

- An edge $e = (u,v)$ is a pair of vertices

- Example:

 $V = \{a,b,c,d,e\}$

 $E = \{(a,b),(a,c),(a,d), (b,e),(c,d),(c,e), (d,e)\}$
Applications

- electronic circuits

find the path of least resistance to CS16

- networks (roads, flights, communications)
mo’ better examples
A Spike Lee Joint Production

- scheduling (project planning)

A typical student day

- wake up
- eat
- work
- more cs16
- play
- cs16 meditation
- cs16 program
- battletris
- make cookies for cs16 HTA
- sleep
- dream of cs16
Graph Terminology

- **adjacent vertices**: connected by an edge
- **degree (of a vertex)**: # of adjacent vertices

\[\sum \text{deg}(v) = 2(\# \text{ edges}) \quad v \in V \]

- Since adjacent vertices each count the adjoining edge, it will be counted twice

Path: sequence of vertices \(v_1, v_2, \ldots, v_k\) such that consecutive vertices \(v_i \) and \(v_{i+1}\) are adjacent.
More Graph Terminology

- **simple path**: no repeated vertices

- **cycle**: simple path, except that the last vertex is the same as the first vertex
Even More Terminology

- **connected graph**: any two vertices are connected by some path

 ![Connected Graph](image)

 ![Not Connected Graph](image)

- **subgraph**: subset of vertices and edges forming a graph

- **connected component**: maximal connected subgraph. E.g., the graph below has 3 connected components.
¡Caramba! Another Terminology Slide!

- **(free) tree** - connected graph without cycles
- **forest** - collection of trees
Connectivity

Let $n = \#\text{vertices}$
\[m = \#\text{edges} \]

- complete graph - all pairs of vertices are adjacent

\[m = \frac{1}{2} \sum_{v \in V} \deg(v) = \frac{1}{2} \sum_{v \in V} (n - 1) = \frac{n(n-1)}{2} \]

• Each of the n vertices is incident to $n - 1$ edges, however, we would have counted each edge twice!!! Therefore, intuitively, $m = n(n-1)/2$.

\[n = 5 \]
\[m = \frac{5 \times 4}{2} = 10 \]

• Therefore, if a graph is not complete, $m < n(n-1)/2$
More Connectivity

\[n = \text{#vertices} \]
\[m = \text{#edges} \]

- For a tree \(m = n - 1 \)

\[
\begin{array}{c}
 \text{\(n = 5 \)} \\
 \text{\(m = 4 \)} \\
\end{array}
\]

- If \(m < n - 1 \), \(G \) is not connected

\[
\begin{array}{c}
 \text{\(n = 5 \)} \\
 \text{\(m = 3 \)} \\
\end{array}
\]
Spanning Tree

• A **spanning tree** of G is a subgraph which
 - is a tree
 - contains all vertices of G

• Failure on any edge disconnects system (least fault tolerant)
AT&T vs. RT&T

(Roberto Tamassia & Telephone)

- Roberto wants to call the TA’s to suggest an extension for the next program...

- One fault will disconnect part of graph!!

- A cycle would be more fault tolerant and only requires n edges

But Plant-Ops ‘accidentally’ cuts a phone cable!!!
Euler and the Bridges of Koenigsberg

Can one walk across each bridge exactly once and return at the starting point?

- Consider if you were a UPS driver, and you didn’t want to retrace your steps.
- In 1736, Euler proved that this is not possible
Graph Model (with parallel edges)

- **Eulerian Tour**: path that traverses every edge exactly once and returns to the first vertex

- **Euler’s Theorem**: A graph has a Eulerian Tour if and only if all vertices have even degree
The Graph ADT

- The **Graph ADT** is a positional container whose positions are the vertices and the edges of the graph.

- **size()** Return the number of vertices plus the number of edges of \(G \).
- **isEmpty()**
- **elements()**
- **positions()**
- **swap()**
- **replaceElement()**

Notation: Graph \(G \); Vertices \(v, w \); Edge \(e \); Object \(o \)

- **numVertices()**
 Return the number of vertices of \(G \).
- **numEdges()**
 Return the number of edges of \(G \).
- **vertices()** Return an enumeration of the vertices of \(G \).
- **edges()** Return an enumeration of the edges of \(G \).
The Graph ADT (contd.)

- **directedEdges()**
 Return an enumeration of all directed edges in G.

- **undirectedEdges()**
 Return an enumeration of all undirected edges in G.

- **incidentEdges(v)**
 Return an enumeration of all edges incident on v.

- **inIncidentEdges(v)**
 Return an enumeration of all the incoming edges to v.

- **outIncidentEdges(v)**
 Return an enumeration of all the outgoing edges from v.

- **opposite(v, e)**
 Return an endpoint of e distinct from v

- **degree(v)**
 Return the degree of v.

- **inDegree(v)**
 Return the in-degree of v.

- **outDegree(v)**
 Return the out-degree of v.
More Methods ...

- adjacentVertices(v)
 Return an enumeration of the vertices adjacent to v.

- inAdjacentVertices(v)
 Return an enumeration of the vertices adjacent to v along incoming edges.

- outAdjacentVertices(v)
 Return an enumeration of the vertices adjacent to v along outgoing edges.

- areAdjacent(v,w)
 Return whether vertices v and w are adjacent.

- endVertices(e)
 Return an array of size 2 storing the end vertices of e.

- origin(e)
 Return the end vertex from which e leaves.

- destination(e)
 Return the end vertex at which e arrives.

- isDirected(e)
 Return true iff e is directed.
Update Methods

- **makeUndirected**(e)
 Set e to be an undirected edge.

- **reverseDirection**(e)
 Switch the origin and destination vertices of e.

- **setDirectionFrom**(e, v)
 Sets the direction of e away from v, one of its end vertices.

- **setDirectionTo**(e, v)
 Sets the direction of e toward v, one of its end vertices.

- **insertEdge**(v, w, o)
 Insert and return an undirected edge between v and w, storing o at this position.

- **insertDirectedEdge**(v, w, o)
 Insert and return a directed edge between v and w, storing o at this position.

- **insertVertex**(o)
 Insert and return a new (isolated) vertex storing o at this position.

- **removeEdge**(e)
 Remove edge e.