GRAPHS

- Definitions

- Examples
- The Graph ADT

What is a Graph?

- A graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ is composed of:

V: set of vertices

\mathbf{E} : set of edges connecting the vertices in \mathbf{V}

- An edge $\mathbf{e}=(\mathrm{u}, \mathrm{v})$ is a pair of vertices
- Example:

$$
\mathbf{V}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\}
$$

$\mathbf{E}=$
\{(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e),
(d,e) \}

Applications

- electronic circuits

find the path of least resistance to CS16
- networks (roads, flights, communications)

mo' better examples

A Spike Lee Joint Production

- scheduling (project planning)

Graph Terminology

- adjacent vertices: connected by an edge
- degree (of a vertex): \# of adjacent vertices

- Since adjacent vertices each count the adjoining edge, it will be counted twice
path: sequence of vertices $v_{1}, v_{2}, \ldots v_{k}$ such that consecutive vertices v_{i} and v_{i+1} are adjacent.

abedc
bedc

More Graph Terminology

- simple path: no repeated vertices

bec
- cycle: simple path, except that the last vertex is the same as the first vertex

acda

Even More Terminology

- connected graph: any two vertices are connected by some path

- subgraph: subset of vertices and edges forming a graph
- connected component: maximal connected subgraph. E.g., the graph below has 3 connected components.

¡Caramba! Another Terminology Slide!

- (free) tree - connected graph without cycles
- forest - collection of trees

Connectivity

Let $\mathbf{n}=$ \#vertices

$$
\mathbf{m}=\text { \#edges }
$$

- complete graph - all pairs of vertices are adjacent

$$
\mathbf{m}=(1 / 2) \sum_{\mathbf{v} \in \mathbf{V}}^{\operatorname{deg}}(\mathbf{v})=(1 / 2) \sum_{\mathbf{v} \in \mathrm{V}}(\mathbf{n}-1)=\mathbf{n}(\mathbf{n}-1) / 2
$$

- Each of the \mathbf{n} vertices is incident to $\mathbf{n}-1$ edges, however, we would have counted each edge twice!!! Therefore, intuitively, $\mathbf{m}=\mathbf{n}(\mathbf{n}-1) / 2$.

$$
\begin{aligned}
& \mathrm{n}=5 \\
& \mathrm{~m}=(5 * 4) / 2=10
\end{aligned}
$$

- Therefore, if a graph is not complete,

$$
\mathbf{m}<\mathbf{n}(\mathbf{n}-1) / 2
$$

More Connectivity

n = \#vertices
 $\mathbf{m}=$ \#edges

- For a tree $\mathbf{m}=\mathbf{n}-1$

- If $\mathbf{m}<\mathbf{n}-1$, G is not connected

$\mathrm{n}=5$
$\mathrm{~m}=3$

Spanning Tree

- A spanning tree of \mathbf{G} is a subgraph which
- is a tree
- contains all vertices of \mathbf{G}

G

spanning tree of \mathbf{G}

- Failure on any edge disconnects system (least fault tolerant)

AT\&T vs. RT\&T

(Roberto Tamassia \& Telephone)

- Roberto wants to call the TA's to suggest an extension for the next program...

- One fault will disconnect part of graph!!
- A cycle would be more fault tolerant and only requires \mathbf{n} edges

Euler and the Bridges of Koenigsberg

Can one walk across each bridge exactly once and return at the starting point?

- Consider if you were a UPS driver, and you didn't want to retrace your steps.
- In 1736, Euler proved that this is not possible

Graph Model(with parallel

 edges)

- Eulerian Tour: path that traverses every edge exactly once and returns to the first vertex
- Euler's Theorem: A graph has a Eulerian Tour if and only if all vertices have even degree

The Graph ADT

- The Graph ADT is a positional container whose positions are the vertices and the edges of the graph.
- size() Return the number of vertices plus the number of edges of G.
- isEmpty()
- elements()
- positions()
- swap()
- replaceElement()

Notation: Graph G; Vertices v, w; Edge e; Object o

- numVertices()

Return the number of vertices of G.

- numEdges()

Return the number of edges of G.

- vertices() Return an enumeration of the vertices of G.
- edges() Return an enumeration of the edges of G.

The Graph ADT (contd.)

- directedEdges()

Return an enumeration of all directed edges in G.

- undirectedEdges()

Return an enumeration of all undirected edges in G.

- incidentEdges(v)

Return an enumeration of all edges incident on v.

- inIncidentEdges(v)

Return an enumeration of all the incoming edges to v.

- outIncidentEdges(v)

Return an enumeration of all the outgoing edges from v.

- opposite($v, e)$

Return an endpoint of e distinct from v

- degree(v)

Return the degree of v.

- inDegree(v)

Return the in-degree of v.

- outDegree(v)

Return the out-degree of v.

More Methods ...

- adjacentVertices(v)

Return an enumeration of the vertices adjacent to v.

- inAdjacentVertices(v)

Return an enumeration of the vertices adjacent to v along incoming edges.

- outAdjacentVertices(v)

Return an enumeration of the vertices adjacent to v along outgoing edges.

- areAdjacent (v,w)

Return whether vertices v and w are adjacent.

- endVertices (e)

Return an array of size 2 storing the end vertices of e.

- origin(e)

Return the end vertex from which e leaves.

- destination(e)

Return the end vertex at which e arrives.

- isDirected (e)

Return true iff e is directed.

Update Methods

- makeUndirected(e)

Set e to be an undirected edge.

- reverseDirection(e)

Switch the origin and destination vertices of e.

- set DirectionFrom (e, v)

Sets the direction of e away from v, one of its end vertices.
$-\operatorname{setDirectionTo}(e, v)$
Sets the direction of e toward v, one of its end vertices.

- insertEdge (v, w, o)

Insert and return an undirected edge between v and w, storing o at this position.

- insertDirectedEdge (v, w, o)

Insert and return a directed edge between v and w, storing o at this position.

- insertVertex (o)

Insert and return a new (isolated) vertex storing o at this position.

- removeEdge(e)

Remove edge e.

