
More on Objects in
JAVATM



Inheritance :

Definition: A subclass is a class that extends another
class. A subclass inherits state and behavior from all of
its ancestors. The term “superclass” refers to a class’s
direct ancestor as well as to all of its ascendant classes.

A subclass inherits all of the members in its superclass
that are accessible to that subclass unless the subclass
explicitly hides a member variable or overrides a method.
Note that constructors are not members and are not in-
herited by subclasses.

For example, all classes are descendents of the Object

class. This superclass has a method called toString()

which is the method called by default when you attempt

to print an object. It would normally print a represen-

tation of the reference. However, you could override it

to do what ever you wish.



Access :

public

• A public class can be accessed by any code that can
access the package in which the class is declared.

• A public class member (variable, method or con-
structor) can be accessed by any code that can
access the class in which it is declared.

• A public member can be accessed directly from a
subclass without qualification.

• A public constructor can be accessed from a sub-
class by the expression super().

private

• A class member (variable, method or constructor)
declared as private can be accessed only from within
the compilation unit in which it is declared.

from the Java Master Reference



protected

• The protected constructor of a class can be ac-
cessed by code in the same package in which the
class is declared, or by code in any subclass of the
class in which the protected constructor is declared.

• A protected member(variable, method, construc-
tor) can be accessed directly from a subclass with-
out qualification.

• A protected constructor can be accessed from a
subclass by the expression super().

• A protected variable or method is inherited by any
subclass of the class in which it is declared.

default

• A class with no access parameters can only be ac-
cessed from within the package in which it is de-
clared.

• Members (methods and variables) default to public.

• A constructor can be accessed from a subclass by
the expression super() only if the subclass is in the
same package.

• A variable or method with default access is inherited
only by subclasses that are in the same package as
the class in which it is declared.



Final :

Nothing further can be done to modify or ex-

tend anything that is declared final.

• final class:
A final class cannot be subclassed. Using this op-
erator gives the compiler more freedom for opti-
mizations.

• final method:
A final method cannot be overriden. Note that in
a final class, all methods are considered final.

• final variable:
A final variable is a constant. The variable decla-
ration must have an initial value. From there on,
this value cannot be changed.



Static :

• static field:
There will never be more then one copy of a static
field. This field is considered the property of the
class and not of any specific instance. Concretely,
all objects from a class will always have the same
value inside a static variable.

• static method:
A static method is part of the class, not of an
instance. A static method can only refer to other
static entities of the class

Abstract :

Used to model an abstract concept without allowing the

user to create instances of it.For example, the Number

class in the java.lang package represents the abstract

concept of numbers. It makes sense to model num-

bers in a program, but it doesn’t make sense to create

a generic number object. Instead, the Number class

makes sense only as a superclass to classes like Integer

and Float, both of which implement specific kinds of

numbers.



Exceptions :

The exception is the Java way of handling errors.

• Exceptions are objects.

• They propagate through a program either by a user
programmed throw statement or by a generic er-
ror in the behavior of the program. For exam-
ple, looking at the method readLine() of the class
BufferedReader :

public String readLine() throws IOException

may meet a situation where an error needs to be
generated. When this event will happen, the object
of type IOException will be created, your method
wil end and the object will be sent to the calling
method. If the exception reaches the starting point
of your program, this one crashes.

• The programmer may catch exceptions to manage
errors himself. However, this is dangerous since it is
not always obvious what steps the Virtual Machine
will need to take when meeting a specific error.
Blocking it from doing this job properly could lead
to disastrous errors.

• There exists a special subset of Exceptions which
cannot be detected at the compilation time, these
can propagate through the program without any
guidance (throws). These are subclasses of
RunTimeException.


