
Objects in JAVATM

1



Imagine a database of students . . .

public class Students_1
{

public static void main(String[] args)
{

int i = 10;
String name[] = new String[i];
int number[] = new int[i];
int grade[][] = new int[i][5];
int GPA[] = new int[i];
...

}
}

Students 1.java

Although this is a perfectly valid programming

approach, wouldn’t be great if we could group

all those fields in one item ?

class student
{

String name;
int number, GPA, grade[] = new int[5];

}

...
int i = 10;
student table[] = new student[10];
...



Objects are bundle of variables and related meth-

ods. Everything that an object knows (state)

and can do (behavior) is expressed by the vari-

ables and methods within that object.

• Modularity :Decompose problems into smaller

sub-problems.

• Information hiding : to hide implementa-

tion details. For example, our student ob-

ject could easily contain a method to cal-

culate the average.

class student
{

String name;
int number, GPA, grade[] = new int[5];

int average()
{

int sum = 0;
for (int i = 0; i < grade.length; i++)

sum += grade[i];

return sum / grade.length;
}

}



In java, objects are defined through a class def-

inition. To create an object from it we use

the new operator, this process is called an in-

stantiation. It causes RAM to be dynamically

allocated and the constructor called to initial-

ize the object. A class, and therefore each

instance of it, will have the following content :

• instance variables : a set of variables unique

to each instance of the class.

• constructors : A special-set of methods

called when the object is created.

• methods : Methods that are logically linked

to the data in the object.



class student
{

String name;
int number, GPA, grade[] = new int[5];

student(int student_id)
{ // The constructor

name = "undefined";
number = student_id;

}

int average()
{ // A method that sums the grades

int sum = 0;
for (int i = 0; i < grade.length; i++)

sum += grade[i];

return sum / grade.length;
}

}

public class Students_3
{

public static void main(String args[])
{

int i = 10;
student table[];
table = new student[i]; // The creation of the array;

table[0] = new student(9988777); // creation of one object;
table[0].name = "alpha";
table[0].grade[0] = 70;
table[0].grade[1] = 80;
table[0].grade[2] = 75;
table[0].grade[3] = 65;
table[0].grade[4] = 85;

System.out.print("The average of " + table[0].name);
System.out.println(" was " + table[0].average());

}
}



While a method is defined with :

• name

• return value : if return is not of type void

then all paths of your method must include

a return xyz statement.

• list of arguments

A constructor :

• Must have the same name as that of the

class.

• Doesn’t have a return value.

• May also have a list of arguments



Overloading methods and constructors :

class student

{

String name;

int number, GPA, grade[] = new int[5];

student(int student_id)
{ // The constructor

name = "undefined";

number = student_id;

}

student(String student_name)
{

name = student_name;

}

int average()

{ // A method that sums the grades
int sum = 0;

for (int i = 0; i < grade.length; i++)

sum += grade[i];

return sum / grade.length;

}

void set_GPA()

{

GPA = average();

}

void set_GPA(int value)

{

GPA = value;

}

}



References :

When an object is created with the new construct, we
say that there exists a reference to it. In the example

...
student table[];
table = new student[i];
table[0] = new student(9988777);
...

all of the cells of the array table[] hold references to
objects, however table[0]’s reference actually points to
an item in memory that has been created. The other
cells point to the special type null.

You may want to think of a reference as a pointer or a
handle to the actual area in memory where the object
is stored.

References are used mainly as :

• Qualifying names to access fields or to call meth-
ods.

• If of type String, with the + operator for concate-
nation.

• As the operand of the instance of operator.

• With the reference equality operators (== and ! =).



Null :

• Reserved word

• You may not declare a variable of type null.

• The null type can be casted to any reference type
(arrays, class, . . . ).

• It is the default value of an uninitialized reference.

• Any reference can be compared to null for equality
or inequality.

If you are thinking of references as pointers to

area in the memory of your computer, then

null would indicate that your reference is not

pointing to any area. In C, C++ and a few other

languages, this is called the zero pointer.



Java is considered a strongly typed language: the com-
piler knows the type of all variable at any position in the
code. These can be grouped in three categories :

• Primitive
Includes numeric types (like int or double) and the
boolean type.

• Reference
These include class references, interface references
and array references.

• null
The value assumed by references that have not been
initialized (instantiated).

RAM is regained by the operating system whenever an

object that was created by the new operator is not ref-

erenced by any variable. The concept of the language

deallocating memory is called garbage collection.



JAVA comes with a set of objects that offer a multitude
of functionalities. These classes are grouped together
in packages. To tell the compiler that you intend to use
these, you need to use the import operator. By default
the package java.lang.* is always included.

For example, if I wanted to create an empty window for
some user interface :

import java.awt.*;

public class My_Frame
{

public static void main(String[] arg)
{

Frame display;

display = new Frame("Mine");
display.show();

}
}


