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Lecture 1
Lecturer: Madhu Sudan Scribe: Ryan O’Donnell

1 Error correcting codes and this class

This course teaches the mathematics underlying objects called error correcting codes (ECCs). We
won’t define what they are today - for reasons to be clarified later. For now it will suffice to know
that they are combinatorial objects that possess certain extremal properties which are very useful
for the communication and storage of information.

Modulo the definition of ECCs, we can still discuss the big outline of this course. The contents of this
course can be divided into four roughly equal parts. Our first part will be explain some of the basic
constructions of error-correcting codes. Next we will show “negative results” showing limitations,
or bounds, on the performance of codes. The two parts above are essentially combinatorial in
nature, with few computational themes. We will get into the computational aspects in the third
and fourth parts of this course. The third part of the course is where we focus on algorithmic tasks
associated with ECCs and some solutions to these tasks. Finally, in the fourth part we will discuss
some consequences one can derive in computational complexity theory as a result of the existence
of ECCs and from the algorithmic capabilities surrounding them.

1.1 Standard references

Since the subject is quite old, there are plenty of texts. Yet we won’t follow any one of them. Here
are comments on some of them.

1. The text by MacWilliams and Sloane [3].
(a
(b

) This is possibly the most referenced text in CS?
)

(c) Has detailed coverage of (too) many families of codes.
)

Unfortunately, it is getting outdated pretty fast.

(d) Coverage of algorithms is not so good.
2. The text by van Lint [7].

(a) The book is much more concise and handy than MacWilliams and Sloane. Easier to get
to some of the results here, if they are available.

(b) Still, the emphasis is more combinatorial than algorithmic.
3. A text by Blahut [1].

(a) Book was targetted at engineers rather than mathematics, or so the author claims.
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(b) Yet the coverage is excellent, especially for insight, motivations, definitions, even algo-
rithms

(¢) The main drawback is that it is out of print and not easily available (not in MIT library,
e.g.).
4. The Handbook of Coding Theory [5].

(a) Offers extensive coverage of many recent themes.
(b) Sometimes excessive. (E.g. 130 pages of table of best known codes.)

(c) But contains many interesting chapters. E.g., chapter on algebraic-geometry codes, and
the chapter on deep-space applications.

2 Information Theory

Even though this course is on coding theory, we start with a brief coverage of information theory.
Part of the reason is historic. Coding theory was initiated by two seminal papers:

1. In 1948, Shannon wrote a detailed treatise on the mathematics behind communication [6].

2. In 1950, Hamming, motivated by the task of correcting small number of errors on magnetic
storage media, wrote the first paper introducing error-correcting codes [2].

In this lecture we will discuss the main results from the Shannon paper, which founded the theory
of information, while also co-founding (with Hamming) the theory of error-correcting codes. The
theory of information provides the motivation for many questions in coding theory and so we will
study this first.

Shannon considered the problem of two parties, say Alice and Bob, who wish to communicate
digitally. In particular, Alice wishes to send a message to Bob over a certain digital channel.
Shannon considered both “noiseless” and “noisy” channels. We start by considering the “noiseless”
case.

2.1 Noiseless coding

In this case, the channels perfectly transmits the bits Alice wants to send to Bob. However, we
might imagine that the channel is slow, so our goal is to compress the information we want to send
down to as few bits as possible. Then we send these bits across the channel for Bob to receive and
decompress. We start with an example which shows how to effect such a compression scheme.

2.2 An example

Consider transmitting the contents of a piece of paper, which contains some handwritten material
on it, by fax. If the paper has just a small amount of black text on a white background, when it is
digitized it might consist of 99% 0’s and 1% 1’s. Let’s say for the sake of argument that we want to
transmit a message in which each bit is independently 0 with probability .99 and 1 with probability
.01.
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Consider the following encoding scheme: We split the message up into blocks of 10 bits. If the block
is 0000000000, we send the bit 0. If the block is anything else, say =, we send the string 1z. Now
the expected length of the encoding of a block is:

1 - Pr[block is 0000000000] 4 11 - Pr[block is not 0000000000] = 11 — 10q

where ¢ := Pr[block is 0000000000] = .99'% > .9. Hence the expected length of the encoding of one
10 bit block is at most 2 bits. Thus the original message has been compressed to within 20% of its
length! (Food for thought: Do we really need the probabilistic model to acheive this compression?)

Can we do better? This is exactly the question Shannon raised and answered with his theorem on
noiseless coding.

2.2.1 Entropy

To analyze how much a distribution could be compressed, Shannon introduced some mathematical
definitions associated with information. The source of information is modeled as a probability dis-
tribution, and a message is a random variable drawn from this distribution. The goal of compression
is to encode the support of the probability space (using, say binary strings) so as to minimize the
expected length of the message. To any source (or more correctly, to any distribution), Shannon
assigned a non-negative real number, that he termed “entropy”, that measures the information con-
tent of the distribution. He then showed that this quantity (to within an additive term of one bit)
measures the compressibility of a bit.

The simplest possible distribution is a coin flip, in which heads has probability p and tails has
probability 1 — p. The entropy assigned to this is:

def 1 1
H(p)=plog, = + (1 — p)logy, ——.
(p) p0g2p+( p) 082 T,

We can generalize this notion to arbitrary distributions.

Definition 1 Let U be any finite set, and let D be a probability distribution on U, i.e., D : U — [0, 1]
with ) .y D(x) = 1. Let X be a random variable distributed according to D. Then the entropy of
D is':

1

H(D)E Y D(x)log, oIEE
zeU

The noiseless coding theorem of Shannon essentially says the following:

Theorem 2 For every finite set U and for every distribution D : U — [0,1], There ezists an
encoding function Enc : U — {0,1}* and a decoding function Dec : {0,1}* — U such that for every
x € U, Dec(Enc(z)) =z, and

Exp,._plEnc(z)]] € [H(D), H(D) + 1],

where |s| denotes the length of a string s. Conversely, no error-free encoding can do better.

Hn lecture, we used a random variable X drawn according to D and defined this to be the entropy of X, rather
than D. In these notes we will switch to the more appropriate notation, which defines it to be a function of the
distribution and not the variable.
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Shannon’s actual theorem is often stated differently, but we will state the theorem in the above
since it is clearer. We don’t prove the theorem here, but the main idea for the existence result is the
following: (1) Round all probabilities down so that they become powers of 2 (i.e., construct D' such
that for every z, D'(z) = 27 for some integer i, and D(z)/2 < D'(z) < D(z). (2) Show that there
exists an encoding Enc that encodes an element z, whose new probability D’(x) equals 2%, with i
bits (so that no strings have the same encoding). (3) Conclude that this encoding has an expected
length in the desired range! The converse is harder to prove - we won’t get into it.

2.2.2 An elegant algebraical identity

The entropy function exhibits some very nice mathematical properties. For example if a distribution
D decomposes into two independent distributions D; and D5 (i.e., U = Uy x Us, Dy : Uy — [0,1]
and D, : Uz — [0,1] and D(z,y) = Dy(z)D2(y)), then H(D) = H(Dy) + H(D-). This fact can be
use to prove an interesting algebraic identity, which is otherwise quite tricky to prove.

From the above property and the entropy of a bit, we find that the entropy in n independent p-biased
coin flips is nH(p). On the other hand, this should be equal to the entropy of the distribution D
given by D(z) := p#lsinz(1 — p)#0sin 2 [Uging the second formula, we calculate this as:

" /n 1
Z (t)DthgQE

t=0

where D; := pt(1 — p)"~t. Thus we get

n

3y <’Z> Dy log, D% = nH(p).

t=0

Entropy and its variants play an important role in combinatorics and probability. Some very useful
notions to keep track of in this area are those of mutual information, conditional entropy, and relative
entropy!

To turn back to our example, what is the optimal compression factor for the case of our message to
be faxed, whose bits were 1 with probability 1%? The answer is H(.01) ~ 8% — message can be
compressed to within H(.01) of their original length, if we know ones occur with probability about

1%.

2.3 Noisy channels

For the purposes of this course, the more interesting notion of a channel is the class of “noisy”
channels considered by Shannon — i.e., channels that flip some of the bits sent across them. The
problem here is for Alice to encode the message she wishes to send in such a way that even if the
channel corrupts some of the bits in the encoding, Bob will be able to decode the result into Alice’s
original message, with high probability. Shannon considered a large class of probabilistic models
for noisy channels, and for each proved the surprising theorem that you could always overcome a
constant, error rate by sending an encoded message that was longer by a constant factor.

The general model Shannon gave for channels is as follows. There is an input alphabet ¥ and an
output alphabet I’ (both usually finite). Then we have a bipartite graph with ¥ on the left and I on
the right; each edge (o,7) is labeled with a probability of the channel converting a o to a . (The
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channel operates independently on each character.) Of course, for each o on the left, the sum of the
labels on the edges touching it must be 1.

We will illustrate his results for such channels only in cases where ¥ C I'. (In such cases, it is clear
what an error is.)

Two commonly considered channels:
1. Binary Symmetric Channel — the channel considered in the theorem. ¥ =T = {0, 1}, (0,0)
and (1,1) get probability 1 — p, and (0, 1) and (1,0) get probability p.

2. Binary Erasure Channel — in this channel, bits don’t get flipped — rather they get erased.
Specfically, ¥ = {0,1}, T = {0,1,7}, (0,0) and (1,1) get probability 1 —p, and (0,?) and (1, 7)
get probability p.

2.3.1 Noisy coding theorem

The noisy coding theorem of Shannon is a powerful and general one. When specialized to the case
of a binary symmetric channel with error probability p, we get the following result.

Theorem 3 For every p < 1/2, there exists a constant ¢ < oo and a pair of functions E : {0,1}* —
{0,1}°%, and D : {0,1}* — {0,1}* with the following property: If we pick a message uniformly at
random from {0,1}*, encode with E and then send the result across the noisy channel, and decode
the result, then we recover the original message with probability 1 — o(1).2

Theorem 3 applies — with different constants — to the binary erasure channel as well.

2.3.2 Hamming notations

We need just a few definitions before proceeding with the proof of the theorem.

Definition 4 If z and y are in X", then the Hamming distance between them is A(z,y) := # of
coordinates on which z and y differ.

Definition 5 The Hamming ball of radius r centered at y is B(y,r) := {z € " : A(z,y) < r}.

Definition 6 Vol(r,n) denotes the volume of (any) radius-r ball in {0,1}"; i.e., |B(y,r)|. Ezactly,
this quantity is Y, _, (") If we fix some p > 0 and let n — oo then we get Vol(pn,n) = 2(H@)+e()n,

i
2.3.3 Proof of Theorem 3

Proof The proof is highly non-constructive; it uses the probabilistic method.

Let n > k be decided upon later. Pick the encoding function E : {0,1}* — {0,1}" at random, i.e.,
for every m € {0,1}*, E(m) is chosen uniformly at random from {0, 1}", independently of all other
choices.

2The o(1) term depends only on k.
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The decoding function D : {0,1}" — {0, 1}* works as follows. Given a string y € {0,1}", we find
(non-constructively) the m € {0,1}* such that A(y, E(m)) is minimized. This m is the value of

D(y).

We now prove that D and E have the required property, with high probability, over the random
choice of E.

Fix m € {0,1}* as also E(m). (The rest of the proof will use the fact that E(m') for m' # m is still
random.) the message being sent. Denote by y the corrupted version of E(m) that is received by
Bob. Let 5 denote the error vector y — E(m). Note that the n is a random variable with each of its
coordinates being 1 w.p. p and 0 w.p. 1 — p, independent of other coordinates.

Fix e > 0. Let r = (p + €)n. In order for D(y) # m at least one of the following two events must
occur:

1. y & B(E(m),r) (i.e., too many errors occurred in transmission.)

2. There exists some m’ # m such that E(m') € B(y.r). (The errors take the received word too
close to the encoding of some other message.)

In particular, if neither event occurs, then m is the unique message such that E(m) is within a
distance of r from y and so D(y) = m.

We show that for an appropriate choice of n, the events above happen with low probability. For the
first event to happen, it must be that  has more than p + € fraction of 1s. We can apply Chernoff
bounds (see appendix at the end of this lecture) to see that:

Prly ¢ B(E(m),r)] <27 (/2.
n
For any € > 0, we can pick n to be large enough that the above quantity is as small as we want.

We now move onto the second event. First fix y and an m' # m and consider the event that
E(m') ¢ B(y,r). The probability of this event, taken over the random variable E(m'), is exactly
Vol(B(y,r))/2". Using the approximation Vol(B(y, pn) ~ 2H(®)" and ignoring e (which is arbitrarily
small), we find that for every m' # m.

Pr{E(m') € B(y,r)] ~ 2H(p)n—n

Using the union bound, we get that
P]’Er[Elm' #m s.t. E(m') € B(y,r)] = ok—n+H(p)n_

Thus we find that if ¢ > #@, then k/n < 1— H(p) and thus the quantity above is less than one.

This gives the choice of ¢ that we need.

Our proof is not yet complete! Why? Well, we have argued that a fixed m is likely to be decoded
correctly, but what about other messages? To complete the argument, we will actually need to lose
a little bit.

Let § = 2=(€/2)n 4 ok—n+H(P)n_denote the total probability of error in either of the two steps above.
We have shown that for any fixed m, for a random choice of E and the associated D, the expected
decoding error probability is at most §. Thus we can now conclude that this expectation continues
to hold if we make m a random variable chosen uniformly from {0, 1}*. We get

Exp,,, g [D(E(m) + 1) #m] <6.
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In particular this implies that there exists an E such that for the corresponding D, we have
Exp,, ,[D(E(m) +n) #m] < 6.

This concludes the proof of Shannon’s theorem. W

2.3.4 Capacity of the channel

Shannon’s theorem above shows that if we are willing to slow down the effective transmission rate
of the channel to 1/¢ < 1 — H(p), then we can acheive error-free communication with vanishingly
small probability. Furthermore this quantity 1 — H(p) is only a function of the “noisy channel” and
not of the number of bits we wish to transmit over it. I.e., the effective rate of transmission can be
an absolute constant independent of n. Shannon called this quantity (the limiting rate of k/n, as
n — 00) the capacity of the noisy channel.

For the Binary Symmetric Channel, how large can its capacity be? The proof above shows that the
capacity, denoted Crsc(p), is at least 1 — H(p). It is natural to ask if this quantity is an artifact of
the proof, or is it the correct capacity for the channel. Shannon proved that the latter was the case.
We will prove this in the next lecture, but first let us see why this is the case intuitively.

Suppose that we are actually is a setup there is a noiseless channel between Alice’s location and
Bob’s, but this channel has been “hijacked” by Eve and Fred. Say Alice and Eve are in the same
physical location while Fred and Bob are at the other. To send a message over, Alice must hand
it over to Eve who then sends it through the channel (after some potential corruption). Similarly
at the receiving end, Fred receives the message and hands it over to Bob. Suppose Eve and Fred
want to use this channel to exchange some messages of their own (at Alice & Bob’s expense). They
do so by informing Alice and Bob that the channel is noisy with bits being flipped with probability
p. They advise Alice and Bob to use some encoding/decoding schemes. Alice and Bob agree on an
encoding scheme F and a decoding scheme D and in their naivette share these functions with Eve
and Fred as well.

In truth it may be that Eve wishes to use the “noise” to send some messages of her own to Fred. Say
she has a message n which is a plain paper image, where each pixel of the page is 1 independently
with probability p. The way she sends 7 to Fred (at Alice’s expense) is that when Alice gives her
a encoded message F(m) to transmit, Eve sends over E(m) + 1. Fred receives y = E(m) + n (the
channel does not introduce any noise) at the receiving end and passes it on, untampered, to Bob,
but also retains a copy. As far as Alice and Bob are concerned, nothing mailicious is occuring -
with high probability D(y) = m and so they are exchanging messages at capacity of the “noisy
channel”. But note the situation w.r.t. Eve and Fred. Fred also knows FE and D and can compute
n=y— E(D(y)) = E(m) +n— E(m), with high probability. So Eve and Fred are also exchanging
messages among themselves (with some small probability of exchanging incorrect messages). But
now if we consider Alice & Eve together at one end of the noiseless channel, and Bob & Fred
together at the other end, the parties are exchanging bits at a rate of at least C(p) + H(p) across
the noiseless channel (assuming we believe the tightness of the noiseless coding theorem). Since we
are normalizing so that the rate the noiseless channel is 1, we get C(p) + H(p) < 1! This is the link
between the noisy case and the noiseless case of the Shannon theorems.
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Appendix

Notation used in the lecture. We mention some notation that we used earlier or may use in
later lectures. Z denotes the set of integers, ZZ° denotes the set of non-negative integers, and Z*
the set of positive integers. R denote the set of reals, and Q the rationals. For real numbers a and
b, the notation [a,b] stands for the closed interval from a to b, i.e., the set {z € Rla < z < b},
while (a,b) is the open interval between a and b. For an integer k, we will use [k] to denote the
set {1,...,k}. If D is a distribution on the universe U, then X<« D denotes a random variable X
drawn from U according to the distribution D. For an event £ C U, the quantity Prx. p[X € &]
denotes the probability of the event £ when X is chosen according to D. For a real-valued function
f: U —= R, the quantity Expx, p[f(X)] denotes the expected value of f(X) when X is chosen
according to D. When the distribution D is clear from context, we may abbreviate these quantities
to Pr[€] and Expx[f(X)]. Similarly Varx. p[f(X)] denotes the variance of f(X) (i.e., Var(f(X)) =

Exp[(f(X))?] — Exp[f(X)]).

Some basic probability facts Here is a quick recap of basic facts on probability and expectations.

Probability One of the most used facts on probability is the union bound: Pr[&; U &) < Pr[&;] +
Pr[&;]. Note that the bound makes no “independence” assumptions.

Expectations Analogous to the above we have: Exp[X; + X3] = Exp[X1] + Exp[X:]. Note that
this is an equality! If random variables are independent, then we get a product relationship
Exp[X1X»] = Exp[X;]|Exp[X2].

Converting probabilities to expectations: Since expectations are more amenable to algebraic
manipulations, it is often useful to convert statements on probability to statements of events.
The standard way to do this is to use “indicator variables”. For an event &£, let Ig be the
0/1-valued variable given by Ig(X) = 1 if X € £ and Ig(X) = 0 otherwise. Then we have
Expy ¢ (X)] = Prl€].

Converting expectations to probabilities: Since probabilities are the quantities that have more
intuitive meaning, these are the more standard targets of our investigation. Since expectations
figure in proofs, we would like to find ways to convert statements on expectations back into
probability statements. This conversion is not standard. Several “tail inequalities” are used
to acheive this conversion, e.g., Markov’s, Chebychev’s, and Chernoft’s: We state them below:

Markov’s inequality For a non-negative random variable X and positive real «, then
Pr[X >a] < @

Chebychev’s inequality In its general form, this inequality is just an application of Markov’s
inequality to the random variable Y2, for arbitrary Y. In the general form, it is quite
hard to see its strength, so we give a special form.

LetY = 2?21 Y;, where the Y;’s identically distributed random variables that are pairwise
(but not fully) independent. Let Exp[Y;] = p and Var[¥;] = o2. Then for A > 0, we have
PrY > (4 + M) < .

Chernoff bounds If Y3,...,Y,, are completely independent it is possible to get stronger
bounds on the probability that their sum deviates much from their expectation. We
consider the special case of variables taking values in the interval [0, 1]

Let Y7,...,Y, be independent and identically distributed random variables taking values
in the interval [0,1] with mean p. Let Y = >, Y;. Then Pr[Y > (p+ A)n] < e~ (3 /2)n,
where e is the base of the natural logarithm.
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For further elaboration on probabilities and expectations one may consult the text on Randomized
Algorithms [4].
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