6.897 Algorithmic Introduction to Coding Theory September 26, 2001

Lecture 6

Lecturer: Madhu Sudan Scribe: Nicole Immorlica

Today we will talk about:

o Wozencraft construction continued
e Building codes from other codes

— Parity check bit

Puncturing
Restriction

Direct Product

— Concatenation
e Forney codes

e Justesen codes

1 Wozencraft construction (continued)

The Wozencraft construction gives a 2°(") time algorithm for constructing [n, k,d]» codes. We pick up
where we left off in the last lecture. Recall our goal is to construct a family of sets S1,S52,...,S5: C
{0,1}™ — 0 such that

1. The sets are pairwise disjoint.
2. Vi, S; U {0} is a linear subspace of {0,1}".
3. t > Vol(d,n).
4. Vi, j:|S;| =2F - 1.
We saw last lecture that if we can construct such a family of sets, one of these sets will yield a [n, k, d]»

code. Today we will see Wozencraft’s construction of such a family of sets. We will show the construction
only n = 2k. It is fairly simple to generalize it to a construction for n = ck for any integer c.

We will use the correspondence between fields and vector spaces that preserves addition (see Lecture
Notes on Algebra, Section 6). In particular we will view F§ as For and F} as F2,. The sets we will
construct will be indexed by o € Fyr, with S, defined as follows: S, = {(z,az) | ¢ € Fyr — {0}}. We
now verify that the S,’s satisfy the above conditions for ¢+ = 2¥ and d such that Vol(d,n) < t.

1. S,’s are pairwise disjoint: In particular, For every (z,y) € F3,, there is at most one « such that
(z,y) € S,, namely a = zy ! provided y is non-zero and a = 0 if y = 0. (If z = 0 then (z,y) € S,
for any «.)

2. S, U {0} is linear: Clearly each S, is a linear subspace of F3, and is generated by the matrix [1a].
Since the correspondence between F5 and Fox respects addition, it follows that S, U {0} are linear
over Fy as well.

3. There are clearly t = 2% of the S,’s. The condition ¢ > Vol(d, n) follows from the definition of d.

6-1

4. Tt is also obvious that |S,| = 2F — 1.

Taking the ratios k/n and d/n we note that the codes S, always have a rate of . Further if we fix any
€ >0, and set d = (H(%) — €)n then for all sufficiently large n we have Vol(d,n) < 2/? and thus the
family above gives a code of rate % and relative distance approaching H *1(%).

By a slightly more careful argument we can actually verify that most codes in the family achieve the
Gilbert-Varshamov bound. Specifically, we can prove:

Theorem 1 For every € > 0 and for all sufficiently large even numbers n, Wozencraft’s construction
with parameter n gives a family of 2"/ codes with all but € fraction of which are [n, in, (H’l(%) —e)na-

)3
codes.
Remarks:

1. Furthermore, for all such n, given an index i of a code from the family with parameter n, any
specific entry of the generator matrix of the ith code can be computed in time polynomial in n.

2. If n is of the form 4 - 3!, then the computation can be carried out in O(logn) space. This part
follows from the fact that the irreducible polynomial for such Fy. where k = n/2 is known explicitly
and this polynomial is sparse. (Thanks to Dieter van Melkebeek (dieter@ias.edu) for pointing out
this use of sparsity.)

Exercise: Extend the argument above to construct for every integer ¢, every € > 0, and all sufficiently
large k, an ensemble of 2(¢=1* codes such that all but an e-fraction of the ensemble are [ck, k, (H (1 —

1) — €)(ck)]2-codes. Your construction should take time 20(ck),

References: The Wozencraft ensemble of codes do not appear in any paper by Wozencraft. They are
alluded to in a monograph by Massey [3, Section 2.5]. The actual family as described above is from
Justesen’s paper [2]. The extension asked for in the exercise is from the paper of Weldon [4].

2 Building codes from other codes

In the previous section we saw that asymptotically good codes exist. However, we had no explicit
construction for them. The second holy grail of coding theory is to construct in polynomial time binary
codes that meet the GV-bound. No one knows how to do this yet. One approach to this problem is
to create new codes from existing ones. We look at five ways of getting new codes from old codes.
Four of them don’t improve the asymptotics of the code. The fifth leads to constructions of families of
asymptotically good codes. (However, they do not meet the GV-bound.)

2.1 Parity check bit

We recall a construction of Hamming (see notes for Lecture 3). Given a code C' = [n, k,d]2, create a
new code C' = [n + 1,k,d']> as follows. First encode the message using C' to get a codeword ¢ of length
n. Then, add an extra bit which is the parity of the bits of ¢. This new codeword, ¢’ has length n + 1.
Furthermore, as argued in Lecture 3, if n is odd, the new distance d’ = d + 1. Otherwise the distance
may remain d.

The parity check bit operation does improve relative distance for codes of odd length but not for codes
of even length. Furthermore, the rate suffers. So we can not repeat this method to obtain really great
codes.

6-2

2.2 Puncturing

Given a code C = [n, k,d],, create a new code C' = [n — t,k,d'], by simply deleting ¢ coordinates. The
new distance d' will be d —t < d’ < d. For t = 1 we can think of the puncturing operation as achieving
the effect of the inverse of the parity check bit operation (in a very loose sense).

This operation has the benefit of decreasing the encoding length thereby improving the rate. But at the
same time it sacrifices the minimum distance of the code and thus decreases the relative distance.

While this operation does not yield a generic construction method for good codes, it turns out to be
very useful in special cases. Often the best known code for a specific choice of, say n and k, might be a
code obtained from puncturing a well-known code of longer block length. In such cases, special features
of the code are often used to show that the distance is larger than the proven bound. Note further that
all linear codes are punctured Hadamard codes! So obviously puncturing can lead to good codes. The
question remains: When does it work? and what part of the codes should be punctured?

2.3 Restriction

Given a code C = (n, k,d), over an alphabet X, create a new code C' = (n—1,%',d), by choosing o € £
and i € [n] and retaining only those codewords ¢ in which the ith coordinate of the codeword is a. The
code C" is then obtained by deleting the ith coordinate from all remaining codewords.

The resulting code has block length n. If we pick a so that it is the most common letter in the
ith coordinate (among codewords of C') then at least ¢* /¢ messages will remain in C'. Since codewords
differed in d positions to start with, and the only codewords that remain agreed in the deleted coordinate,
the new codewords are still at Hamming distance at least d.

Restriction does improve the relative distance, but not necessarily the rate.

2.4 Direct Product

Given a codes C1 = [n1, k1, d1]q and Cy = [no, k2, d2]4, the direct product of Cy and Cs, denoted Cy ® C,
is an [ninsg, k1ks, didz2], constructed as follows. View a message of C1 ® Cy as a k2 by k; matrix M.
Encode each row of M by the code C} to obtain an ks by ny intermediary matrix. Encode each column
of this intermediary matrix with the C5 code to get an ns by m; matrix representing the codeword
encoding M. This process works generally - for linear as well as non-linear codes C; and C>. We first
show that the resulting code has distance at least didy in either case. Then we show that if C; and C,
are linear, then the resulting code is also linear, and furthermore is the same as the code that would be
obtained by encoding the columns with C5 first and then encoding the rows with C}.

We prove this new code has distance at least dyd>. Consider two distinct message matrices M; and Ms.
Let N; and N be the intermediate matrices obtained after the first step of the encoding process. Let
C; and C, be the final codewords obtained from these matrices. Suppose M; and M differ on the ith
row. Then N; and N> must differ on at least d; coordinates on the ith row. In particular they differ on
at least d; columns. Say ji,...,Jq, are indices of d; such columns where N; and Ny differ. Then the
column-by-column encoding results in codewords C; and C, which differ on at least d> coordinates on
each of these d; columns. Thus C; and C, differ on at least d;ds entries.

Next we show that C; ® Cs is linear if C; and C are linear, and the encoding functions used are linear
functions.

Claim 2 Let R; € F’;l X1 generate the code C1 and let Ry € F’;Q X"z generate the code Cy. Then the

6-3

direct product code C; ® Cs is a linear code that has as its codewords {R2TMR1 | M€ F’;Q ><’“1}.

Remark: As a consequence, we note that it does not matter if we encode the rows first and then the
columns as above or vice versa.

Proof The proof follows easily from the fact that the intermediate matrix equals MR; and thus the
final matrix equals Ry (MR;). The interchangeability follows from associativity of matrix multiplica-
tion. The linear follows from the fact that the matrix R2TM1R1 + RQTMQRl is just the encoding of
M; + M, and the matrix aR>TM; R, is the encoding of oM, where a € IF,. B

Exercise: In general the direct product of two codes depends on the choice of the encoding function.
Prove that this is not the case for linear codes. Specifically, prove that if R; and R} generate Cy and
R, and R}, generate Cs, then {R,” MR, | M} = {R,"MR/, | M}.

Again, the direct product does not help in the construction of asymptotically good codes. E.g. if we
started with codes C7 and Cs of rate and relative distance 11—0, then the resulting code is weaker and has
rate and relative distance of only 4.

So far all the operations on codes have been ineffective in getting to asymptotically good codes. In
retrospect one may say that this is because all these operations fixed the alphabet and tried to play
around with the other three parameters. A simply but brilliant idea, due to Forney [1], showed how
to extend the game to include the alphabet size in the parameters altered/expoited by the operations
on codes. This operation is that of “concatenating codes”. This method turns out to have profound
impact on our ability to construct asymptotically good binary codes. We describe this method an its
consequences in the next section.

3 Concatenation of codes

To motivate the notion of concatenation, let us recall the example using Reed-Solomon codes on CD
players. Reed-Solomon codes were defined on large alphabets, while CD players work with the binary
alphabet. However, given an [n, k,d]>- Reed-Solomon code, we interpreted this code as an [nr, kr, d)s
binary code by naively representing the alphabet of the RS code, elements of Fy-, as binary strings of
length r. The main idea of concatenation is to focus on this “naive interpretation” step and to generalize
it so that elements of Fy» can be represented by binary strings of length larger than r. Note that the
main loss in performance is due to the fact that in going from strings of length n (over Fy) to binary
strings of length nr, we did not increase the minimum distance of the code, and so lost in terms of the
relative distance. A careful choice of the encoding in the second step ought to be able to moderate this
loss, and this is exactly what the method of concatenation addresses.

As in the case of direct product codes, it is best to explain concatenation of codes in terms of the
encoding functions. First we define the [-fold concatenation of a single encoding function.

Definition 3 For positive integer [, linearity preserving bijective map m : Fp — IF’; and encoding
function E : F’q“ — [the I-fold concatenation of E is the function o[E : IF"qk — IF;” given by
(x1,...,x71) = (B(n(x1)),..., E(r(x))), where x; € Fx fori € [l].

Typically the exact map 7 : F» — IF’; is irrelevant so we will simply ignore it. Further if [is clear from
context, we will ignore it and simply refer to the map ¢E. We now define the concatenation of two
codes.

Definition 4 For encoding functions Fy : F’;;z —]Fg,i and E> : IF’;Q — 72 (and some implicit bijection
2

TRy, — IF";2), the concatenation of Ei and Ey is the function E10FE, :IF";““2 — F1 " given by

-1

ooy T E m o \ M1 OE o\ nin
ks TS B, Sy, 5 (B 53 (5p)™ — P,
In the message (X1, ...,Xp,) is mapped to the vector of Eo(Ey((m *(x1),...,m *(x,))))-

If the encoding functions Ey, E» are linear maps giving linear codes C and C> respectively, then F;oFs
is a linear map whose image is denoted by C;¢C>. It may be verified that C;¢C5 is a function of C; and
C5 alone and not dependent on F;, Es or 7. It is customary to call the code C; the outer code and the
code Cs the inner code, and Cy¢C5 is the concatenated code.

The next proposition verifies the distance properties of concatenated codes.

Proposition 5 IfC, is an [n1, ki, di] k. -code and Cy is an [ng, ks, ds],-code then C10Cy is an [niny, kiks, dids],-
code.

Proof The only part that needs to be verified is the distance. To do so consider the encoding of a
non-zero message. The encoding by E; leads to an intermediate word from FZ,32 that in non-zero in d;
coordinates. The n;-fold concatenation of Fy applied to the resulting codeword produces ds non-zero
symbols in every block where the outer encoding produced a non-zero symbol. Thus we end up with at
least dydy non-zero symbols in the concatenated encoding. l

If we ignore the non-trivial behavior with respect to the alphabet size, then the concatenation operator
has essentially the same parameters as the direct product operator. However the concatenation operator
allows the outer code to be over a larger alphabet and we have seen that it is easier to construct good
codes over large alphabets. Thus the concatenation operator is strictly better than direct product. Below
we show an example of non-trivial results it yields.

Example - RS ¢ Hadamard: Suppose we concatenate an outer code that is an [n, k,n — k],-Reed-
Solomon code with a [n,logn, §]:-Hadamard code. (Assume for this example that n is a power of 2.)
Then the concatenated codes is an [n?, klogn, %(n — k)]z-code. Depending on our choice of rate k/n of
the outer code, we get a family of binary codes of constant relative distance and an inverse polynomial
rate R = klz#. This is a new range of parameters that we have not seen in the codes so far.

While it is possible to employ multiple levels of concatenation to improve the dependence of the block
length n on the message length & making n closer and closer to being linear in n, we can never get an
asymptotically good code this way. Informally, to get an asymptotically good family, we need both the
inner code and outer code to be asymptotically good. In what follows, we will describe two approaches
at getting constructions of asymptotically good codes using concatenation.

3.1 Forney codes/Zyablov bound

The first family of codes we describe are due to Forney [1], who described the basic idea of the codes,
but did not stress the choice of parameters that would optimize the tradeoff between rate and relative
distance. (Forney was after bigger fish, specifically an algorithmic version of Shannon’s theorem. We
will get to this when we get to algorithms.) The actual bounds were worked out by Zyablov [5] and are
usually referred to as the Zyablov bounds.

The idea to get a polynomial time constructible family of asymptotically good codes is a simple one.
As an outer code we will use a Reed-Solomon code over an n-ary alphabet, say an [n, k,n — k],-code.

6-5

For the inner code, we will search for the best linear code in, say, Wozencraft’s ensemble of codes. This
takes exponential time in the block length of the inner code, but the block length of the inner code only
needs to be linear in the message length and the message length of the inner code is only logn. Thus
the time it takes to find the best code in Wozencraft’s ensemble is only polynomial in n.

Getting a little more specific, to construct a code of relatve distance ¢, we pick §; and o so that §;d2 = 4.
For the outer code we pick an [n, (1 — d1)n,d;1n],-RS-code. For the inner code we search Wozencraft’s
ensemble to obtain an [n', (1 — H(d2))n', dan']2-code with (1 — H(d2))n' = logn. The resulting code has
block length nn’ = O(nlogn), relative distance 0 and rate (1 — d;)(1 — H(d2)). Thus we obtain the
following theorem:

Theorem 6 For every § € (0, %), there exists an infinite family of polynomial time constructible codes
C with rate R and relative distance § satisfying

R> max {(1—H(52))- (1-%)} (1)

6S52<%

The bound (1) above is the Zyablov bound.

3.2 Explicit constructions

We take a brief digression to discuss what it means to construct a code explicitly. It is clear that
this ought to be a complexity-theoretic definition, since a code is a finite set and one can obviously
enumerate all finite sets to see if one of them gives, say, an (n, k, d)-code. The constructions of Gilbert
took exponential time, while Varshamov’s is a randomized polynomial time construction that possibly
returns an erroneous solution (to the task of finding an [n,k,d] code). We asserted that Forney’s
construction is somehow explicit, and yet this is not satisfactory to many mathematicians. Here we
enumerate some criteria for explicit constructions for the case of codes (though similar criteria apply to
constructions of all combinatorial objects).

Let {Cr,s}(r,5) be a collection of families of codes, where the family Cg s has rate R and relative distance
0. The following are possible notions of C being explicitly constructible:

Polytime For every 0 < R < 1 and 0 < § < 1, there exists a polynomial p such that generator matrix
of the ith element of the family Cg 5, with block length n;, is constructible in time p(n;), if such a
family exists.

Uniform polytime There exists a polynomial p such that for every 0 < R < 1 and 0 < § < 1, generator
matrix of the ith element of the family Cg s, with block length n;, is constructible in time p(n;),
if such a family exists.

The difference between polytime constructibility and uniform polytime constructibility is relatively
small. This distinction can be made in the remaining definitions too, but we will skip the extra
quantifiers, and simply focus on what makes a code C constructible (leaving it to the reader to find
a preference within uniform and nonuniform time bounds).

Logspace The generator matrix of the ith member of C is constructible in logarithmic space. (This
implies that C is polynomial time constructible.)

Locally Polytime Constructible ! Here we will require that a specific entry, say the j,Ith entry, of
the generator matrix of the ith member of the code C be computable in time polynomial in the

L Actually, this notion does not have a name and T had to generate one on the fly. Thanks to Anna Lysyanskaya for
suggesting this name.

size of the binary representation of 4,7,l. (Note this representation has size logarithmic in n and
so this notion is much more explicit than earlier notions.)

Locally Logspace Constructible The j,[th entry of the generator matrix of the ¢th code is logspace
constructible in the length of the binary representations of 7, j and [.

As noted, the requirements get more stringent as we go down the list above. The notion of Locally
Logspace Constructible is about as strong a requirement we can pose without getting involved with
machine-dependent problems. (What operations are allowed? Why? etc.)

Forney’s codes, as described above, are polytime constructible, but not uniform polytime or logspace
constructible. The next family of codes we will describe are locally logspace constructible, making them
as explicit as we could desire (define?).

3.3 Justesen Codes

The principal barrier we seem to face in producing codes explicitly is that we know how to construct
smaller and smaller ensembles of good codes, but we don’t know how to get our hands on any particular
good one. In fact in the ensembles we construct almost all codes are good. Is there any way to use
this fact? Justesen’s idea [2] is a brilliant one — one that “derandomizers” should take note of: On
the one hand we can produce a small sample space of mostly good codes. On the other hand we need
one good code that we wish to use repeatedly — n times in the concatenation. Do we really need to
use the same code n; times? Do they all have to be good? The answer, to both questions, is NO! And
s0, surprisingly enough, the ensemble of codes is exactly what suffices for the construction. Specifically,
we take an [nq, ki, dl]qk2 -outer code with encoding function F; and an ensemble consisting of n; inner

codes with the ith member denoted Eéi). We encode a message m by first applying the outer encoding
function to get F;(m) and then applying the ith inner encoding function to the ith coordinate of E; (m),

getting the vector (Eél)((El (m))y),... ,Egnl)((& (m))n,))-

The above definition can be formalized to get a notion of concatenating an [nl,kl,*]qkz -outer code
with an ensemble containing ny [ns, k2, *],-inner codes (x representing the fact that the distances are
unknown, or possibly not all the same). Denoting the outer code by C, and the inner ensemble by Cs,
we extend the notation for concatenation and use C;oC5 to denote such concatenations. The following
proposition shows how the parameters of the concatenated codes relate to those of the outer code and
inner ensemble.

Proposition 7 Let Cy be an [ny, ki,di] k. code. Let Cy be an ensemble of ny [na, ks, *]4-codes of which
all but e-fraction have minimum distance d>. Then the concatenated code CoC5 is an [n1ng, kiks, (dy —
eni)ds], code.

Proof The proof follows from the fact that the first level encoding of a non-zero message leaves at
least d; coordinates that are non-zero. At most en; of the inner codes do not have minimum distance
ds. Thus at least d; — en; coordinates, when encoded by Cs result in dy non-zero zymbols each. The
distance follows. l

Note that it is not entirely trivial to find an ensemble with just the right parameters: To use every
element of the ensemble at least once, we need the inner ensemble size to be no larger than the outer
block length. To use an RS code at the outer level, we need the outer block length to be no larger
than the outer alphabet size. To use concatenation, we need the number of outer alphabet size to be
no larger than the number of inner codewords. Putting it all together, we need an ensemble with no

6-7

more members than codewords per member of the ensemble. Fortunately enough, this is exactly what
is achieved by Wozencraft’s ensemble, so we can use it. Consequenntly we get one fully explicit (locally
logspace constructible) family of error-correcting codes on the Zyablov bound. In particular the code is
asymptotically good.

Theorem 8 For every 0 < § < H’l(%), there exists a locally logspace constructible infinite family of

codes C that has relative distance § and rate % (1 — ﬁl_))
2

The code above is obtained by concatenating a Reed-Solomon code of appropriate rate with the Wozen-
craft ensemble. We note that to get local logspace constructibility, we need the inner code length to be
4 - 3! for some integer [so that we can use the explicit construction of fields of size 2 - 3'.

References

[1] G. David Forney. Generalized Minimum Distance decoding. IEEE Transactions on Information
Theory, 12:125-131, 1966.

[2] Jern Justesen. A class of constructive asymptotically good algebraic codes. IEEE Transactions on
Information Theory, 18:652—656, 1972.

[3] James L. Massey. Threshold decoding. MIT Press, Cambridge, Massachusetts, USA, 1963.

[4] Edward J. Weldon, Jr. Justesen’s construction — the low-rate case. IEEE Transactions on Infor-
mation Theory, 19:711-713, 1973.

[5] Victor V. Zyablov. An estimate on the complexity of constructing binary linear cascade codes.
Problems of Information Transmission, 7(1):3-10, 1971.

6-8

