COMP-649B 2009 Homework set #3 Due Monday April, 20 2009

A. Non-Universality...

Let $\varepsilon(n)>0$ be some information bound (function). Assume that we would like to use an *n*-bit key $S = (S_1, \ldots, S_n)$ as a one-time pad to encrypt an *n*-bit message $M = (M_1, \ldots, M_n)$. Furthermore, assume that an adversary is interested in the n^{th} bit M_n of the message, but already knows the first n-1 bits M_1, \ldots, M_{n-1} . Upon observing the ciphertext, the adversary can easily determine the first n-1 bits of S.

- Show that the adversary can choose a random variable W such that $I(W;S) < \varepsilon$ but such that she can determine the n^{th} bit S_n with certainty from W and S_1, \ldots, S_{n-1} .
 - What is the smallest information bound $\varepsilon(n)$ for which you can solve the above question ?

B. Quantum Secret Sharing...

[5%]

[10%]

[10%]

[10%]

- Show that an [[n,k,d]] quantum error-correcting code can be used as a Quantum Secret Sharing scheme with *n* shares s_1, s_2, \ldots, s_n such that fewer than A shares contain no information about the secret, whereas B or more shares are always enough to reconstruct the secret.
 - Establish the bounds *A* and *B* as a function of *n*, *k* and *d*.

(If you find the general case too difficult, restrict your proof to CSS codes, for $\frac{1}{2}$ the credits.)

• Find some **QECC** family such that *B*=*A*+1.

C. Code Equivalence (EQ)

Let G and G' be generator matrices of two linear codes C and C'. We say that codes C and C' are *equivalent* if there exists a permutation π of the columns of G such that $\pi(G)$ and G' generate the exact same linear subspace.

- Give a Zero-Knowledge protocol for the language EQ of all pairs of generating matrices of equivalent codes.
- Give an Interactive Proof for the complement language Non-EQ.

D. Quantum Linear Codes...

As far as I can tell, this problem leads to a genuinely original characterization of some Quantum Codes. We are about to define a notion of Quantum Linear Codes. For this exercise, we will focus on binary codes but it could be generalized easily to arbitrary fields, replacing the C-NOT gates by arbitrary ADDITION gates in the field.

A pair of *n*-qubit pure states $|\psi_0\rangle$ and $|\psi_1\rangle$ are linearly compatible if there exists a pure state $|\phi_1\rangle$ such that C-NOT^{$\otimes n$}($|\psi_0\rangle \otimes |\psi_1\rangle$) = $|\psi_0\rangle \otimes |\phi_1\rangle$.

- 1) Show that the code-words of a **CSS** code C form a set of linearly compatible states.
- 2) Show that for all $|\psi_0\rangle$, $|\psi_1\rangle \in C$, the corresponding $|\phi_1\rangle \in C$ as well.

A state $|\zeta\rangle$ is called the *zero-state* if it is such that for any linearly compatible state $|\psi\rangle$ we have C-NOT^{$\otimes n$}($|\zeta\rangle \otimes |\psi\rangle$) = $|\zeta\rangle \otimes |\psi\rangle$.

3) Identify the *zero-state* of a **CSS** code.

Let's define a basis spanning a linear sub-space of quantum states. A *basis* $|\beta_0\rangle$, $|\beta_1\rangle$,..., $|\beta_k\rangle$ is a set of linearly compatible states. Intuitively, the *Span* of a basis is the set of all states that we can reach by linearly combining the states of the basis. We formally define the Span of a set of states recursively as follows:

SPAN($|\beta_0\rangle$) := { $|\zeta\rangle$, $|\beta_0\rangle$ } SPAN($|\beta_0\rangle$, $|\beta_1\rangle$,..., $|\beta_k\rangle$) := { $|\psi\rangle$ | there exists a $|\phi\rangle\in$ SPAN($|\beta_0\rangle$, $|\beta_1\rangle$,..., $|\beta_{k-1}\rangle$) such that C-NOT^{$\otimes n$}($|\beta\rangle\otimes|\phi\rangle$) = $|\beta\rangle\otimes|\psi\rangle$, for either $|\beta\rangle = |\zeta\rangle$ or $|\beta_k\rangle$.

4) Show that for any CSS code C of dimension k, there exist k states $|\beta_0\rangle, |\beta_1\rangle, ..., |\beta_{k-1}\rangle$ such that C = SPAN($|\beta_0\rangle, |\beta_1\rangle, ..., |\beta_{k-1}\rangle$).

We define a Quantum Linear Code of size *n* and dimension *k* to be the Span of a set of *k* linearly compatible independent states $|\beta_0\rangle, |\beta_1\rangle, ..., |\beta_{k-1}\rangle$. (By independent we mean that for all index *i*, $|\beta_i\rangle \notin \text{SPAN}(|\beta_0\rangle, |\beta_1\rangle, ..., |\beta_{i-1}\rangle)$).

5) **Show that the sets of Linear Quantum Codes and Stabilizer Codes are indeed the same. Alternatively, find a Stabilizer Code that fails to satisfy one of the above 4 properties.

The proposed approach is to repeat the above four sub-questions with general Stabilizer Codes and proving that Linear Quantum Codes can always be defined by a Stabilizer.

^{**} I have not yet proved this part, so we are all together into this ...