
 

 

COMP-649B 2009 Homework set #3 
Due Monday April, 20  2009 

 
 
 
A. Non-Universality… 
 
Let ε(n)>0 be some information bound (function). Assume that we would like to use an n-bit key 
S = (S1 , . . . , Sn ) as a one-time pad to encrypt an n-bit message M = (M1 , . . . , Mn ). 
Furthermore, assume that an adversary is interested in the nth bit Mn of the message, but already 
knows the first n−1 bits M1 , . . . , Mn−1. Upon observing the ciphertext, the adversary can easily 
determine the first n−1 bits of S. 
 
• Show that the adversary can choose a random variable W such that I(W;S)<ε but such that she 
can determine the nth bit Sn with certainty from W and S1 , . . . , Sn-1. 
 
• What is the smallest information bound ε(n) for which you can solve the above question ? 
 
 
B. Quantum Secret Sharing… 
 
• Show that an [[n,k,d]] quantum error-correcting code can be used as a Quantum Secret Sharing 
scheme with n shares s1, s2,…,sn such that fewer than A shares contain no information about the 
secret, whereas B or more shares are always enough to reconstruct the secret. 
 
• Establish the bounds A and B as a function of n, k and d. 
 
( If you find the general case too difficult, restrict your proof to CSS codes, for ½ the credits. ) 
 
• Find some QECC family such that B=A+1. 
 
 
C. Code Equivalence (EQ) 
 
Let G and G’ be generator matrices of two linear codes C and C’. We say that codes C and C’ are 
equivalent if there exists a permutation π of the columns of G such that π(G) and G’generate the 
exact same linear subspace. 
 
• Give a Zero-Knowledge protocol for the language EQ of all pairs of generating matrices of 
equivalent codes. 
 
• Give an Interactive Proof for the complement language Non-EQ. 
 



 

 

D. Quantum Linear Codes… 
 
As far as I can tell, this problem leads to a genuinely original characterization of some Quantum 
Codes. We are about to define a notion of Quantum Linear Codes. For this exercise, we will 
focus on binary codes but it could be generalized easily to arbitrary fields, replacing the C-NOT 
gates by arbitrary ADDITION gates in the field. 
 
A pair of n-qubit pure states |ψ0〉 and |ψ1〉 are linearly compatible if there exists a pure state |φ1〉 
such that C-NOT⊗n(|ψ0〉⊗|ψ1〉) = |ψ0〉⊗|φ1〉. 
 

1) Show that the code-words of a CSS code C form a set of linearly compatible states. 
2) Show that for all |ψ0〉,|ψ1〉∈C, the corresponding |φ1〉∈C as well. 

 
 
A state |ζ〉 is called the zero-state if it is such that for any linearly compatible state |ψ〉 we have 
C-NOT⊗n(|ζ〉⊗|ψ〉) = |ζ〉⊗|ψ〉. 
 

3) Identify the zero-state of a CSS code. 
 
 
Let’s define a basis spanning a linear sub-space of quantum states. A basis |β0〉,|β1〉,…,|βk〉 is a 
set of linearly compatible states. Intuitively, the Span of a basis is the set of all states that we can 
reach by linearly combining the states of the basis. We formally define the Span of a set of states 
recursively as follows: 
 
SPAN( |β0〉 ) := { |ζ〉, |β0〉 }  
SPAN( |β0〉,|β1〉,…,|βk〉 ) := { |ψ〉 | there exists a |φ〉∈SPAN( |β0〉,|β1〉,…,|βk-1〉 ) such that 
     C-NOT⊗n(|β〉⊗|φ〉) = |β〉⊗|ψ〉, for either |β〉 = |ζ〉 or |βk〉.} 
 

4) Show that for any CSS code C of dimension k, there exist k states |β0〉,|β1〉,…,|βk-1〉 such 
that C = SPAN( |β0〉,|β1〉,…,|βk-1〉 ). 

 
 
We define a Quantum Linear Code of size n and dimension k to be the Span of a set of k linearly 
compatible independent states |β0〉,|β1〉,…,|βk-1〉. (By independent we mean that for all index i, 
|βi〉∉SPAN( |β0〉,|β1〉,…,|βi-1〉 ) ). 
 

5) **Show that the sets of Linear Quantum Codes and  Stabilizer Codes are indeed the same. 
Alternatively, find a Stabilizer Code that fails to satisfy one of the above 4 properties. 

 
The proposed approach is to repeat the above four sub-questions with general Stabilizer Codes 
and proving that Linear Quantum Codes can always be defined by a Stabilizer. 
 

                                                
** I have not yet proved this part, so we are all together into this … 


