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COMP-649B 2009 Homework set #3

Due Monday April, 20 2009

A. Non-Universality...

Let £(n)>0 be some information bound (function). Assume that we would like to use an n-bit key
S=(1,..., 8 ) as aone-time pad to encrypt an n-bit message M = (M1, . .., Mn).
Furthermore, assume that an adversary is interested in the n™ bit M» of the message, but already
knows the first n—1 bits M1, . . ., Mn-1. Upon observing the ciphertext, the adversary can easily
determine the first n—1 bits of S.

» Show that the adversary can choose a random variable W such that I(W;S)<e but such that she
can determine the n™ bit S» with certainty from Wand S1, ..., Su-1.

* What is the smallest information bound &(n) for which you can solve the above question ?

B. Quantum Secret Sharing...

* Show that an [[n,k,d]] quantum error-correcting code can be used as a Quantum Secret Sharing
scheme with n shares s, s,,...,s, such that fewer than A shares contain no information about the
secret, whereas B or more shares are always enough to reconstruct the secret.

¢ Establish the bounds A and B as a function of #n, k and d.

( If you find the general case too difficult, restrict your proof to CSS codes, for ¥ the credits. )

* Find some QECC family such that B=A+1.

C. Code Equivalence (EQ)
Let G and G’ be generator matrices of two linear codes C and C’. We say that codes C and C’ are
equivalent if there exists a permutation 7 of the columns of G such that ©(G) and G’ generate the

exact same linear subspace.

* Give a Zero-Knowledge protocol for the language EQ of all pairs of generating matrices of
equivalent codes.

* Give an Interactive Proof for the complement language Non-EQ.
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D. Quantum Linear Codes...

As far as I can tell, this problem leads to a genuinely original characterization of some Quantum
Codes. We are about to define a notion of Quantum Linear Codes. For this exercise, we will
focus on binary codes but it could be generalized easily to arbitrary fields, replacing the C-NOT
gates by arbitrary ADDITION gates in the field.

A pair of n-qubit pure states |y,) and |y,) are linearly compatible if there exists a pure state |¢;)
such that C-NOT®"(|yo)®|w1)) = [yo)®|d1).

1) Show that the code-words of a CSS code C form a set of linearly compatible states.
2) Show that for all |y),|y;)e C, the corresponding |¢,)e C as well.

A state |Q) is called the zero-state if it is such that for any linearly compatible state |y) we have
C-NOT*'(19®]y)) = [O®|y).

3) Identify the zero-state of a CSS code.

Let’s define a basis spanning a linear sub-space of quantum states. A basis |Bo),|B1),...,| By is a
set of linearly compatible states. Intuitively, the Span of a basis is the set of all states that we can
reach by linearly combining the states of the basis. We formally define the Span of a set of states
recursively as follows:

SPAN( IBo) ) == { 10, IBo) }
SPAN( Bo)sB1)s---» 1By ) := { W) | there exists a |d)e SPAN( |Bo),|B1)s---»| Brry ) such that
C-NOT®*'(|B)®|0)) = | BY®| ), for either |B) = |{) or |B,).}

4) Show that for any CSS code C of dimension k, there exist k states |Bo),|B1)s.-.,|Bw1) such
that C = SPAN( |BO>7 | Bl>7 ey | Bk»1> )

We define a Quantum Linear Code of size n and dimension k to be the Span of a set of & linearly
compatible independent states |Bg),|B1)s....|Bei). (By independent we mean that for all index i,

|Bag SPANC[Bo),1B1),...[Biid ))-

5) “'Show that the sets of Linear Quantum Codes and Stabilizer Codes are indeed the same.
[Alternatively, find a Stabilizer Code that fails to satisfy one of the above 4 properties)

The proposed approach is to repeat the above four sub-questions with general Stabilizer Codes
and proving that Linear Quantum Codes can always be defined by a Stabilizer.

"I have not yet proved this part, so we are all together into this ...




