# COMP-649B 2009 Homework set #2 Due Tuesday March, 3 2009 in class

## A. BB84 vs Projective Measurements

[15%]

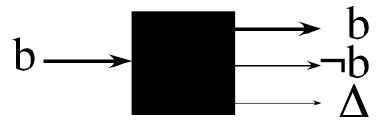
Prove that every projective measurement Eve may perform on the BB84 transmissions will induce an error probability  $\geq 25\%$  and that the least error probability is reached by resending the exact same state she has observed.

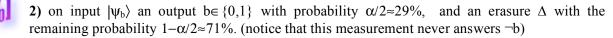
#### **B.** <u>**B92** vs distinguishing $|0\rangle$ from $(|0\rangle+|1\rangle)/\sqrt{2}$ </u>

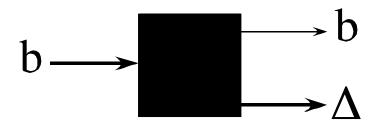
Construct two generalized measurements such that using  $|\psi_0\rangle = |0\rangle$  or  $|\psi_1\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$  we get

[10%]

1) on input  $|\psi_b\rangle$  an output  $b \in \{0,1\}$  with probability  $\alpha = 2 - \sqrt{2} \approx 59\%$ , an output  $\neg b$  with probability  $\alpha/2 \approx 29\%$ , and an erasure  $\Delta$  with the remaining probability  $1 - 3\alpha/2 \approx 12\%$ .







Now consider these two measurements as channels.

**3)** Define the projective measurement  $\{|\phi_0\rangle, |\phi_1\rangle\}$  with symmetric probabilities

 $Pr[output=|\phi_0\rangle | input=|\psi_1\rangle) = Pr[output=|\phi_1\rangle | input=|\psi_0\rangle) and$  $Pr[output=|\phi_0\rangle | input=|\psi_0\rangle) = Pr[output=|\phi_1\rangle | input=|\psi_1\rangle)$ 

What performances do you obtain by measuring this complete measurement ?



4) Which of the three is most resistant to privacy amplification ? Explain.

5) What can you say regarding question A. above with respect to the B92 scheme instead of the BB84 scheme. How does this relate to questions 1) and 2) above ??

### C. **BB84 conjugate bases**

The rectilinear RL={  $|0\rangle$ ,  $|1\rangle$  } and diagonal DG={  $(|0\rangle+|1\rangle)/\sqrt{2}$ ,  $(|0\rangle-|1\rangle)/\sqrt{2}$  } bases are called *conjugate* because the states of any one basis measured in the other will produce completely random outcomes.



Show that there exists yet a third basis CI of a single qubit that is conjugate to both RL and DG.

Show there is not a fourth such basis.

## D. <u>Sampling</u>

Suppose that Alice has a random n-bit string  $X_A$  and that Bob has an n-bit string  $X_B$  erroneous in t positions (with respect to  $X_A$ ) and correct in n-t positions. Now imagine they pick at random n/2 positions from 1 to n and compare the corresponding bits. Let m be the number of errors observed out of n/2 positions. Let  $\mu=2m/n$  be the observed average.



Show that the probability that the remaining n/2 positions contain more than  $(\mu+\delta)$  n/2 errors decreases exponentially fast for  $\delta>0$ .

