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COMP-649B 2009 Homework set #2 
Due Tuesday March, 3  2009 in class 

 
A. BB84 vs Projective Measurements 

 
Prove that every projective measurement Eve may perform on the BB84 transmissions will 
induce an error probability ≥25% and that the least error probability is reached by resending the 
exact same state she has observed. 
 
B. B92 vs distinguishing |0〉 from (|0〉+|1〉)/√2 

 
Construct two generalized measurements such that using |ψ0〉=|0〉 or |ψ1〉=(|0〉+|1〉)/√2 we get 
 
1) on input |ψb〉 an output b∈{0,1} with probability α=2−√2≈59%, an output ¬b with probability 
α/2≈29%,  and an erasure ∆ with the remaining probability 1−3α/2≈12%. 
 

 
 
2) on input |ψb〉 an output b∈{0,1} with probability α/2≈29%,  and an erasure ∆ with the 
remaining probability 1−α/2≈71%. (notice that this measurement never answers ¬b) 
 

 
 
Now consider these two measurements as channels. 
 
3) Define the projective measurement {|φ0〉,|φ1〉} with symmetric probabilities 
 

Pr[output=|φ0〉 | input=|ψ1〉) = Pr[output=|φ1〉 | input=|ψ0〉) and 
Pr[output=|φ0〉 | input=|ψ0〉) = Pr[output=|φ1〉 | input=|ψ1〉) 

 
What performances do you obtain by measuring this complete measurement ? 
 
4) Which of the three is most resistant to privacy amplification ? Explain. 
 
5) What can you say regarding question A. above with respect to the B92 scheme instead of the 
BB84 scheme. How does this relate to questions 1) and 2) above ?? 
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C. BB84 conjugate bases 
 

The rectilinear RL={ |0〉 , |1〉 } and diagonal DG={ (|0〉+|1〉)/√2 , (|0〉−|1〉)/√2 } bases are called 
conjugate because the states of any one basis measured in the other will produce completely 
random outcomes.  
 
Show that there exists yet a third basis CI of a single qubit that is conjugate to both RL and DG. 
 
Show there is not a fourth such basis.  
 
 
D. Sampling 

 
Suppose that Alice has a random n-bit string XA and that Bob has an n-bit string  XB erroneous in 
t positions (with respect to XA) and correct in n-t positions. Now imagine they pick at random n/2 
positions from 1 to n and compare the corresponding bits. Let m be the number of errors observed 
out of n/2 positions. Let µ=2m/n be the observed average.  
 
Show that the probability that the remaining n/2 positions contain more than (µ+δ) n/2 errors 
decreases exponentially fast for δ>0.  
 
 

 


