
COMP-649A 2005 Homework set #2
Due Tuesday October 25, 2005 in class at 14h35

Observations on observables
Definition : An observable is an hermitien operator O such that, if its spectral decompo-
sition into projector is O =

∑
i λiPi, then

∑
i Pi = I.

Question #1 (6 points)

Let operator R1 be defined as Z1 ⊗ I2 and R2 be defined as I1 ⊗Z2. Proof that R1 ·R2 6=
Z1 ⊗ Z2. Think of R1 · R2 as a circuit, first applying R2 and getting an eigenvalue and
then applying R1 and getting a new eigenvalue, whilst Z1 ⊗ Z2 is a single operator that
returns a single eigenvalue.

Question #2 (6 points)

Show that nevertheless they give the same statistics — i.e. if one multiply the output of
R1 and R2, then that single output will be distributed just as the output of Z1 ⊗ Z2.

Lengthy introduction : Approximate quantum encryption defines a cypher E to be secure if
for all density operator ρ the following criterion is satisfied ‖E(ρ)− I/d‖α < ε, where alpha
specifies a norm. So intuitively any measurement made on E(ρ) should have statistics
similar to the same measurement applied to I.

Let the bias of a random variable A be defined as |Pr[A = 0]− Pr[A = 1]|. We say a
variable is ε-biased if its bias is inferior to ε.

Question #3 (18 points)

Let Πi be a Pauli operator in a space of dimension that fits E(ρ). Prove that

1. |tr(ΠiE(ρ))| is the bias of the Πi observable applied to E(ρ).

2. if E is an approximate encryption scheme for the trace norm, then ΠiE(ρ) is ε-biased.

Stabilizer codes
Question #4 (6 points)

Read pages 454 to 464 in Nielsen & Chuang and solve problem 10.42

Question #5 (12 points)

Read section 10.5.5 and 10.5.8 (and 10.5.6 for your benefit) and solve problem 12.34 on
page 597.
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Quantum Forney Codes – Zyablov bound

Question #6 (6 points)

Show that the dual of a Reed-Solomon code of parameters [N,K,D = N − K + 1] is a
Generalized Reed-Solomon code of parameters [N,N −K, D = K + 1].

Question #7 (12 points)

Exhibit how we may use the CSS construction to produce Quantum Reed-Solomon codes
of parameters [[N,K ′ = 2K−N,D′ = N −K +1]]. In the light of the no-cloning theorem,
explain why it is not surprizing that K ′ > 0 iff D′ ≤ N/2.

Question #8 (16 points)

Show that we can pick random linear binary codes C1, C2, such that C⊥
2 ⊂ C1, both with

parameters [n, k > (1/2 + ε)n, d > αn], for ε, α > 0. Show that indeed we can do this as
long as ε ≤ 1/2 − h(α) which is on the (classical) Varshamov-Gilbert bound. Conclude
that we can produce binary quantum CSS codes of parameters [[n, (1 − 2h(δ))n, δn]],
0 < δ < h−1(1/2). Compare this result with the Quantum Varshamov-Gilbert bound.

You may choose to solve any one of the following two questions.
If you solve both we’ll give you extra credit. But don’t go mad trying to solve
this whole assignment...

Question #9 (18 points)

Show how we can concatenate Quantum Reed-Solomon codes over F2m and inner random
binary linear codes as above to obtain a family of [[N ∈ O(m(2m − 1)), ρN, δN ]] binary
quantum codes such that ρ, δ > 0. Maximize simultaneously the parameters ρ, δ > 0 and
plot the corresponding curve relating them. You have established the Quantum (weak)
Zyablov bound.

Oberserve that these codes can be efficiently (as a function of N) constructed, encoded
and decoded (upto δN/4). Justify this observation.

Question #10 (18 points)

In contrast, the Quantum (strong) Zyablov bound would be obtained by concatenating
Quantum Reed-Solomon codes over F2m with inner random codes on the (Quantum)
Varshamov-Gilbert bound to obtain a family of [[N ∈ O(m(2m − 1)), ρN, δN ]] binary
quantum codes such that ρ, δ > 0. Again, maximize simultaneously the parameters ρ, δ > 0
and plot the corresponding curve relating them.

What can you say about efficiently (as a function of N) constructing, encoding and de-
coding (upto δN/4) these codes?
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1 Reed-Solomon Codes

1.1 definition

A Reed-Solomon Code (RS) over Fq is a BCH code of length N = q − 1.

The dimension of such a code is K = N − deg(g) = N − δ + 1 and its minimal distance is

D = δ = N −K + 1.

Théorème 1.1 (interpolation de Lagrange) Let αi1αi2 ...αiK be distincts elements of
Fq for K < q and β1β2...βK be any elements of Fq. There exists a unique polynomial p(x)
over Fq such that deg(p) < K and that for 1 ≤ j < K

p(αij ) = βi.

Théorème 1.2 Consider the code defined by

C = {(p(1)p(α)...p(αN−1)) : p is a polynomial of degree < K over Fq}.

The code C is an [N = q − 1,K,N −K + 1] RS code .

Proof: first, it is clear that the dimension of C is K because there are qK polynomials p
of degree < K. The minimum distance is deduced by observing that p 6= p′ implies that
(p(1)p(α)...p(αN−1)) 6= (p′(1)p′(α)...p′(αN−1)) on at least N −K + 1 positions. Let p and
p′ be two polynomials such that

∆
(
(p(1)p(α)...p(αN−1), (p′(1)p′(α)...p′(αN−1)

)
< N −K + 1.

This implies that there exist i1, i2, ..., iK such that p(αij ) = p′(αij ). By the theorem
“d’interpolation de Lagrange” we get p = p′. Therefore, there does not exist distinct c, c′

such that ∆ (c, c′) < N −K + 1.

2 Concatenated Codes

2.1 concatenation of codes

A concatenated code C is obtained from an external code CE over Fqm with parameters
[nE , kE , dE ] and an internal code CI over Fq with parameters [nI , kI = m, dI ]. The result of
concatenation is a code over Fq with parameters [n = nEnI , k = kEkI = mkE , d = dEdI ].
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2.2 internal random or maximal codes

If we construct concatenated codes using a Reed-Solomon external code with parame-
ters [2m, R2m, (1 − R)2m + 1] and an internal binary code with parameters [σm, m, ρm],
near the V-G bound (1/σ ≈ 1 − h(ρ/σ)) we obtain concatenated codes with parameters
[σm2m, Rm2m, (1−R)ρm2m]. Let N = σm2m, r = 1

σ and substituting for ρ we obtain

[N,RrN, (1−R)h−1(1− r)N ].

If we fix the product γ = Rr, we may look for the r which maximises (1 − γ
r )h−1(1 − r)

to obtain the best codes of this type.

We may find internal codes by sampling random σm×m binary matrices until we find one
such that the minimum distance of the related code is close enough to the V-G bound.

3 Generalized Reed-Solomon Codes

A Generalized Reed-Solomon code (GRS) over FN
qm is caracterised by two vectors ~α,~v

of length N with ~α = (α1, α2, ..., αN ) ∈ FN
qm for distinct αi and ~v = (v1, v2, ..., vN ) ∈

(Fqm\{~0})N . The codewords are obtained from polynomials F of degree < K by

c = (c1c2...cN ) = (v1F (α1), v2F (α2), ..., vNF (αN )).

3.1 the dual of a GRS code is a GRS code

To each GRS(~α,~v) code of dimension K we associate another GRS(~α,~v′) of dimension
N −K dual to the former. This means that the parity check matrix of such a GRS(~α,~v′)
code is of the form

~H =


v′1 v′2 ... v′N

v′1α1 v′2α2 ... v′NαN
...

...
. . .

...
v′1α

N−K−1
1 v′2α

N−K−1
2 ... v′NαN−K−1

N

 .
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