A The Berlekamp-Welch Decoder

This section presents the solution to the following problem first introduced by Berlekamp and Welch as part of a novel method for decoding Reed-Solomon codes.

Problem 4
Given: \(m \) pairs of points \((x_i, s_i) \in F \times F\) such that there exists a polynomial \(K \) of degree at most \(d \) such that for all but \(k \) values of \(i \), \(s_i = K(x_i) \), where \(2k + d < m \).

Question: Find \(K \)

Consider the following set of equations:

\[
\exists W, K \quad \text{deg}(W) \leq k, \text{deg}(K) \leq d, W \neq 0, \quad \forall i \quad W(x_i) \ast s_i = W(x_i) \ast K(x_i) \tag{1}
\]

Any solution \(W, K \) to the above system gives a solution to Problem 4. (Notice that we can cancel \(W \) from both sides of the equation to get \(s_i = f(x_i) \), except when \(W(x_i) = 0 \), but this can happen at most \(k \) times.) Conversely, any solution \(K \) to Problem 4 also gives a solution to the system of equations\(1\). (Let \(B = \{x_i | s_i \neq f(x_i)\} \). Let \(W(z) \) be the polynomial \(\prod_{x \in B} (z - x) \). \(W, K \) form a solution to the system 1.) Thus the problem can be reduced to the problem of finding polynomials \(K \) and \(W \) that satisfy (1). Now consider the following related set of constraints

\[
\exists W, N \quad \text{deg}(W) \leq k, \text{deg}(N) \leq k + d, W \neq 0, \quad \forall i \quad W(x_i) \ast s_i = N(x_i) \tag{2}
\]

If a solution pair \(N, W \) to (2) can be found that has the additional property that \(W \) divides \(N \), then this would yield \(K \) and \(W \) that satisfy (1). Berlekamp and Welch show that all solutions to the system (2) have the same \(N/W \) ratio (as rational functions) and hence if equation (2) has a solution where \(W \) divides \(N \), then any solution to the system (2) would yield a solution to the system (1). The following lemma establishes this invariant.

Lemma 6 Let \(N, W \) and \(L, U \) be two sets of solutions to (2). Then \(N/W = L/U \).

Proof: For \(i, 1 \leq i \leq m \), we have

\[
L(x_i) = s_i \ast U(x_i) \quad \text{and} \quad N(x_i) = s_i \ast W(x_i)
\]

\[
\Rightarrow L(x_i) \ast W(x_i) \ast s_i = N(x_i) \ast U(x_i) \ast s_i
\]

\[
\Rightarrow L(x_i) \ast W(x_i) = N(x_i) \ast U(x_i) \quad \text{by cancellation}
\]

(Cancellation applies even when \(s_i = 0 \) since that implies \(N(x_i) = L(x_i) = 0 \).) But both \(L \ast W \) and \(N \ast U \) are polynomials of degree at most \(2k + d \) and hence if they agree on \(m > 2k + d \) points they must be identical. Thus \(L \ast W = N \ast U \Rightarrow L/U = N/W \)

All that remains to be shown is how one obtains a pair of polynomials \(W \) and \(N \) that satisfy (2). To obtain this, we substitute unknowns for the coefficients of the polynomials i.e., let \(W(z) = \sum_{j=0}^{k} W_j z^j \) and let \(N(z) = \sum_{j=0}^{k+d} N_j z^j \). To incorporate the constraint \(W \neq 0 \) we set \(W_k = 1 \). Each constraint of the form \(N(x_i) = s_i \ast W(x_i), i = 1 \cdots, m \) becomes a linear constraint in the \(2k + d + 1 \) unknowns and a solution to this system can now be found by matrix inversion.

It may be noted that the algorithm presented here for finding \(W \) and \(N \) is not the most efficient known. Berlekamp and Welch [5] present an \(O(m^2) \) algorithm for finding \(N \) and \(W \), but proving the correctness of the algorithm is harder. The interested reader is referred to [5] for a description of the more efficient algorithm.