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Abstract

Shor and Preskill have provided a simple proof of security ofthe standard quantum key distribution scheme by
Bennett and Brassard (BB84) by demonstrating a connection between key distribution and entanglement purification
protocols with one-way communications. Here we provide proofs of security of standard quantum key distribution
schemes, BB84 and the six-state scheme, against the most general attack, by using the techniques oftwo-way en-
tanglement purification. We demonstrate clearly the advantage of classical post-processing with two-way classical
communications over classical post-processing with only one-way classical communications in QKD. This is done
by the explicit construction of a new protocol for (the errorcorrection/detection and privacy amplification of) BB84
that can tolerate a bit error rate of up to18.9%, which is higher than whatany BB84 scheme with only one-way
classical communications can possibly tolerate. Moreover, we demonstrate the advantage of the six-state scheme
over BB84 by showing that the six-state scheme can strictly tolerate a higher bit error rate than BB84. In particular,
our six-state protocol can tolerate a bit error rate of26.4%, which is higher than the upper bound of25% bit error rate
for any secure BB84 protocol. Consequently, our protocols may allow higher key generation rate and remain secure
over longer distances than previous protocols. Our investigation suggests that two-way entanglement purification is a
useful tool in the study of advantage distillation, error correction, and privacy amplification protocols.

1 Introduction

Quantum key distribution (QKD) [2, 10]1 allows two parties to communicate in absolute privacy in thepresence of an
eavesdropper. Unlike conventional schemes of key distribution that rely on unproven computational assumptions, the
security of QKD is guaranteed by the Heisenberg uncertaintyprinciple of quantum mechanics. Much of the interest
in QKD arises from the possibility of near-term real-life applications, whereas most other potential uses of quantum
information remain remote. QKD has been performed experimentally over about 67 km of telecom fibers, and point-
to-point through open air at a distance of about 23.4 km. There are also proposals for key exchange from ground to
satellites. (See [14, 12] for discussions.)

Today’s technologies fall short of full control and manipulation of quantum states, so practical QKD protocols must
use a much more restricted set of operations. The best-knownQKD protocol was published by Bennett and Brassard
in 1984 [2]. BB84 is a simple “prepare-and-measure” protocol that can be implemented without a quantum computer
(see [28, 26] for background on quantum computation). In a “prepare-and-measure” protocol, Alice simply prepares
a sequence of single-photon signals and transmits them to Bob. Bob immediately measures those signals; thus, no
quantum computation or long-term storage of quantum information is necessary, only the transmission of single-
photon states, which can be performed through regular optical fibers. Therefore, “prepare-and-measure” schemes are
good candidates for near-term implementations of quantum cryptography.

1The first paper on quantum cryptography was written by Stephen Wiesner around 1970, but it remained unpublished until 1983 [34]. For a
survey on quantum cryptography, see, for example, [14]. Fora review, see, for example, [12].
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Of course, a theoretical description of a protocol is a mathematical idealization. Any real-life quantum cryp-
tographic system is a complex physical system with many degrees of freedom, and is at best an approximation to
the ideal protocol. Proving the security of any particular set-up is a difficult task, requiring a detailed model of the
apparatus. Even a seemingly minor and subtle omission can befatal to the security of a cryptographic system.

Nevertheless, a number of important basic issues have been identified. See, for example, [27] for a discussion. For
instance, the ideal theoretical version of BB84 uses a perfect single-photon source. It is important to know whether an
eavesdropper can in principle exploit imperfect photon sources or other minor deviations from the ideal model (such
as channel loss or detector dark counts). In this paper, we will not consider the issue of imperfections in the source or
detectors. Instead, we will concentrate on the allowable bit error rate in the channel, and show that it can be at least
26.4% for a “prepare-and-measure” scheme.

To prove the security of a protocol, one must specify clearlywhat eavesdropping strategies are permissible. In
classical cryptography, eavesdroppers are frequently given only a bounded amount of computation. Unfortunately,
we do not, as yet, have a good grasp of what can be done with a short quantum computation, and provable bounds
are elusive, even for classical computation. Other assumptions are similarly unreliable, so we resort to one of the
most conservative assumptions, unconditional security — that is, security against the most general attacks allowed by
quantum mechanics.

As it turned out, proving unconditional security even for anidealized system was very difficult. More than a
decade passed between the original proposal for BB84 and thefirst general but rather complex proof of security by
Mayers [32], which was followed by a number of other proofs [5, 4]. Another approach to proving the security is to
start by considering protocols which are less experimentally accessible. In particular, Lo and Chau [23], building on
the quantum privacy amplification idea of Deutschet al. [8], have proposed a conceptually simpler proof of security.
However, the protocol proved secure has the unfortunate drawback of requiring a quantum computer. Recently, Shor
and Preskill [33] have unified the techniques in [23] and [32]and provided a simple proof of security of standard
BB84. (See also [15] for a detailed exposition of this proof.)2

The idea of an entanglement purification protocol (EPP) [3] plays a key role in Shor and Preskill’s proof. An
EPP is a procedure allowing Alice and Bob to create a small number of reliable EPR pairs from a larger number of
noisy pairs. More specifically, Shor and Preskill consider schemes for entanglement purification with a classical side
channel from Alice to Bob (one-way EPPs), which, by the earlier work of Bennett, DiVincenzo, Smolin and Wootters
(BDSW)[3], are mathematically equivalent to quantum error-correcting codes (QECCs).

As noted by BDSW, EPPs involving two-way communications between two parties can tolerate a substantially
higher error rate than one-way EPPs. Those two-way EPPs are useful for the transmission of quantum signals, but not
their storage in a noisy memory, since in a two-way EPP, the receiver Bob must send information to the sender Alice.

In this paper, we demonstrate that it is possible to create “prepare-and-measure” QKD schemes based on two-way
EPPs, and that the advantages of two-way EPPs can survive. More specifically, we describe versions of BB84 and the
six-state scheme [6] (another “prepare-and-measure” scheme) using two-way communcations and prove their security
with allowed error rates substantially higher than any previous proofs.

Our results are significant for QKD for several reasons. First, our scheme can tolerate substantially higher bit
error rates than all previous protocols. This may allow us toextend the distance of secure QKD and increase the
key generation rate. Second, we demonstrate clearly the advantage of usingtwo-way classical communications in
the classical post-processing of signals in QKD. In particular, for both BB84 and the six-state scheme, our protocol
tolerates a higher bit error rate than any one-way post-processing method. Third, our results show rigorously that the
six-state protocol can tolerate a higher bit error rate thanBB84. These facts can help direct experimentalists towards
the most robust schemes for quantum key distribution.

There are good conceptual reasons as well for studying two-way QKD. The Shor and Preskill proof of security
turns on the relationship between classical error correction and privacy amplification and QECCs. EPPs have a close
relationship to QECCs, but the detailed connection betweenEPPs using one-way and two-way classical side channels
is not well understood [3]; in fact, very little is known about two-way EPPs. A study of two-way QKD elucidates the
relationship between the various aspects of quantum cryptography and two-way EPPs. It may help to spur progress in
both the theoretical study of two-way EPPs and also their practical applications in a real experiment. This is so because
“prepare-and-measure” QKD schemes, which we consider, canessentially be implemented in a real experiment [27].

2Mayers’ and Shor-Preskill’s proofs make different assumptions. While Mayers’ proof assumes that Alice’s preparationof the BB84 states is
perfect, Shor and Preskill limit the types of imperfectionsallowed in Bob’s measurement apparatus. A proof that takes into account more general
imperfections remains to be published.
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Furthermore, the study of two-way QKD can clarify other proofs of security of QKD such as that due to Inamori
[18, 19], and may make the connection to earlier studies of classical advantage distillation [29, 30, 31].3

In section 2, we present the BB84 and six-state protocols andreview known bounds on the bit error rates they
tolerate. Section 3 reviews the necessary concepts from thetheory of quantum error-correcting codes and entanglement
purification protocols. Even readers already familiar withthese subjects may wish to read sections 2.3 and 3 to acquaint
themselves with our terminology. Section 4 presents the Shor and Preskill proof of security. In section 5, we attempt
a naive generalization of the proof to two-way protocols, which fails in an instructive way. In section 6 we present
the main theorem: EPPs satisfying the correct set of conditions can be made into secure “prepare-and-measure” QKD
schemes with two-way communications. An example EPP satifying the conditions is presented in section 7; variations
of this EPP produce the achievable error rates cited in this paper. We prove the main theorem in section 8.

2 QKD protocols and bounds on performance

2.1 BB84 and the six-state scheme

In the BB84 protocol for QKD, Alice sends a qubit (i.e., a quantum bit or a two-level quantum system) in one of
four states to Bob. The states|0〉 and |+〉 = (|0〉 + |1〉)/

√
2 represent the classical bit0, while the states|1〉 and

|−〉 = (|0〉 − |1〉)/
√

2 represent the bit1. Alice chooses one of these four states uniformly at random,and sends it to
Bob, who chooses randomly to measure in either the|0〉, |1〉 basis (the “Z” basis) or the|+〉, |−〉 basis (the “X” basis).
Then Alice and Bob announce the basis each of them used for each state (but not the actual state sent or measured in
that basis), and discard any bits for which they used different bases. The remaining bits form the raw key, which will
be processed some more to produce the final key.

The six-state protocol is quite similar, but Alice sends oneof six states instead of one of four. The four states from
BB84 are used (with the same meanings), plus the two states(|0〉 + i|1〉)/

√
2 and(|0〉 − i|1〉)/

√
2, which represent0

and1 in the “Y ” basis. Bob chooses to measure randomly in theX , Y , or Z basis, and again Alice and Bob discard
any bits for which they used different bases. Thus, for the six-state scheme, the raw key consists of one-third of the
qubits received on average, as opposed to one-half for BB84;4 however, as we shall see, the six-state scheme remains
secure under noisier conditions.

Once they have produced the raw key, Alice and Bob select a sample of sufficient size (assume one-half the total
raw key for simplicity), and publicly announce the values ofthose bits. They compare and calculate the fraction of
bits which disagree; this is known as the “bit error rate.” The bit error rate gives an estimate of the actual error rate for
the remaining key bits. If the bit error rate is too high, Alice and Bob assume there is an eavesdropper and abort the
protocol. Otherwise, Alice and Bob take their remaining bits and may correct them using a classical error-correcting
code: that is, Alice announces her values for the parity checks of a classical linear code, and Bob compares his values
for the same parity checks to deduce the locations of errors in the remaining key bits. He corrects those errors. Finally,
Alice and Bob perform privacy amplification whose goal is to remove the eavesdropper’s information on the final key:
they choose some set of parities, and the final key bits are thevalues of those parities. After this procedure, provided
the bit error rate is not too high, the final key is supposed to be secure against an eavesdropper Eve.

There are a few points about the protocols which deserve additional comment. First, all of Alice and Bob’s classical
communications occur over a public channel, so Eve also has available to her any information that was announced.
However, the classical channel should be authenticated, sothat Eve can only listen to it and not change it. Second,
after producing the raw key and before performing the error test, Alice and Bob should agree on a random permutation
to apply to their raw key bits. This simplifies the analysis, since Eve’s attack under these circumstances might as
well be symmetric over all qubits sent, and improves the tolerable bit error rate. Third, the meaning of “security”
for this protocol is slightly subtle: for any attack chosen by Eve, either she will be detected, except with probability
exponentially small in some security parameter,r, or, with probability exponentially close to 1, she will have an

3An important result in classical cryptography based on noisy channels is that a two-way side channel can actually increase the secrecy capacity
of a noisy channel. i.e., the secrecy capacity with a two-wayside channel,Cs

2
, can be strictly greater than the secrecy capacity with onlya one-way

side channel,Cs

1
. See [29, 30, 31] for details. This is in sharp contrast with Shannon’s channel coding theorem which states that two-way side

channels do not increase channel capacity. The process of using two-way communications to share a secret in a way that is impossible with only
one-way communications is called “advantage distillation”.

4Prepare-and-measure QKD schemes can be made more efficient by employing a refined data analysis in which the bit error rates of the sampled
data of the various bases are computed separately and each demanded to be small. See [25, 24] for discussions and a proof ofthe unconditional
security of those efficient prepare-and-measure QKD schemes.
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BB84

one-way two-way
Upper bound 14.6% 1/4
Lower bound 11.0% 18.9%

Six-state Scheme

one-way two-way
Upper bound 1/6 1/3
Lower bound 12.7% 26.4%

Table 1: Bounds on the bit error rate for BB84 and the six-state scheme using one-way and two-way classical post-
processing. The lower bounds for two-way post-processing,18.9% for BB84 and26.4% for the six-state scheme,
come from the current work.

exponentially small amount of information, in some security parameter,s, about the final key. A QKD scheme is
efficient if the resources (in terms of the number of qubits sent, amount of computational power, etc) required for
its implementation are at most polynomial in the security parameters. For simplicity, it is quite common to take
the security parameters to ben, the total number of qubits sent. As discussed in [25], otherchoices of the security
parameters are perfectly acceptable.

2.2 Known bounds on the performance of QKD

There are a number of upper and lower bounds known for the allowable bit error rate for these two protocols. In
table 1, we summarize the bounds for BB84 and the six-state scheme. The tables give bounds for schemes that use
one-way and two-way classical communications during the post-processing phase. The upper bounds are derived by
considering some simple individual attacks, and determining when these attacks can defeat QKD. The lower bounds
come from protocols that have been proved secure. For both BB84 and the six-state scheme, our new lower bounds for
two-way classical post-processing schemes are substantially better than the upper bounds for schemes with one-way
classical post-processing. Therefore, our results demonstrate clearly that our schemes can tolerate higher bit errorrates
than any possible schemes with only one-way classical post-processing can.

The upper bounds for one-way post-processing come from attacks based on optimal approximate cloning ma-
chines [11, 7, 1]. Although perfect cloning of an unknown quantum state is strictly forbidden by the uncertainty
principle of quantum mechanics, approximate cloning is possible. Optimal approximate cloning has recently been
experimentally demonstrated [21]. More specifically, Eve intercepts all of Alice’s signals from the quantum channel.
Using the appropriate optimal cloner, Eve can generate two equally good approximate copies of the original signal.
In the case of BB84, the resulting bit error rate in a single copy is about14.6% [11, 7], and it is1/6 for the six-state
scheme [1]. Eve then keeps one copy herself and sends the second copy to Bob. With only one-way classical pro-
cessing, Bob is not allowed to send classical signals to Alice.5 Therefore, Bob and Eve are in a completely symmetric
situation: if Bob can generate a key based on subsequent classical transmissions from Alice, Eve must be able to do the
same. Therefore, at this error rate (14.6% or 1/6), the QKD scheme must be insecure with one-way post-processing.

The upper bounds for two-way post-processing come from an intercept and resend eavesdropping strategy. Eve
intercepts each qubit sent by Alice. She chooses to measure in a random basis from the appropriate list (X , Z for
BB84 orX , Y , Z for the six-state scheme). She records her measurement outcome and prepares a single photon in
the polarization given by her measurement outcome and re-sends such a photon to Bob. Note that whatever Bob can
do from this point on can be simulated by a classical random variablepreparedby Eve, who has a classical record of
it, and a local random number generator possessed by Bob. Therefore, secure QKD is impossible even with two-way
classical communications between Alice and Bob. For BB84, the intercept and resend strategy gives an error rate of
25%: half the time Eve has chosen the correct basis, so there is noerror, and half the time she has chosen the wrong

5If one allows Bob to send classical messages to Alice only (but not from Alice to Bob), in the context of coherent state QKD,it is known that
such backward one-way communications can actually help to beat the approximate cloning attack. However, the issue of unconditional security
remains open. See [16] for details.
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basis, in which case there is a50% chance of an error, for a net error rate of1/4. For the six-state scheme, intercept
and resend gives an error rate of1/3: Eve has the correct basis only1/3 of the time, and the remaining2/3 of the
time, she has a50% chance of introducing an error.

The lower bounds in table 1 come from proofs of security. The Shor and Preskill proof shows that QKD with
one-way communications can be secure with data rate at least1 − 2h(p), wherep is the bit error rate andh(x) =
−x log2 x − (1 − x) log2(1 − x) is the Shannon entropy. This reaches0 whenp is about11.0%. For the six-state
scheme, this result has been slightly improved by one of us (H-K. Lo) [22] to allow secure QKD up to a bit error rate
of about12.7%.6 With two-way communications during post-processing, Shorand Preskill’s result and Lo’s result
remain the best prior results. (Lo’s result is marginally better than Inamori’s result [19] for the six-state scheme, which
requires two-way classical post-processing.) In this paper, we present significant improvements on both those lower
bounds.

2.3 EPP schemes for QKD

For our proof of security, it will be helpful to consider another class of scheme based on EPPs (which are described in
more detail in section 3). For these QKD schemes, which we will refer to asEPP schemesor EPP protocols,7 Alice
prepares a number of EPR pairs|Ψ+〉 = (|00〉 + |11〉)/

√
2. On the second qubit of each pair, Alice then performs a

random rotation chosen either from the setI, H or the setI, T , T 2. I is the identity operation,H is the Hadamard
transform, which swaps states in theX andZ bases, andT is a unitary operation which takes states in theX basis to
theY basis, states in theY basis to theZ basis, and states in theZ basis to theX basis.

We will refer to the first case (withI andH) as thetwo-basisEPP protocol, and the second case (withI, T , and
T 2) as thethree-basisEPP protocol. The two-basis scheme will produce a protocol related to BB84, while the three-
basis scheme produces a protocol related to the six-state scheme. We can also considerefficientschemes in which the
rotations are not performed with equal probabilities. These produce efficient BB84 and six-state schemes [25, 24],
which have a higher rate of key generation per qubit transmitted.

After performing the rotation, Alice sends the second qubitof each pair to Bob. When Bob acknowledges receiving
the transmission, Alice announces which rotation she performed for each pair. Bob reverses this rotation. Then Alice
and Bob agree on a random permutation of the EPR pairs, and select a subset (half of the pairs by default) to measure
(in theZ basis) to test for errors. They compare the results of the test, and abort if the error rate is too high. If not,
Alice and Bob perform an entanglement purification protocolto extract good entangled pairs. Then they measure
(again in theZ basis) the remaining pairs and use the result as their secretkey.

The security proofs we review in section 4 show that the security of BB84 and the six-state scheme can be reduced
to the security of the above EPP schemes using appropriate entanglement purification protocols. The protocols that lead
to traditional prepare-and-measure one-way post-processing schemes are EPPs using just one-way communications; in
this paper, we present two-way post-processing schemes that arise from EPPs with two-way classical communications.

3 Entanglement purification and quantum error correction

Suppose Alice and Bob are connected by a noisy quantum channel (and perhaps also a noiseless classical channel).
Entanglement purification provides a way of using the noisy quantum channel to simulate a noiseless one. More
concretely, suppose Alice createsN EPR pairs and sends half of each pair to Bob. If the quantum communication
channel between Alice and Bob is noisy (but stationary and memoryless), then Alice and Bob will shareN imperfect
EPR pairs, each in the stateρ. They may attempt to apply local operations (including preparation of ancillary qubits,
local unitary transformations, and measurements) and classical communications (LOCCs) to purify theN imperfect
EPR pairs into a smaller number,n, EPR pairs of high fidelity. This process is called an entanglement purification
protocol (EPP) and was first studied by Bennett, DiVincenzo,Smolin and Wootters (BDSW) [3].

One way to classify EPPs is in terms of what type of classical communications they require. Figure 1a shows the
structure of EPPs that can be implemented with only one-way classical communications from Alice to Bob, known as

6The result in [22] makes use of the non-trivial mutual information between the bit-flip and phase error syndromes, and of the degenerate codes
studied by DiVincenzo, Shor and Smolin [9].

7“EPP protocol” sounds redundant since the second “P” in “EPP” also stands for “protocol.” However, it is not really redundant, since the full
phrase is short for “quantum key distribution protocol based on an entanglement purification protocol.”
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Figure 1: a) A 1-EPP. Alice performs some unitary operationsand measurements, then makes a transmission to Bob,
who performs another unitary transformation, possibly based on Alice’s classical transmission. b) A 2-EPP. Alice
and Bob alternate local operations and classical transmissions. Each operation can depend on the contents of earlier
transmissions. The procedure can extend indefinitely.

one-way EPPs or 1-EPPs. Figure 1b shows the structure of EPPsrequiring two-way classical communications, known
as two-way EPPs or 2-EPPs.

Typically, a 1-EPP will consist of Alice measuring a series of commuting operators and sending the measurement
result to Bob. Bob will then measure the same operators on hisqubits. If there is no noise in the channel, Bob will
get the same results as Alice, but of course when noise is present, some of the results will differ. From the algebraic
structure of the list of operators measured, Bob can deduce the location and nature of the errors and correct them.
Unfortunately, the process of measuring EPR pairs will havedestroyed some of them, so the resulting state consists of
fewer EPR pairs than Alice sent.

As noted by BDSW, a 1-EPP is mathematically equivalent to a quantum error-correcting code (see [13, 28] for
background on QECCs). Instead of measuring a series of operators and transmitting the results, Alice instead encodes
Bob’s qubits into a particular predetermined eigenspace ofthe list of operators. Then when Bob receives the qubits,
he can measure the same list of operators, telling him the error syndrome for the QECC given by that subspace. For
instance, if the channel only produces bit flip errors, Alicecan encode Bob’s state using a random coset of a classical
linear code, and then Bob measures the parity checks for thatcode. He determines what error the channel introduced
by calculating how the coset has changed since Alice’s transmission.

Two-way EPPs can be potentially more complex, but frequently have a similar structure. Again, Alice and Bob
measure a set of identical operators. Then they compare their results, discard some EPR pairs, and together select a
new set of operators to measure. An essential feature of a two-way EPP is that the subsequent choice of measure-
ment operators may depend on the outcomes of previous measurements. This process continues for a while until the
remaining EPR pairs have a low enough error rate for a 1-EPP tosucceed. Then, a 1-EPP is applied.

Unfortunately, not all EPPs are suitable for making a prepare-and-measure QKD protocol. The next few definitions
are designed to set the stage for the detailed sufficient conditions in our main theorem. We will, for instance, primarily
be interested in a restricted class of EPPs which involve themeasurement of Pauli operators. The best studied EPPs
can all be described in the “stabilizer” formulation, whichemploys Pauli operators extensively. Other EPPs might still
be useful for QKD, but are less well studied.

Definition 1 A Pauli operatoracting onn qubits is a tensor product of individual qubit operators that are of the form

I (the identity),X =

(

0 1
1 0

)

, Y =

(

0 −i
i 0

)

, andZ =

(

1 0
0 −1

)

. An X-typeoperator is a tensor product of

just Is andXs, and aZ-typeoperator is a tensor product of justIs andZs.

Note that the states in section 2 described as being in theX , Y , or Z bases are in fact eigenstates of the operators
X , Y , andZ. A CSS code involves measuring justX-type andZ-type Pauli operators. Also, note that any pair of
X , Y , andZ anticommute with each other (so, for instance,XZ = −ZX). Finally, note that all Pauli operators have
only eigenvalues+1 and−1. Classical linear error-correcting codes can be understood as a measurement of a series
of justZ-type operators: the eigenvalue of aZ-type operator is the parity of bits on which the operator acts asZ. (For
instance, measuringZ ⊗ I ⊗ Z gives the parity of the first and third bits.)

When dealing extensively with Pauli operations, it is helpful to also look at a more general class of operators which
interact well with Pauli operations.
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Figure 2: Structure of a symmetric EPP. Alice and Bob measurethe same sequence of operators.r ands are the
parities of the outcomes of Alice’s and Bob’s measurements of M∅ andMr, respectively.

Definition 2 A unitary operation belongs to theClifford groupif it conjugates Pauli operators into other Pauli oper-
ators.

Thus, a Clifford group operation will map eigenstates of a Pauli operation into eigenstates of another Pauli op-
eration. For instance, CNOT andH are both Clifford group operations. (In fact, the Clifford group is generated by
CNOT,H , and the phase gate|0〉 → |0〉, |1〉 → i|1〉.)

Definition 3 We say an EPP (one-way or two-way) issymmetricif it can be described with a set of operators{Mµ},
plus unitary decoding operationsUµ ⊗ (PµUµ). Each operatorMµ describes a measurement that may be made at
some point in the protocol; the indexµ describes a history of outcomes of earlier measurements as astring of0s and
1s. On the historyµ, Alice performs the measurementMµ on her side, and Bob performs the measurementMµ on
his side. (They always perform the same sequence of measurements, thus the name “symmetric.”) They then update
the historyµ by appending the parity of their two measurement outcomes (0 for the same outcome,1 for opposite
outcomes). The protocol begins with each person measuring the operatorM∅. Each time the history is updated, Alice
and Bob measure the operator corresponding to the new value of µ, and again update the history according to the
result. When there is noMµ for the current history, Alice performs the operationUµ and Bob performs the operation
PµUµ, and the protocol terminates.

Figure 2 shows a symmetric EPP. See also section 3.1 and figure3 for another representation.
Note that if the historyν is an extension of the historyµ (i.e., it isµ with additional bits appended), the operators

Mµ, Mν should commute for the EPP to be realizeable using local operations and no additional resources. On the
other hand, for two different extensions,ν1 andν2, of the same historyµ, the corresponding operatorsMν1

andMν2

donotneed to commute. This is because Alice and Bob never need to measure both operators for the same state.
For a 2-EPP, the commutation requirement is the only constraint on theMs. For a 1-EPP, we also require that the

operatorsMµ depend only on the length ofµ (i.e., how many measurements have been made so far) and not the precise
history. This is because in a 1-EPP, Alice cannot learn Bob’smeasurement outcomes and therefore cannot know the
exact value of the historyµ.

The final operationUµ ⊗ PµUµ serves two purposes. First of all, the measurements have determined a good deal
of information about the state of the system, and we must disentangle that from the residual Bell states. Second, it acts
to correct, discard, or otherwise eliminate any errors identified by the measurements. For instance, if the EPP locates
pairs with errors, but does not identify what kind of errors are present, the final operationUµ would likely permute
the qubits to move the errors to a standard set of locations, which are then discarded. It is convenient to separate the
decoding operation into two parts:Uµ, which is performed by both people and represents decoding and discarding bad
EPR pairs, andPµ, performed just by Bob, which represents correcting EPR pairs which will be kept. In practice, it
is often easier to specify an EPP by including unitary operations in between measurements as well as at the end of the
protocol, but this is an equivalent definition, since the measurement operatorsMµ can instead be defined to take the
change of basis into account. Notice that in a 1-EPP,Uµ cannot depend onµ, whereasPµ invariably will — otherwise
there would be no way to correct any errors discovered in the course of the protocol.

Definition 4 A symmetric EPP is astabilizerEPP if all measurementsMµ are of eigenspaces of Pauli operations,
the decoding operationUµ is a Clifford group operation, and the correction operationPµ is a Pauli operation. For a
1-EPP, we again make the restriction thatUµ = U is independent ofµ. A stabilizer EPP isCSS-likeif all Mµs are
X-type orZ-type Pauli operations, andUµ involves only CNOTs.
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a)

M∅ = X ⊗ Z ⊗ Z ⊗ X ⊗ I

Mr = I ⊗ X ⊗ Z ⊗ Z ⊗ X

Mrs = X ⊗ I ⊗ X ⊗ Z ⊗ Z

Mrst = Z ⊗ X ⊗ I ⊗ X ⊗ Z

?

?

?

b)

M∅ = X ⊗ X ⊗ X ⊗ X

M0 = Z ⊗ Z ⊗ Z ⊗ Z M1 = X ⊗ X ⊗ I ⊗ I

stop M01 = Z ⊗ I ⊗ I ⊗ Z M1r = X ⊗ I ⊗ X ⊗ I

stop stop

��������)
0

PPPPPPPPq
1

������
0

HHHHHj
1

?

? ?

Figure 3: a) The tree diagram representation of a 1-EPP. The sequence of operators is fixed, so there is no branching.
The 1-EPP shown corresponds to the 5-qubit QECC. b) The tree diagram of a 2-EPP. Future operators may depend on
the outcome of a measurement, allowing a branched tree. Whenthe tree branches, edges are labelled by the outcome
of the previous measurement. When it does not branch, no label is needed. Note that the tree does not need to branch
uniformly, or even have uniform depth. The EPP in part b) is CSS-like; the EPP in part a) is not.

Stabilizer 1-EPPs can be thought of as another guise of stabilizer quantum error-correcting codes. The measure-
mentsMµ correspond to the generators of the code stabilizer.Uµ is the decoding operation, which for a stabilizer code
is always from the Clifford group, andPµ corrects the Pauli errors that have occurred. CSS-like 1-EPPs correspond to
the class of CSS codes; since they are based on classical linear codes, the decoding only needs CNOT gates.

The same intuition applies to the case of 2-EPPs. The condition that decoding only needs CNOT means intuitively
that the encodedZ operation is, in fact, also ofZ-type; that is, it can be written as a tensor product ofZ operators.
The final correction operationPµ is a Pauli operator because the error syndrome (disclosed inthe two-way classical
communication) should contain enough information to identify which Pauli error has occurred in the quantum channel.

The EPPs we will consider in this paper are all CSS-like EPPs.In fact, we will need to consider Alice and Bob
choosing a random EPP out of a family of similar EPPs, but thisdoes not produce any further intrinsic complications.
For simplicity, we may describe EPPs that involve Clifford group or Pauli group operations in the middle of the series
of measurements instead of the end, but this does not affect the definition at all; these EPPs can be rewritten to conform
to the above definition of stabilizer or CSS-like EPPs.

3.1 A Tree Diagram Representation

The series of operators measured in a stabilizer 1-EPP or 2-EPP can be represented using a tree diagram represen-
tation.8 Each vertex is labelled by an operatorMµ that could be measured during the EPP. Each edge is labelled
with one or more possible outcomes of the previous measurements. The edges are directed from the root of the tree
(labelled byM∅) towards the leaves (labelled withMµ for µ of maximal length), representing the time-ordering of the
measurements.

Given a tree diagram of the above form, we can read off the structure of the EPP. We start at the root of the tree,
which is labelled by measurementM∅. We note the outcome and follow the edge which is labelled by that outcome.
Then we perform the measurement which labels the new vertex,and follow the edge corresponding to the outcome
of that measurement. We repeat this process until we reach the bottom of the tree, at which point we perform the
appropriate unitary operationUµ ⊗ PµUµ. Each historyµ corresponds to a path through the tree.

For any 1-EPP, the sequence of measurements does not depend on the outcome of any measurement. Therefore,
a 1-EPP can be represented by a straight (directed) line (figure 3a). On the other hand, in a 2-EPP, the choice of
measurementMµ at any stepi can depend on the outcome of an earlier measurementMν . This corresponds to a
branch in the tree at stepi (see figure 3b).

8We thank David DiVincenzo and Debbie Leung for suggesting the tree diagram representation.
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4 The Shor and Preskill Security Proof

Next, we give the Shor and Preskill proof [33] of security of BB84. See also [15] for a more detailed version. Shor
and Preskill’s proof begins by following Lo and Chau’s proof[23] of the security of a scheme using EPPs, and then
shows that the security of BB84 follows from the security of the EPP scheme.

As noted before, in the EPP scheme, Alice createsN EPR pairs and sends half of each to Bob. Alice and Bob
then test the error rates in theX andZ bases on a randomly chosen subset ofm pairs. If the error rate is too high,
they abort; otherwise, they perform an EPPC on the remainingN − m pairs. Finally, they measure (in theZ basis)
each of then EPR pairs left afterC, producing a shared random key about which, they hope, Eve has essentially no
information.

4.1 Noisy Quantum Channels and Eavesdropping Strategies

All of the QKD protocols we consider will take place over a noisy quantum channel, even when there is no eavesdrop-
per present. We shall be primarily interested in a special class of quantum channels known as Pauli channels.

Definition 5 A quantum channelis any superoperator which acts on transmitted qubits. APauli channel(Pi, qi) ap-
plies the Pauli operationPi with probabilityqi (so we require

∑

qi = 1). Anuncorrelated Pauli channel(qX , qY , qZ)
applies a random Pauli operator independently on each qubitsent through the channel. It appliesX with probability
qX , Y with probabilityqY , Z with probabilityqZ , andI with probability1 − qX − qY − qZ .

From the perspective of Alice and Bob, noise in the channel could have been caused by an eavesdropper Eve.
We will need to consider two types of eavesdropping strategyby Eve. The first strategy, the joint attack, is the most
general attack allowed by quantum mechanics.

Definition 6 In a joint attackby Eve, Eve has a quantum computer. She takes all quantum signals sent by Alice and
performs an arbitrary unitary transformation involving those signals, adding any additional ancilla qubits she cares
to use. She keeps any part of the system she desires and transmits the remainder to Bob. She listens to the public
discussion (for error correction/detection and privacy amplification) between Alice and Bob before finally deciding on
the measurement operator on her part of the system.

The joint attack allows Eve to perform any quantum operationon the qubits transmitted by Alice. For the security
proof, we shall also consider a Pauli attack.

Definition 7 A Pauli attackby Eve is a joint attack where the final operation performed onthe transmitted qubits is a
general Pauli channel.

4.2 EPP protocols are secure

In this subsection, we will show that the EPP protocols described in section 2 are secure. The argument is essentially
that of [23]. First, what do we mean by “secure?”

Definition 8 A QKD protocol to generaten key bits iscorrectif, for any strategy used by Eve, either Alice and Bob
will abort with high probability or, with high probability,Alice and Bob will agree on a final keyk which is chosen
nearly uniformly at random. The protocol issecureif, for any strategy used by Eve, either Alice and Bob will abort
with high probability or Eve’s information about the key will be at mostexp(−s) for some security parameter,s. In
all cases, “with high probability” means with probability at least1 − exp(−r) for some security parameter,r. The
resources required for the implementation of a QKD scheme must be at most polynomial inr ands. For simplicity, in
what follows, we will consider the case wherer = s and call it simply the security parameter.

Naively, one might consider a security requirement of the form Ieve < δn, whereIeve is the eavesdropper’s mutual
information with the final key andn is the length of the final key. However, such a definition of security is too weak,
since it allows Eve to learn a few bits of a long message. For instance, the eavesdropper may know something about
the structure of the message that Alice is going to send to Bob. Imagine that the last few characters of the message
contain the password for launching a nuclear missile. In that case, Eve could compromise the security of the message
by concentrating her information on the last few bits.
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Another naive definition of security would be to require thatIeve < e−αn for any eavesdropping strategy. Unfor-
tunately, such a definition of security is too strong to be achievable. For instance, Eve can simply replace the signal
prepared by Alice by sending Bob some signals with specific polarizations prepared by herself. Such an eavesdropping
attack is highly unlikely to pass the verification test (by producing a small error rate). However, in the unlikely event
that it does pass the verification test, Eve will have perfectinformation on the key shared between Alice and Bob, thus
violating the security requirementIeve < e−αn.

In fact, even the definition we give is probably not strong enough for some purposes: Eve can retain aquantum
state at the end of the protocol, and the security definition should refer to that rather than bounding herclassical
information about the key. For instance, a better definitionis: for any eavesdropping strategy, either Eve will almost
surely be caught, or, for any two final values of the key, Eve’sresidual density matrices after the protocol concludes
will have high fidelity to each other. That is, Eve cannot reliably distinguish between any pair of values of the key. We
do not prove the stronger definition in this paper.

The question of defining security for quantum cryptography in a way that enables us to prove composibility of
protocols remains an important open problem. For this paper, however, we simply use definition 8.

Our method will be to relate the security of BB84 and the six-state scheme to the security of EPP schemes, and we
wish to say that when the EPP schemes are secure, so are the “prepare-and-measure” schemes.

Definition 9 Suppose QKD protocolβ is correct and secure, with a security parameterp. Then QKD protocolα
is said to have securitysimilar to protocolβ whenα is also correct and secure, and its security parameterq is
polynomially related top. Furthermore, protocolα should abort at a given bit error rate only if protocolβ also aborts
at that bit error rate.

To prove the security of EPP protocols, we first observe that we need only show Alice and Bob can generate states
close ton EPR pairs. This is a consequence of the following lemma (originally Note 28 of [23]):

Lemma 1 If ρ has a high fidelity1 − 2−l (for large l) to a state ofn perfect EPR pairs and Alice and Bob measure
along a common axis to generate ann-bit key fromρ, then Alice and Bob will most likely share the same key, which
is essentially random. Moreover, Eve’s mutual informationwith the final key is bounded by2−c + O(2−2l), where
c = l − log2[2n + l + (1/ loge 2)]. In other words, Eve’s information is exponentially small as a function ofl.

The proof is given in Appendix A. The next step is to restrict our attention to Pauli attacks.

Lemma 2 [23] Consider a stabilizer EPP protocol for QKD. Given any joint attackA by Eve, there is a Pauli attack
for which the final density matrixρAB of Alice and Bob has the same fidelity ton EPR pairs, and which gives the same
chance of having the QKD protocol abort.

We will only prove Lemma 2 for EPP protocols based on stabilizer EPPs, but the result holds for any EPP designed to
correct Pauli channels (see [15] for the general proof). Pauli channels play a special role in the above Lemma because
most known quantum error correcting codes (stabilizer codes, for instance) are designed to correct Pauli errors.

Proof:
First, note that for a symmetric EPP, it would suffice if Aliceand Bob had a way of measuringMµ ⊗ Mµ directly

instead of separately measuringMµ on Alice’s side and again on Bob’s side. This is because all decisions are based
on the parity of Alice’s and Bob’s results, which is equal to the eigenvalue ofMµ ⊗ Mµ. Also, note that the EPR pair
|Ψ+〉 = (|00〉+ |11〉)/

√
2 is a+1 eigenstate of the Pauli operatorsX ⊗ X andZ ⊗ Z. (It is actually a−1 eigenstate

of Y ⊗ Y .)
Thus, letWr be a Bell measurement for therth EPR pair — a measurement of bothX ⊗ X andZ ⊗ Z. For a

stabilizer EPP,Wr commuteswith Mµ ⊗ Mµ for all µ, r (note that eachMµ is likely to involve more than one EPR
pair). Thus, if Alice and Bob first measure all the operatorsMµ ⊗ Mµ and then measureWr for all r after the EPP is
concluded, the result is the same as if they first measureWr and thenMµ ⊗Mµ. Since they do not need the results of
the measurementsWr, it is again equivalent if Eve measuresWr instead of Alice and Bob.

That is, the following two situations are the same: a) Eve performs her attackA and then Alice and Bob measure
Mµ ⊗Mµ, and b) Eve performsA, measuresWr, and then Alice and Bob measureMµ ⊗Mµ. By the argument of the
previous paragraph, the attack in b) produces a density matrix with the same fidelity to n EPR pairs as the attack in a).
The attackA followed by measurement ofWr is a Pauli attack: The initial state is a Bell state (the tensor product of
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|Ψ+〉 for all pairs), and the final state is a mixture of tensor products of Bell states (the outcome of measuringWr for
each pairr). Each tensor product|Φj〉 of Bell states can be associated with the unique Pauli operation Pj that maps
|Ψ+〉⊗N to |Φj〉, so Eve’s attack is(Pj , qj), whereqj is the probability of getting the outcome|Φj〉. Therefore, the
lemma holds for a hypothetical protocol in which Alice and Bob measureMµ ⊗ Mµ directly.

Of course, Alice and Bob have no way of doing this, so instead they must measureMµ separately and compare
results (with one- or two-way communications, as appropriate). Since this gives them more information, it certainly
cannot help Eve. On the other hand, they don’t actually use that information — from the definition of a symmetric EPP,
only the relative measurement outcome between Alice and Bobmatters. Therefore, having Alice and Bob measure
Mµ ⊗ Mµ together produces the same fidelity and chance of aborting aswhen they measureMµ separately. QED

This Lemma is described in [23] as a “classicalization” or “quantum-to-classical reduction” because it reduces
Eve’s general quantum attack to a Pauli attack, which is classical in the sense that it can be described by classical
probability theory. Lemma 2 allows us to simplify our discussion to just Pauli channels(Pi, qi).

We can simplify further by taking into account the symmetry of the QKD protocol. Note that in the EPP protocols
we described, Alice and Bob permute their qubits randomly before doing any other operations. So we may as well
assumeqi = qj wheneverPi is a permutation ofPj . That is, the attack is symmetric on the EPR pairs. Similarly, in
the two-basis scheme, Alice performs randomly one of the twooperationsI, H , which produces a symmetry between
theX andZ bases, so we can also assumeqi = qj wheneverPi is related toPj by the Hadamard transform on any
number of qubits. In the three-basis scheme, we can assumeqi = qj whenPi andPj are related byT or T 2 on some
set of qubits.

Now, in the EPP protocols, Alice and Bob measure a random subset of m qubits to test the error rate. From this,
they are supposed to figure out what sort of Pauli channel the system has undergone. If the noise occurs independently
on each qubit, this is just a straightforward problem in statistical inference. Of course, an eavesdropper need not use
such a simple attack, but the symmetries of the protocol still allow Alice and Bob to make a good guess as to the true
channel. For one thing, Eve has no way to distinguish betweenthe test bits and the key bits, so the error rate measured
for the test bits should be representative of the error rate on the key bits. What’s more, Alice and Bob learn a good
deal about the basis-dependence of the channel as well.

Let us first consider the two-basis case more carefully. Suppose Alice and Bob find there arepImI errors among the
mI qubits for which Alice did the operationI; these representX andY Pauli errors introduced by Eve. Similarly, they
find pHmH errors in themH qubits for which Alice did the operationH ; these representY andZ errors introduced
by Eve. If this channel were an uncorrelated Pauli channel(q0

X , q0
Y , q0

Z), on average, we would expectpI = q0
X + q0

Y

andpH = q0
Y + q0

Z . In fact, if we consider the effective error rates after undoing the I, H operations, we find
qX = (q0

X + q0
Z)/2 andqZ = (q0

Z + q0
X)/2 becauseI andH are equally likely. That is,qX = qZ . The effectiveY

error rateqY = q0
Y .

Note that in the two-basis case, Alice and Bob are unable to deduce the most likely values ofqX , qY , andqZ ;
they can only learnpX = qY + qZ andpZ = qX + qY . Given the symmetry betweenI andH , they in fact have
pX = pZ = (pI + pH)/2, but our discussion will keeppX andpZ as separate parameters. This allows most of our
results to also apply to the efficient case [25, 24], whereI andH have different probabilities.

The fact that Alice and Bob cannot completely learn the characteristics of even an uncorrelated Pauli channel
suggests that it might be helpful to measure in more bases. This is the advantage of the six-state scheme, which is
related to the three-basis EPP protocol. In that case, Aliceand Bob measurepI , pT , pT 2 . For an uncorrelated Pauli
channel(q0

X , q0
Y , q0

Z), pI = q0
X + q0

Y , pT = q0
Y + q0

Z , andpT 2 = q0
X + q0

Z . Given the symmetry of the problem, after
undoing the rotations, we getqX = qY = qZ = (q0

X + q0
Y + q0

Z)/3 = (pI + pT + pT 2)/6. Again, our discussion will
allow qX , qY , andqZ to be different to accommodate the efficient six-state protocol.

Given the error test, Alice and Bob deduce some values eitherfor pX , pZ or for all three quantitiesqX , qY , qZ .
However, the error rate on the tested bits is onlycloseto the error rate on the data bits. Therefore, they should usean
EPP that is flexible enough to correct slightly more or less noisy Pauli channels than indicated by the test. In particular,
when they deduceqX , qY , andqZ , they should perform an EPP capable of correcting any Pauli channel(qt

X , qt
Y , qt

Z)
with |qt

i − qi| < ε for i = X, Y, Z and some smallε. Further, we should assume that, for anyε, the fidelity of the final
state ton EPR pairs is exponentially close to1 in N .

When Alice and Bob only learnpX andpZ , they should allow additional flexibility for the value ofqt
Y . That is,

their EPP should correct any Pauli channel(pt
Z − a, a, pt

X − a) (with all three parameters non-negative), again with
|pt

i − pi| < 2ε, for i = X, Z. Provided Alice and Bob use such an EPP, the next lemma says that the error test works
and allows them to correct any symmetric Pauli channel, not just an uncorrelated one.
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Lemma 3 Suppose theN EPR pairs experience a Pauli channel(Pi, qi) which is symmetric over theN pairs, and
that they use an EPP which corrects for any error rate close tothose shown by the test bits, as described above. Then
either they abort with high probability, or the final state has fidelity exponentially close to1 in N to the state ofn EPR
pairs.

Since we only need to consider Pauli channels, the proof is just an exercise in classical probability, and is given in
Appendix B.

From lemmas 2 and 3, we know that for the EPP protocols we consider, given any strategy for Eve, either she has a
large chance of getting caught, or the final state will have high fidelity ton EPR pairs. Combining that with lemma 1,
we have shown:

Theorem 4 The EPP protocols for QKD are secure and correct.

4.3 Prepare-and-Measure Protocols are Secure

Given theorem 4, Shor and Preskill [33] showed that one can prove the security of BB84. The same technique can
be applied to show the security of the six-state scheme [22].These two results can be combined into the following
theorem:

Theorem 5 ([33]) Given a QKD protocol based on a CSS-like 1-EPP, there exists a“prepare-and-measure” QKD
protocol with similar security. That is, for any strategy byEve to attack the “prepare-and-measure” protocol, there
exists a strategy to attack the EPP protocol with similar probability of causing the protocol to abort and similar
information gain to Eve if it does not abort. (Similar here means that the security parameters are polynomially
related.)

Proof:
The reduction to a “prepare-and-measure” protocol is done as a series of modifications to the EPP protocol to

produce equivalent protocols. The main insight is that theX-type measurements do not actually affect the final QKD
protocol, and therefore are not needed. TheX-type measurements give the error syndrome for phase (Z) errors, which
do not affect the value of the final key. Instead,Z errors represent information Eve has gained about the key. The
phase information thus must be delocalized, but need not actually be corrected. The upshot is that Alice and Bob need
not actually measure theX-type operators and can therefore manage without a quantum computer. Our initial goal is
to manipulate the EPP protocol to make this clear. TheX-type measurements do not, however, disappear completely:
instead they become privacy amplification.

For the first step, we modify the EPP to put it in a standard form. Because it is a CSS-like 1-EPP, there is
no branching in the tree diagram, and each operator being measured is eitherX-type orZ-type. The operators all
commute, and do not depend on the outcome of earlier measurements, so we can reorder them to put all of theZ-type
measurements before all of theX-type measurements. Let us recall Definition 4 for a CSS-like1-EPP. Now we have
an EPP consisting of a series ofZ-type measurements, followed by a series ofX-type measurements, followed by
CNOTs and Pauli operations (which we can represent asI, X , and/orZ on each qubit). Then Alice and Bob measure
all qubits in theZ basis.

As a second step, we can move allX Pauli operations to before theX-type measurements, since they commute
with each other. Moreover, if Alice and Bob are simply going to measure a qubit in theZ basis, there is no point in first
performing aZ phase-shift operation, since it will not affect at all the distribution of outcomes of the measurement.

We now have an EPP protocol consisting ofZ-type measurements, followed byX Pauli gates, followed byX-
type measurements, followed by a sequence of CNOT gates which does not depend on the measurement outcomes.
But nothing in the current version of the protocol depends onthe outcomes of theX-type measurements, so those
measurements are useless. We might as well drop them. Furthermore,X Pauli operations and CNOT gates are just
classical operations, so we might as well wait to do them until after theZ basis measurement, which converts the
qubits into classical bits.

What’s more, it is redundant to performZ-type measurements followed by measurement ofZ for each qubit. We
can deduce with complete accuracy the outcome of eachZ-type measurement from the outcomes of the measurements
on individual qubits. For instance, if a sequence of three bits is measured to have the value101, then we know that
measurement ofZ1 ⊗ Z2 ⊗ Z3 will give the result+1, as the parity of the three bits is even.
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Thus, we are left with the following protocol: Alice prepares a number of EPR pairs, and sends half of each to Bob.
She and Bob each perform the correction rotation (I or H for the two-basis scheme,I, T , or T 2 for the three-basis
scheme), then measure each qubit in theZ basis. They use some of the results to test the error rate, andon the rest
they perform some classical gates derived from the originalEPP.

In fact, since Alice can perform her rotation and measurement before sending any qubits to Bob, she need not
actually prepare entangled states. Instead, she simply generates a random number, which corresponds to the outcome of
herZ basis measurement, and sends Bob the state to which the EPR pair would have collapsed, given that measurement
result. That is, she sends him|0〉 or |1〉 rotated by the appropriate gate (I, H , T , or T 2). Bob inverts the rotation and
measures.

Then they perform classical gates. To understand which gates, it is helpful to look more closely at the original
EPP. When the EPP is based on a CSS code, theZ-type operators correspond to the parity checks of a classical
error-correcting codeC1, and theX-type operators correspond to the parity checks of another classical codeC2, with
C⊥

2 ⊆ C1. The quantum codewords of the CSS code are superpositions ofall classical codewords from the cosets of
C⊥

2 in C1. Measuring theZ-type operators therefore corresponds to determining the error syndrome forC1, whereas
measuring theX-type operators determines the error syndrome forC2. The usual 1-EPP protocol for correcting
errors is for Bob to compute the difference, in both bases, between Alice’s syndrome and his syndrome, and then to
perform a Pauli operation to give his state the same syndromes as Alice’s state. That is, Alice and Bob now each
have a superposition over the same coset ofC⊥

2 within the same coset ofC1 (or rather, they have an entangled state, a
superposition over all possible shared cosets for a given pair of syndromes). The decoding procedure then determines
whichcoset ofC⊥

2 they share and uses that as the final decoded state.
More concretely, we can describe the classical procedure asfollows: For the error correction stage, Alice computes

and announces the parity checks for the codeC1. Bob subtracts his error syndrome from Alice’s and flips bits(accord-
ing to the optimal error correction procedure) to produce a state with0 relative error syndrome; that is, he should now
have the same string as Alice. Then Alice and Bob perform privacy amplification: they compute the parity checks of
C⊥

2 (i.e., they multiply by thegeneratormatrix ofC2) and use those as their final secret key bits.
There is one final step to convert the protocol to a “prepare-and-measure” protocol. Instead of preparingN qubits

and sending them to Bob, Alice prepares2N(1+ε) (for BB84) or3N(1+ε) (for the six-state scheme). And instead of
waiting for Alice to announce which rotation she has performed (I, H , T , orT 2), Bob simply chooses one at random.
Instead of rotating and then measuring in theZ basis, Bob simply measures in theX , Y , or Z basis, depending on
which rotation he chose. Then Alice and Bob announce their bases, and discard those bits for which they measured
different bases. With high probability, there will be at leastN remaining bits. Alice and Bob perform the error test on
m of them, and do error correction and privacy amplification onthe remainingN −m. Since the discarded bits are just
meaningless noise, they do not affect the security of the resulting “prepare-and-measure”protocol. The only difference
is that security must now be measured in terms of the remaining bits rather than the original number of qubits sent.
When we begin with a two-basis scheme, we end up with BB84; when we begin with a three-basis scheme, we end up
with the six-state protocol. QED

5 Difficulty in generalization to two-way EPPs

An obvious attempt to generalize theorem 5 to two-way EPPs would be to simply use CSS-like (those withX-type and
Z-type measurement operators only) 2-EPPs instead of CSS-like 1-EPPs. Unfortunately, this approach fails; another
condition is needed.

For instance, consider the following two-way EPP, which we call EPP 1: Alice and Bob each measureZ ⊗ Z on
pairs of EPR pairs. This can be implemented as a bilateral XOR: Alice performs an XOR from the first pair to the
second, and Bob does the same. Then both Alice and Bob measuretheir qubit in the second pair and broadcast the
measurement result. If Alice’s and Bob’s measurement outcome disagree, they discard both pairs. On the other hand,
if Alice’s and Bob’s measurement outcome agree, then they keep the first pair for subsequent operations. Now, if there
is exactly one bit flip error between the two pairs, Alice and Bob will disagree; otherwise they agree. Note that at most
one EPR pair out of the original two would survive the measurement, but if Alice and Bob disagree, they discard both
pairs. They do this for a large number of pairs; the survivingEPR pairs have a lower bit flip error rate than the original
ones.

Unfortunately, the surviving pairs also have ahigherrate of phase errors, since phase errors propagate backwards
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Figure 4: Tree diagram for EPP 1

along a CNOT. Therefore, in the next round of the EPP, Alice and Bob measureX ⊗ X on pairs of EPR pairs. This
can be implemented by performing a Hadamard transform, followed by the bilateral XOR and measurement described
above. Alice and Bob should then perform another Hadamard toreturn the surviving EPR pair to its original basis.
This procedure can detect the presence of a single phase error in the two pairs. If Alice and Bob discard EPR pairs for
which their measurement results disagree, the surviving pairs will have a lower rate of phase errors than before.

The bit flip error rate has increased again. However, the net effect of the two rounds taken together has been to
decrease both theX andZ error rates (provided the error rates are not too high to begin with). Alice and Bob can
continue to repeat this procedure, measuringX ⊗ X alternately withZ ⊗ Z, and the error rates will continue to
improve. However, each round reduces the population of EPR pairs by at least half, so a better strategy is to switch to
a more efficient one-way EPP once the error rates have droppedto the point where one is viable. Provided the initial
error rate is not too large, this procedure eventually converges. The tree diagram for EPP 1 is given in figure 4.

The whole procedure only consists of measuring operators which are eitherX-type or Z-type, so the EPP is
CSS-like. Still, we cannot convert this EPP to a “prepare-and-measure” BB84 QKD scheme.

What goes wrong? As is clear from figure 4, the EPP described isvery definitely a two-way EPP, not a one-way
EPP. In order to know which measurement to perform for the second round of the protocol, both Alice and Bob must
know which EPR pairs survived the first round. Similarly, in the third round, they must know which EPR pairs survived
the second round, and so forth.

In a “prepare-and-measure” scheme, Alice and Bob make all their measurements in theZ basis, and ignore the
X-basis parity checks because phase errors have no direct effect on the final key. They can therefore easily deduce
the values of any operators which are the product of allZ ’s, but have no way of figuring out the measurement result
for a product of allX ’s. Since the second round consists of measuringX operators, Alice and Bob have no way of
determining which bits to keep for the third round of the protocol, and therefore cannot complete the third round of
the error correction/detection process. That is, they do not know along which branch in the tree diagram they should
proceed.

In a more intuitive language, the problem is that Alice and Bob do not have quantum computers in a prepare-and-
measure protocol. Therefore, they cannot compute the phaseerror syndrome, which corresponds to the eigenvalues of
theX-type operators. For this reason, they do not know which photons to throw away (conditional on the phase error
syndrome) and cannot complete the QKD process.

6 Two-Way QKD

Having understood the failure of EPP 1, we now present a generalization of theorem 5.

Theorem 6 (Main Theorem) Suppose a two-way EPP is CSS-like and also satisfies the following conditions:

1. The tree diagram only branches atZ-type operators, not atX-type operators.
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Figure 5: Tree diagram of a 2-EPP satisfying the conditions of theorem 6.

2. The final decoding operationsUµ can depend arbitrarily on the outcome of the measuredZ-type operators,
but cannot depend on the outcomes of the measuredX-type operators at all. The correction operationPµ can
depend on the outcome ofX-type operators, but only by factors ofZ.

Then the protocol can be converted to a “prepare-and-measure” QKD scheme with security similar to the EPP-based
QKD scheme.

To understand these conditions, recall that the outcomes ofX-type operators represent the phase error syndrome.
Taken together, the two conditions say that the outcomes ofX-type operators are used to perform phase error correction
(by the factors ofZ in the correction operatorPµ), but nothing else. For instance, no post-selection based on the phase
error syndrome is allowed. From there, the intuition is identical to that for the proof of the Shor-Preskill result
(theorem 5): Phase errors do not affect the value of the key, so there is no need for Alice and Bob to compute the
phase error syndrome at all. Therefore, Alice and Bob do not really need quantum computers and can execute a
“prepare-and-measure protocol” instead.

The tree diagram of a 2-EPP satisfying the conditions of thistheorem might look like the one depicted in figure 5.
The “prepare-and-measure” protocol produced by this theorem has the following form:

1. Alice sends Bob2N(1 + ε) qubits, randomly choosing|0〉 or |1〉 for each and putting each in either theX or Z
basis at random.

2. Bob chooses to measure each qubit in theX or Z basis at random.

3. Alice and Bob compare their measurement bases and discardthose qubits for which the bases disagree. They
keepN remaining qubits.

4. Alice and Bob usem of the qubits to estimate the error rate from the channel, getting valuespX andpZ .

5. They now perform a combination of classical two-way errordetection/correction and classical privacy amplifi-
cation based on the EPP. The outcomes ofZ ’s serve two different functions: “advantage distillation” and also
error correction. Indeed, Alice and Bob’s ability to choosewhich branch to follow (e.g., which EPR pairs to
keep or throw away) depending on theZ operators means that Alice and Bob can perform error detection. Not
necessarily all bit-flip errors are corrected. Since this ishighly analogous to the “advantage distillation” pro-
cedure in classical cryptography, we will use the same name to denote such a procedure. In addition, theZ
operators measured in the EPP can also act as classical parity checks performed for error correction. Finally, the
X operators measured become parities extracted for privacy amplification. If Mµ is anX-type operator, letvµ

be a vector which is1 for any coordinate whereMµ has anX , and is0 for any coordinate whereMµ acts as the
identity I. Consider the vector spaceV generated by thevµ’s for consecutiveX-type operators. Then extract
the parity for all vectorsu in the dual space,V ⊥, of V . These become the bits used in the next round of error
correction.
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7 Another Two-Way EPP

Before proving the main theorem, we give an example of a two-way EPP that satisfies the conditions of the theorem.
Like EPP 1, it will consist of alternating rounds of measurements designed to handle bit flip errors (“B steps”) and
phase errors (“P steps”).

B step: A B step is just the same as the first round of EPP 1: Randomly permute all the EPR pairs. Afterwards,
perform a bilateral XOR between pairs of EPR pairs, and measure one of the output pairs. This effectively measures
the operatorZ ⊗ Z for each of Alice and Bob, and detects the presence of a singlebit flip error. Again, if Alice and
Bob’s measurement outcomes disagree, they discard the remaining EPR pair.

Note that this is similar to a classical protocol by Maurer for advantage distillation [29].
The second round must deal with phase errors; however, we will not be able to discard EPR pairs based on the

result, since the conditions of the theorem bar us from altering our protocol based on the measurement results. Instead,
we take inspiration from the classical repetition code.

A simple way to correct a single bit flip error is to use the majority vote and encode the state|0〉 7→ |000〉, |1〉 7→
|111〉. Therefore,

α|0〉 + β|1〉 7→ α|000〉 + β|111〉. (1)

Suppose the system is now corrupted by some bit flip errors. A single bit flip error can be detected by performing a
majority vote. More precisely, one measuresZ1Z2 to see if the first bit agrees with the second bit and alsoZ1Z3 to
see if the first bit agrees with the third bit. These two measurements can be done coherently. The outcomes of the
measurements are collectively called the error syndrome and can be used to correct the state coherently.

The three-qubit bit flip error correction procedure can be turned into a three-qubit phase error correction procedure
by simply applying the Hadamard transform, and into an EPP, following BDSW [3].

P step: Randomly permute all the EPR pairs. Afterwards, group the EPR pairs into sets of three, and measureX1X2

andX1X3 on each set (for both Alice and Bob). This can be done (for instance) by performing a Hadamard transform,
two bilateral XORs, measurement of the last two EPR pairs, and a final Hadamard transform. If Alice and Bob disagree
on one measurement, Bob concludes the phase error was probably on one of the EPR pairs which was measured and
does nothing; if both measurements disagree for Alice and Bob, Bob assumes the phase error was on the surviving
EPR pair and corrects it by performing aZ operation.

When there is only a single phase error among the three EPR pairs, this procedure outputs a single EPR pair
with no phase error. However, when there are two or three phase errors, the final EPR pair always has a phase error.
Therefore, when the phase error rate is low enough, iteration of this procedure will improve it indefinitely, while for
higher phase error rates, the state will actually get worse.

The complete EPP protocol (EPP 2) consists of alternating B and P steps for a number of rounds, until the effective
error rate has decreased to the point where one-way EPPs can take over. Then we decide on an appropriate CSS
code and perform the corresponding one-way EPP. To get optimal performance, we should in fact useasymmetric
CSS codes, which correct a fractionf1 of bit-flips and a different fractionf2 of phase errors. Note that, whenever
1−H(f1)−H(f2) ≥ 0, asymptotically, an asymmetric CSS code exists that will correct those fractions of errors with
high fidelity. (A better bound might be obtained by considering the correlations between bit-flip and phase errors. See
[22] for details.) We can view the whole EPP protocol as a kindof two-way concatenated code.

EPP 2 satisfies the conditions of theorem 6: it is CSS-like, and measurements do not branch based on the outcome
of X-type measurements (which only occur during P steps and in the final CSS code). Furthermore, we only do Pauli
operations based on the outcome ofX-type measurements. Thus, we can apply theorem 6 to convert EPP 2 into the
following “prepare-and-measure” QKD scheme:

Protocol 2: repeated concatenation of BXOR with the three-qubit phase code

1. Alice sends Bob a sequence ofN single photons as in either BB84 or the six-state scheme.

2. Alice and Bob sacrificem of those pairs to perform the refined data analysis. They abort if the error rates are
too large.
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3. Alice and Bob randomly pair up their photons. Alice publicly announces the parity (XOR) of the bit values of
each pair of her photons, sayx2i−1 ⊕ x2i. Bob publicly announces the parity (XOR) of his corresponding pair
of photons, sayy2i−1 ⊕ y2i. If their parities agree, they keep one of the bits from the pair — i.e., Alice keeps
x2i−1 and Bob keepsy2i−1. If their parities disagree, they throw away the whole pair.(This step comes from a
B step.)

4. Alice and Bob randomly form trios of the remaining bits andcompute the parity of each trio. They now regard
those parities as their effective new bits. (This step comesfrom a P step.)

5. Steps 3) and 4) are repeated a prescribed number of times, say r, which depends on the error rate measured in
step 2.

6. Alice and Bob randomly permute their pairs. They then apply a modified Shor and Preskill error correc-
tion/privacy amplification procedure. That is, Alice randomly picks a codewordu in the codeC1 and broadcasts
u + w to Bob, wherew is her remaining bit string. Owing to the remaining noise in the channel, Bob’s current
bit string is insteadw+ e. He now addsu+w to his string to obtain a corrupted stringu+ e. He can apply error
correction for the codeC1 to recoveru. Here we use a modified Shor and Preskill procedure that is based on
an asymmetric CSS code that corrects up to a fraction,f1, of bit-flip errors and a different fraction,f2, of phase
errors.

7. Alice and Bob perform the coset extraction procedure to obtain the cosetu + C2, which gives their final key.

In order to determine if the resulting QKD protocol is secureor not at a given error rate, we need only study the
behavior of EPP 2. Furthermore, by lemmas 2 and 3 and the intervening discussion, we need only study the behavior
of EPP 2 for uncorrelated Pauli channels with nice symmetry properties.

For the six-state scheme, this is completely straightforward: we just plug in the upper bounds on the error rates
(qX , qY , qZ) and see if EPP 2 converges. This upper bound on the error ratesgives the worst case behavior. For the
usual six-state scheme, we may even assumeqX = qY = qZ = q. We can test for convergence with a simple computer
program; we follow the error rates through B and P steps untilthey are small enough so that CSS coding is effective.
If the program indicates convergence forq, the EPP definitely converges, and we have proved the six-state protocol is
secure at bit error rateq. In this way, we have shown the six-state scheme remains secure to an error rate of at least
23.6%. If the program does not converge, that does not necessarilyimply that the six-state scheme is insecure using
this post-processing method; it simply means it did not converge within the regime where our program is numerically
reliable.

A study of BB84 is slightly more difficult. Alice and Bob do notknow (qX , qY , qZ), only pX = qY + qZ and
pZ = qX + qY . There is one free parameterqY = a; then, for BB84,qX = qZ = p − a, wherep = pX = pZ is the
bit error rate. To show that BB84 is secure using this post-processing scheme, we must show that EPP 2 converges for
all values ofa ∈ [0, p]. However, this is not immediately compatible with a numerical approach, since we would have
to check infinitely many values ofa. Instead, we first show analytically thata = 0 (noY errors) gives the worst case;
the proof is in appendix C. Then we need only check in our program that EPP 2 converges for the uncorrelated Pauli
channel(p, 0, p). Our program then indicates that BB84 is secure to an error rate of at least17.9%.

It turns out, however, that alternating B and P steps is not optimal. EPPs based on other arrangements of these two
steps can converge at higher error rates. For instance, for the three-basis protocol, we have discovered that a sequence
of five B steps, followed by asymmetric CSS coding, convergesto an error rate of at least26.4%, and that therefore
the six-state scheme remains secure to at least this bit error rate. Similarly, settinga = 0 in the two-basis protocol, a
sequence of five B steps, followed by six P steps, followed by asymmetric CSS coding converges up to an error rate
of at least18.9%. Sincea = 0 is again the worst case, this shows that BB84 can be secure to at least this bit error rate.

We remark that, in the above discussion, we have assumed thatAlice and Bob simply throw away the error syn-
drome of each round immediately after its completion. Such an assumption greatly simplifies our analysis. However,
in principle, Alice and Bob can employ an improved decoding scheme where they keep track of all the error syndromes
and use them to improve the decoding in future rounds of the algorithm. It would be interesting to investigate in the
future how much the tolerable error rates can be increased bysuch an improved decoding scheme. Of course, other
improvements might be possible as well, including different kinds of B and P steps. The threshold error rate (i.e.,
the maximal bit error rate that can be tolerated) of a prepare-and-measure QKD scheme remains an important open
question.
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Figure 6: Two equivalent ways to measure the operatorsX1X2 andX1X3.

8 Proof of the Main Theorem

To prove theorem 6, we begin with a QKD protocol using the two-way EPP directly. The security of this protocol
follows immediately from theorem 4. As in the proof of theorem 5, we then rearrange the protocol into a standard
form in which it is clear that theX-type measurements are unnecesarry. From there, it is an easy step to a prepare-
and-measure protocol.

1. Alice preparesN EPR pairs. She performs a Hadamard transform on the second qubit for half of them, chosen
at random.

2. Alice sends the second qubit from each EPR pair to Bob. Bob acknowledges receiving them, and then Alice
tells him which ones have the Hadamard transform. Bob reverses all Hadamard transforms.

3. Alice and Bob selectm EPR pairs to test the error rate in the channel.

4. Alice and Bob perform the two-way EPP on the remainingN −m EPR pairs. They now have a number of EPR
pairs of very good fidelity.

5. Alice and Bob measure each remaining EPR pair in theZ basis to produce a secure shared key.

The above protocol assumes a two-basis QKD scheme. For a three-basis scheme, Alice and Bob apply one of the
three operationsI, T , T 2 instead ofI or H .

To reduce the above EPP protocol to a prepare-and-measure one, we would like to eliminate the phase error correc-
tion steps in the EPP protocol. For a CSS-like EPP, phase error correction comes completely from the measurement of
X-type operatorsMµ. We can perform such a measurement as a Hadamard transform, followed by a series of CNOTs
with the same target qubit. Then we measure the target qubit,and Hadamard transform the others back to the original
basis (see, for instance, the left network in fig. 6). This procedure computes the parity of all the control qubits and the
target qubit in theX basis, and gives the eigenvalue ofMµ. (Of course, in the context of an EPP, each of Alice and
Bob perform this procedure, and compare results.)

However, this series of gates — Hadamard, CNOT, Hadamard — isequivalent to a single CNOT gate with control
and target reversed. This means, for example, that the two circuits depicted in fig. 6 are mathematically equivalent.
Note that the right hand side depicts an essentiallyclassicalcircuit composed of CNOTs (with a couple of X-basis
measurements at the end). Instead of working with a quantum circuit for phase error correction, as depicted by the left
hand side of the figure, one can work with the essentially classical circuit in the right hand side.

The same principle holds in general.X-basis measurements can be written as effectively classical circuits consist-
ing of a series of CNOTs (with the same control qubit but different target qubits), followed by a Hadamard transform
and measurement on the control qubit. The qubits which survive the procedure have only experienced the CNOT
gates. So it will be easy to convert this circuit to a truly classical one.

Note that each target qubit gets replaced by its XOR with the control qubit; in other words, by a parity which
is orthogonal to the vectorvµ derived fromMµ by replacingX ’s with 1’s. For instance, in our sample EPP 2, we
measure twoX operators in a row for a set of three qubits,X1X2 andX1X3. The effect of these measurements in the
Z basis is to map|a, b, c〉 7→ |a + b, b, c〉 7→ |a + b + c, b, c〉. That is, the first qubit gets replaced by the parity of all
three qubits. We could also see this by noting that the only nontrivial vector which is orthogonal to both(1, 1, 0) and
(1, 0, 1) is (1, 1, 1).
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However, for EPPs satisfying the conditions of theorem 6, nochoice ofMν later in the protocol depends on the
outcome of theX-type measurementMµ. Therefore, we can delay making the actual measurement until the end of
the protocol, after we have measured allZ operators. The EPP may call for correcting phase errors immediately by
performingZ rotations based on the measurement results, but we can delaythose as well using the identities

CNOT(Z ⊗ I) = (Z ⊗ I)CNOT (2)

CNOT(I ⊗ Z) = (Z ⊗ Z)CNOT. (3)

That is, we can move aZ rotation from before a CNOT to after it, possibly at the priceof having to do two of them
instead. Ultimately, we end up with a circuit consisting only of Z-basis measurements and quantum CNOT gates
(whose position may depend on the outcome of aZ measurement), followed byX-basis measurements and phase
shifts. This is an equivalent EPP to the one we began with.

In the QKD protocol, after performing the EPP, Alice and Bob measure each surviving EPR pair in theZ basis to
produce a key. But phase shifts are irrelevant if we are immediately going to measure in theZ basis, so Alice and Bob
need not actually perform them or theX-basis measurements controlling them.

Alice and Bob now have a completely classical circuit, followed by measuring all the qubits in theZ basis. They
get the same result if they instead measure all the qubits first, andthenperform the classical circuit. The circuit they
have is exactly the error correction and privacy amplification protocol described in sec. 6 as coming from the EPP.
Note that any communication from Bob to Alice occurs during the classical circuitafter the initial measurement.

To complete the transformation to a “prepare-and-measure”protocol, we follow a few additional steps from Shor
and Preskill. Instead of preparing a number of EPR pairs and measuring them, Alice can just generate a random bit
string, and send Bob the state he would have gotten if she madethe EPR pairs and got that measurement result. That
is, she sends Bob a series of0s and1s chosen at random, and puts half of them in theX basis (when in the EPP
protocol she would perform a Hadamard transform in step 1), and puts half of them in theZ basis (when there would
be no Hadamard in the EPP protocol). Bob receives them, waitsfor Alice to tell him the basis, and then measures in
that basis.

Of course, we can wait to decide on the EPP until after Bob receives his states, so it is equally good if Bob guesses
a basis for each qubit and measures immediately. Then when Alice tells Bob which basis she used, they discard any
bits where the bases disagree. This gives the final “prepare-and-measure” protocol.

To prove the security of a six-state protocol, one uses threebasesX , Y , andZ in the appropriate place instead of
just theX andZ bases. Otherwise, the proof is identical.

9 Concluding Remarks

We have proven the unconditional security of standard quantum key distribution schemes including BB84 and the six-
state scheme. Our proof allows Alice and Bob to employ two-way classical communications. Compared to previous
schemes, it has the advantage of tolerating substantially higher bit error rates. Indeed, we have shown that the BB84
scheme can be secure even at a bit error rate of 18.9% and the six-state scheme at 26.4%. By tolerating such high bit
error rates, our result may extend the distance of QKD and increase the key generation rate. Our result is conceptually
interesting because it may spur progress in the study of two-way entanglement purification protocols (EPPs). We
have introduced a new subclass of two-way entanglement purification protocols (EPPs) and demonstrated that such a
subclass of protocols can be reduced to standard BB84 and thesix-state scheme. Our results demonstrate clearly that
two-way classical communications can be used to enhance thesecrecy capacity of a QKD scheme and also show the
six-state scheme can intrinsically tolerate a higher bit error rate than BB84.

Our versions of the BB84 and six-state QKD schemes require two-way classical communications between Alice
and Bob in the post-processing step of classical data (i.e.,in the error correction and privacy amplification stage). This
is not a bad thing in itself becauseany protocol of BB84 (or six-state) requires two-way classicalcommunications
anyway. Indeed, in the basis comparision step, Alice and Bobpublicly announce their bases and throw away the
polarization data that are transmitted and received in different bases. In order for both Alice and Bob to know which
polarization data to keep, it is necessary to employ two-wayclassical communications. Of course, the “one-way”
classical post-processing schemes require fewer rounds ofcommunication (and therefore less time) to complete, so
there appears to be a tradeoff between round-complexity of the protocol and tolerable error rate.
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Relating to earlier work on QKD, we remark that we have provided the first examples of unconditionally secure
schemes for advantage distillation[29, 30, 31] in QKD. Finally, two-way entanglement purification techniques may
provide a simple way to understand other security proofs. For instance, in Appendix D, we provide a simple derivation
of Inamori’s security proofs [18, 19]. For future work, it would be interesting to take into account the effects of
imperfections including faulty photon sources, lossy channels, and photon dark counts[20].
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A Proof of Lemma 1

The statements that Alice and Bob will most likely share the same key and that the key is essentially random are clear.
We will focus on proving the bound on Eve’s information. The proof of this crucial part of Lemma 1 follows from the
following two claims, which originally appeared in supplementary Note II of [23].

Claim 7 (High Fidelity implies low entropy) If 〈n singlets|ρ|n singlets〉 > 1− δ, whereδ � 1, then von Neumann
entropyS(ρ) < −(1 − δ) log2(1 − δ) − δ log2

δ
(22R−1)

.

Proof: If 〈n singlets|ρ|n singlets〉 > 1 − δ, then the largest eigenvalues of the density matrix must be larger than
1 − δ. The entropy ofρ is, therefore, bounded above by that ofρ0 = diag(1 − δ, δ

(22R−1) ,
δ

(22R−1) , · · · , δ
(22R−1) ).

That is,ρ0 is diagonal with a large entry1 − δ and with the remaining probabilityδ equally distributed between the
remaining22R − 1 possibilities. QED

Claim 8 (Entropy is a bound to mutual information) Given any pure stateφCD of a system consisting of two sub-
systemsC andD, and any generalized measurementsX andY onC andD respectively, the entropy of each subsystem
S(ρC) (whereρC = TrD|φCD〉〈φCD|) is an upper bound to the amount of mutual information between X andY .

Proof: This is a corollary to Holevo’s theorem [17]. QED

B Proof of Lemma 3

We wish to show that, given any (not necessarily uncorrelated) Pauli channel, our procedure of testing the error rate
and then choosing an appropriate code actually does correctthe errors with high probability. The idea is that, because
of the random permutation, the EPP treats symmetrically allerrors with a given breakdown intoX , Y , andZ errors
(the “type” ofPj). The type of the true error will be close to the estimated type. We then show that the EPP performs
well for the likely types of error.

Since the channel is symmetric over allN pairs, the pairs chosen for error testing are a representative sample, and
the number of errors of any given kind in the sample will be close to the number of errors of the same kind in the
remaining pairs. What we mean by the “same kind” bears a little explanation. As discussed before the statement of
Lemma 3, we only directly measure the presence of two out of the three types of error, depending on which operation
(I, H , T , or T 2) we perform. For instance, whenI is performed, we measure the presence of onlyX or Y errors.
However, since Eve has no knowledge of which operation is used for any particular qubit, the sample of test bits with
a particular operation gives a good estimate of the number ofthe appropriate pair of errors in the remaining qubits of
the sample. For instance, the fraction of errors amongI test qubits gives us a good estimate of the number of qubits
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with eitherX or Y errors in them. Then the deduced rates ofX , Y , andZ errors (as discussed before Lemma 3) give
a good estimate of the actual error rates in the untested pairs.

For any particular instance of the protocol, the channel performs a particularN -qubit Pauli operationPj (with
probabilityqj). For any particularj, let qd

i be the deduced fraction of errors of typei (i = X, Y, Z) in the sample and
let qu

i be the actual fraction of errors of typei in the untested pairs (“d” for “deduced” and “u” for “untested”). Then
for largeN , with high probability,

|qd
i − qu

i | < ε. (4)

(That is, the deduced error rate is close to the true error rate.) Naturally,qd
i andqu

i will depend onj, but we suppress
this dependence to simplify the notation.

Let us now restrict attention to one particular set of valuesfor qd
i andqu

i (which need not be equal, but which
satisfy condition (4)). If theqd

i are large, Alice and Bob will abort the protocol. Otherwise,we wish to show that the
EPP used by Alice and Bob will correct most errors with these parameters.

To see this, we note that the EPP will correct the uncorrelated Pauli channel(qu
X , qu

Y , qu
Z) onN−m EPR pairs with

high fidelity F . Suppose the EPP gives fidelityFj whenever theN -qubit Pauli operationPj occurs (for a stabilizer
EPP,Fj will be either0 or 1). Then

F =
∑

j

pjFj , (5)

wherepj is the probability of the Pauli operationPj for the uncorrelatedPauli channel (not the true channel). We
can break the sum overj into two parts. The first part will consist of the setS of j for which Pj contains exactly
nX = qu

X(N − m) X errors,nY = qu
Y (N − m) Y errors, andnZ = qu

Z(N − m) Z errors (theni are integers by the
definition ofqu

i ). The second part consists of all otherj. Now, letp be the probability of any particular error inS, so
∑

j /∈S

pjFj ≤
∑

j /∈S

pj = 1 −
∑

j∈S

p, (6)

so

F =
∑

j∈S

pjFj +
∑

j /∈S

pjFj (7)

≤ p
∑

j∈S

Fj + 1 − p|S| (8)

= 1 − p|S|(1 −
∑

j∈S

Fj/|S|). (9)

But
p = (qu

X)nX (qu
Y )nY (qu

Z)nZ (qu
I )nI , (10)

wherequ
I = 1 − (qu

X + qu
Y + qu

Z) is the probability of identity operations, andnI = qu
I (N − m) is the actual number

of identity operations.S contains(N − m)!/(nX !nY !nZ !nI !) elements, so using Stirling’s approximation, we find

p|S| ≈ (
2π

N − m
)3/2 1

√

qu
Xqu

Y qu
Zqu

I

. (11)

This is only polynomially small inN − m. In order forF to be exponentially close to1 in equation (9), we therefore
require that

∑

j∈S Fj be [1 − exp(−O(N))] |S|.
Now we can approximate the fidelity of the EPP for the general Pauli channel(Pi, qi). We again writeF =

∑

qiFi

(with the sameFis, which only depend on the EPP, not the channel), and recall thatqi = qj = qnX ,nY ,nZ
wheneveri

andj have the same numbers(nX , nY , nZ) of X , Y , andZ errors. That means we can write

F =
∑

nX ,nY ,nZ

qnX ,nY ,nZ

∑

i∈SnX,nY ,nZ

Fi. (12)

But, except with exponentially small probability, the valuesnX , nY , nZ are within the allowedε-sized window for
the EPP, which we have shown means that

∑

i∈S Fi = [1 − exp(−O(N))]|S|. Thus,

F =
∑

nX ,nY ,nZ

qnX ,nY ,nZ
|S|[1 − exp(−O(N))] − exp(−O(N)). (13)
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Since
∑

nX ,nY ,nZ

qnX ,nY ,nZ
|S| = 1, (14)

it follows that the fidelity for the general Pauli channel is exponentially close to1. QED

C Proof that a = 0 is the worst case

In this section, we will show that it is sufficient to check thea = 0 case (with noY errors) when determining
convergence of the 2-EPPs we study for the BB84 protocol.

Theorem 9 Suppose an EPP starts with a B step, followed by any series of Band/or P steps, followed by asymmetric
CSS coding. Suppose0 ≤ p < 1/4. If the EPP converges for the uncorrelated Pauli channel(p, 0, p), then it will also
converge for all uncorrelated Pauli channels(p − a, a, p− a), with 0 ≤ a ≤ p.

The initial conditionp < 1/4 simply ensures that (for any value ofa) the state is more likely to be correct than
incorrect, and will be satisfied easily by all parameter setswe consider. In fact, whenp ≥ 1/4, an intercept-resend
attack defeats BB84 (see section 2).
Proof:

To do this, we will need to look at the behavior of the three error rates as we perform steps of the protocol. After
each B or P step, there is a new set of effective error rates on the pairs surviving the round.

It is worth noting two things about protocols of the given form: First, if the initial density matrix comes from a
Pauli channel, then the effective channel after any number of rounds will also be a Pauli channel. This is because all
operations are from the Clifford group, which preserves thePauli group. Second, if the initial channel causes errors
which are uncorrelated between EPR pairs, this property will also be preserved after an arbitrary number of B and P
rounds. This is because both B and P rounds keep at most one of the pairs which interact, so there is no opportunity to
create correlations between pairs which survive to the nextround. Therefore, we can completely describe the effective
error rates at any given point in the protocol by a triplet(qX , qY , qZ).

Suppose we start with error rates(qX , qY , qZ) and perform a B step. Given any of the 16 possible configurations
of errors, we can deduce whether the remaining pair is discarded, and if not, whether it has an error, and what kind of
error it is. The new error rates on the surviving pairs are then (q′X , q′Y , q′Z):

q′X = (q2
X + q2

Y )/pS , (15)

q′Y = 2qXqY /pS, (16)

q′Z = 2(1 − qX − qY − qZ)qZ/pS , (17)

pS = 1 − 2(qX + qY )(1 − qX − qY ), (18)

wherepS is the probability that a pair will survive the check.
If we have error rates(qX , qY , qZ) and perform a P step, we get new error rates(q′X , q′Y , q′Z):

q′X = 3q2
I (qX + qY ) + 6qIqXqZ + 3q2

XqY + q3
X , (19)

q′Y = 6qIqY qZ + 3qX(q2
Y + q2

Z) + 3qY q2
Z + q3

Y , (20)

q′Z = 3qI(q
2
Y + q2

Z) + 6qXqY qZ + 3q2
Y qZ + q3

Z , (21)

qI = 1 − qX − qY − qZ , (22)

whereqI is the initial probability of no error.
To prove the theorem, we change variables. Instead of working with (qX , qY , qZ), we will work with (pZ , pX , ∆):

pZ = qX + qY (23)

pX = qY + qZ (24)

∆ = qZ − qY = pX − 2a. (25)

As a increases,pX andpZ stay the same, while∆ decreases. We will show that the protocol behaves worse for larger
∆, so the worst case isa = 0.
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In the new variables, a B step maps the error rates from(pZ , pX , ∆) to (p′Z , p′X , ∆′):

p′Z = p2
Z/pS , (26)

p′X =
[

pX − p2
X + ∆(1 − 2pZ − ∆)

]

/pS (27)

∆′ = [pX(1 − 2pZ) + ∆(1 − 2pX)] /pS (28)

pS = 1 − 2pZ + 2p2
Z . (29)

SincepX , pZ < 1/2 always in the regime of interest,∆′ is increasing in∆, andp′Z never depends on∆ at all.
Provided1 − 2pZ − 2∆ > 0, p′X also increases with∆. When this is true,∆′ andp′X also both increase withpX .

A P step takes the error rates from(pZ , pX , ∆) to (p′Z , p′X , ∆′) with the following relations:

p′Z = 3pZ(1 − pZ)2 + p3
Z , (30)

p′X = 3p2
X(1 − pX) + p3

X , (31)

∆′ = 3∆2(1 − 2pZ − ∆) + ∆3. (32)

This time,p′X andp′Z only depend onpX andpZ , respectively, never on∆. p′X increases withpX . ∆′ only depends
on∆ andpZ , and increases with∆ if two conditions —1− 2pZ −∆ > 0 and∆ ≥ 0 — are simultaneously satisfied.

Claim 10 The following inequalities hold:

1. At all points after the initial B step,∆ ≥ 0.

2. 1 − 2pZ − 2∆ > 0 always.

Note that whenpX + pZ < 1/2, so that at least half the time there is no error, it follows that1 − 2pZ − 2∆ > 0,
since∆ < pX . However, it is not clear if the conditionpX + pZ < 1/2 is preserved under the B and P steps.

From this claim, the theorem will follow: consider running the protocol starting with error rates(pZ , pX , ∆) =
(p, p, p) or (p, p, ∆0), with ∆0 < p. Since the value ofpZ at any given time only depends on the previous value ofpZ ,
pZ will always be equal in these two cases. At any time,pX for the first case will be greater than or equal topX for the
second case, and∆ for the first case will be greater than or equal to∆ for the second case. This is true by induction:
it is true initially, and at all steps,p′X and∆′ increase withpX and∆ from the previous step. Thus, the worst case is
when∆ = p, which meansa = 0.

Proof: (of claim)
Immediately after the initial B step,∆′ ≥ 0, because in this step,pX = pZ = p by the symmetry of BB84, and

∆ ≥ −p. After subsequent B steps,∆′ ≥ 0 if ∆ ≥ 0, since1 − 2pX and1 − 2pZ are always positive.
After a P step,∆′ ≥ 0 if 3(1−2pZ −2/3∆) ≥ 0. This will immediately follow if we can show1−2pZ −2∆ > 0,

since before a P step,∆ ≥ 0 always. Then by induction, we will have shown∆ ≥ 0 at all points after the initial B
step.

Now, after a B step,

1 − 2p′Z − 2∆′ =
[

1 − 2p2
Z − 2pX(1 − 2pZ) − 2∆(1 − 2pX)

]

/pS (33)

= [2pZ(1 − pZ) + (1 − 2pZ − 2∆)(1 − 2pX)] /pS . (34)

The first term is always positive, so the sum is clearly positive as well when1 − 2pZ − 2∆ > 0.
After a P step,

1 − 2p′Z = (1 − 2pZ)3, (35)

so

1 − 2p′Z − 2∆′ = (1 − 2pZ)3 − 6∆2(1 − 2pZ) + 4∆3 (36)

= (1 − 2pZ − 2∆)
[

(1 − 2pZ)2 + 2∆(1 − 2pZ − ∆)
]

. (37)

Again, this is positive when1 − 2pZ − 2∆ > 0 and∆ ≥ 0. This proves the claim and the theorem.
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D Inamori’s Security Proofs

In this Appendix, we provide a simple derivation of Inamori’s proofs of BB84 and the six-state scheme and discuss
why our protocols can tolerate a higher rate than his.

Inamori’s protocols require two-way communications. His protocol can be re-phrased as follows:

1. Alice and Bob are assumed to share initially a random string and the goal of QKD is to extend this string. Alice
and Bob also choose a classical error correcting codeC1.

2. Alice sends Bob a sequence of single photons as in either BB84 or the six-state scheme.

3. They throw away all polarization data that are prepared indifferent bases and keep only the ones that are prepared
in the same bases.

4. They randomly selectm of those pairs and perform a refined data analysis to find out the error rate of the various
bases.

5. Alice measures the remainingN − m = s particles to generate a random string,v. Sincev is a random string,
it generally has non-trivial error syndrome when regarded as a corrupted state of the codeword ofC1. Alice
transmits that error syndrome in an encrypted form to Bob. This is done by using a one-time pad encryption
with (part of) the common string they initially share as the key.

6. Bob corrects his error to recover the stringv.

7. Alice and Bob discard all the bits where they disagree and keep only the ones where they agree.

8. Alice and Bob now perform privacy amplification on the remaining string to generate a secure string.

We remark that Inamori’s protocol is, in fact, a simple errorcorrection scheme and satisfies the conditions of
Thm. 6. Therefore, it is convenient to study it using the language of two-way EPPs introduced in the current extended
abstract.

D.1 BB84 with Inamori’s protocol

Let us now consider the efficiency of BB84 based on Inamori’s protocol. Suppose the error rate of each basis is found
to bep in step 4. Now, in step 5 above, Alice and Bob have to sacrifice apre-shared secret key whose length must be
at least the size of the error syndrome of ans-bit string. In other words, the length of the pre-shared secret key used
up by Alice and Bob is at least

lsac = sh(p) (38)

bits whereh(x) = −x log2 x − (1 − x) log2(1 − x).
What is the length of the key they generate from the process? Recall that in Step 7, Alice and Bob discard all the

bits where they disagree and keep only the ones where they agree. The length of their reconciled key is, therefore,
given by the number of bits where Alice and Bob agree. In otherwords, Alice and Bob generate a reconciled key of
the length

r = s(1 − p). (39)

Since Eve may have some partial information on the reconciled key, Alice and Bob have to sacrifice some of the
reconciled key for privacy amplification. Let us consider privacy amplification. For BB84, the worst case density
matrix is again of the form

diag(1 − 2p, p, p, 0) (40)

in the Bell-basis using the convention in [3].
In step 7, Alice and Bob post-select only the bits where they agree. With such post-selection, the (unnormalized)

conditional density matrix becomes:
diag(1 − 2p, 0, p, 0). (41)

In other words, the phase error rate is:
p

(1 − 2p + p)
=

p

1 − p
. (42)

24



Therefore, Alice and Bob must sacrifice a further fraction

fBB84 = h

(

p

1 − p

)

(43)

of their reconciled key for privacy amplification.
In summary, the length of the reconciled key isr = s(1 − p), as given by Eq. (39). Of which, a fractionh( p

1−p )
has to be consumed for privacy amplification. Therefore, thefinal key generated by Alice and Bob is of length
[1 − h( p

1−p )]s(1 − p). In addition, from Eq. (38), a length oflsac = sh(p) of a pre-shared secret key has to be
consumed. Therefore, thenetkey generation rate is given by:

[

1 − h

(

p

1 − p

)]

s(1 − p) − sh(p) = s(1 − p)

[

1 − h

(

p

1 − p

)

− h(p)

1 − p

]

. (44)

From Eq. (44), one can conclude that in Inamori’s protocol, the net key generation rate is positive provided that:

1 − h

(

p

1 − p

)

− h(p)

1 − p
> 0, (45)

which is exactly what appears just before Section 5 of [18].
Note that, for BB84, the maximal tolerable error rate of Inamori’s scheme is actually worse than in Shor-Preskill.

D.2 Six-state scheme with Inamori’s protocol

Let us now consider the six-state scheme. Suppose that in Step 4, the error rate is found to bep. In Step 5, the length
of the pre-shared key sacrificed by Alice and Bob is the same asin BB84 and is given by Eq. (38). Also, the length of
the reconciled key is the same as in BB84 and is given by Eq. (39).

Here is the key difference between the six-state scheme and BB84: For the six-state scheme, there is more symme-
try. In particular, as discussed in Subsection 4.2, for an EPP that corresponds to the six-state scheme, one only needs
to consider a depolarizing channel. The density matrix is:

diag(1 − 3(p/2), p/2, p/2, p/2). (46)

On post-selecting the bits where Alice and Bob agree, the (un-normalized) density matrix becomes:

diag(1 − 3(p/2), 0, p/2, 0). (47)

Therefore, the post-selected phase error rate is:

p/2

1 − 3(p/2) + p/2
=

p

2(1 − p)
. (48)

Comparing Eqs. (42) and (48), we see that a big difference between BB84 and six-state in the Inamori’s protocol
is that the post-selected phase error rate for the six-stateis only half of that for BB84. Consequently, Alice and Bob
sacrifice fewer bits for privacy amplification in the six-state case. In fact, only a smaller fraction, namely a fraction

fsix = h

(

p

2(1 − p)

)

(49)

of the reconciled key needs to be sacrificed in the privacy amplification process.
In summary, the length of the reconciled key isr = s(1−p), as given by Eq. (39). Of which, from Eq. (49), only a

fractionh( p
2(1−p) ) has to be consumed for privacy amplification. Therefore, thefinal key generated by Alice and Bob

is of length[1 − h( p
2(1−p) )]s(1 − p). In addition, from Eq. (38), a length oflsac = sh(p) of a pre-shared secret key

has to be consumed. Therefore, thenetkey generation rate is given by:
[

1 − h

(

p

2(1 − p)

)]

s(1 − p) − sh(p) = s(1 − p)

[

1 − h

(

p

2(1 − p)

)

− h(p)

1 − p

]

. (50)
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From Eq. (50), one can conclude that in Inamori’s protocol for the six-state scheme, the net key generation rate is
positive provided that:

1 − h

(

p

2(1 − p)

)

− h(p)

1 − p
> 0, (51)

which is precisely what Inamori gave in the Equation just under Property 1 on p. 3 of [19]. Comparing Eqs. (45) and
(51), one can see that the key difference between BB84 and six-state for Inamori’s protocol is in the second term of
the expressions. In the case of the six-state scheme, there is an extra factor of2 in the denominator inside the entropy
function. As noted before, this is because the six-state scheme has more symmetry and gives a lower phase error rate
(upon post-selection of bits where Alice and Bob do agree) than BB84.

From Eq. (51), Inamori’s protocol for the six-state case cantolerate a bit error rate of roughly12.6%. A more recent
protocol [22] for the six-state scheme can tolerate a marginally higher bit error rate and, unlike Inamori’s scheme, it
requires only one-way classical post-processing. We remark that the six-state scheme with our Protocol 2 tolerates a
much higher error rate (about23%, or as high as26.4% varying the sequence of B and P steps) than a six-state scheme
with Inamori’s protocol.
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