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Abstract

Shor and Preskill have provided a simple proof of securithefstandard quantum key distribution scheme by
Bennett and Brassard (BB84) by demonstrating a connectitween key distribution and entanglement purification
protocols with one-way communications. Here we provideofs@f security of standard quantum key distribution
schemes, BB84 and the six-state scheme, against the mastgattack, by using the techniquestafo-way en-
tanglement purification. We demonstrate clearly the acgebf classical post-processing with two-way classical
communications over classical post-processing with onlg-way classical communications in QKD. This is done
by the explicit construction of a new protocol for (the ercorrection/detection and privacy amplification of) BB84
that can tolerate a bit error rate of up 18.9%, which is higher than whaiany BB84 scheme with only one-way
classical communications can possibly tolerate. Moreowerdemonstrate the advantage of the six-state scheme
over BB84 by showing that the six-state scheme can striotérate a higher bit error rate than BB84. In particular,
our six-state protocol can tolerate a bit error rate@#.%, which is higher than the upper bound25% bit error rate
for any secure BB84 protocol. Consequently, our protocaly allow higher key generation rate and remain secure
over longer distances than previous protocols. Our inyatin suggests that two-way entanglement purification is a
useful tool in the study of advantage distillation, errorrection, and privacy amplification protocols.

1 Introduction

Quantum key distribution (QKD[[:DL(H]aIIows two parties to communicate in absolute privacy ingresence of an
eavesdropper. Unlike conventional schemes of key digtabuhat rely on unproven computational assumptions, the
security of QKD is guaranteed by the Heisenberg uncertairibciple of quantum mechanics. Much of the interest
in QKD arises from the possibility of near-term real-lifephipations, whereas most other potential uses of quantum
information remain remote. QKD has been performed expearially over about 67 km of telecom fibers, and point-
to-point through open air at a distance of about 23.4 km. &laee also proposals for key exchange from ground to
satellites. (Seq [14, [L2] for discussions.)

Today’s technologies fall short of full control and manigtibn of quantum states, so practical QKD protocols must
use a much more restricted set of operations. The best-k@d¢h protocol was published by Bennett and Brassard
in 1984 [2]. BB84 is a simple “prepare-and-measure” proktitat can be implemented without a quantum computer
(see 6] for background on quantum computation). Inragpre-and-measure” protocol, Alice simply prepares
a sequence of single-photon signals and transmits themtbo Bob immediately measures those signals; thus, no
guantum computation or long-term storage of quantum in&tion is necessary, only the transmission of single-
photon states, which can be performed through regularagtizers. Therefore, “prepare-and-measure” schemes are
good candidates for near-term implementations of quantyptagraphy.

1The first paper on quantum cryptography was written by Stepisner around_1970, but it remained unpublished untiBl@]. For a
survey on quantum cryptography, see, for example, [14] aReview, see, for examplg, |12].



Of course, a theoretical description of a protocol is a nmathtecal idealization. Any real-life quantum cryp-
tographic system is a complex physical system with manyeategof freedom, and is at best an approximation to
the ideal protocol. Proving the security of any particulet-gp is a difficult task, requiring a detailed model of the
apparatus. Even a seemingly minor and subtle omission catdi¢o the security of a cryptographic system.

Nevertheless, a number of important basic issues have tegtified. See, for exampleElZ?] for a discussion. For
instance, the ideal theoretical version of BB84 uses a pesfegle-photon source. It is important to know whether an
eavesdropper can in principle exploit imperfect photorrsesior other minor deviations from the ideal model (such
as channel loss or detector dark counts). In this paper, Waaticonsider the issue of imperfections in the source or
detectors. Instead, we will concentrate on the allowalletoor rate in the channel, and show that it can be at least
26.4% for a “prepare-and-measure” scheme.

To prove the security of a protocol, one must specify cleayat eavesdropping strategies are permissible. In
classical cryptography, eavesdroppers are frequentgngdnly a bounded amount of computation. Unfortunately,
we do not, as yet, have a good grasp of what can be done withracgglantum computation, and provable bounds
are elusive, even for classical computation. Other assomgpare similarly unreliable, so we resort to one of the
most conservative assumptions, unconditional securityhat-is, security against the most general attacks allowed by
guantum mechanics.

As it turned out, proving unconditional security even foridaalized system was very difficult. More than a
decade passed between the original proposal for BB84 anfitrshgeneral but rather complex proof of security by
Mayers ], which was followed by a number of other pronﬂsﬂ]s Another approach to proving the security is to
start by considering protocols which are less experimraakessible. In particular, Lo and Ch[23], building on
the quantum privacy amplification idea of Deutsthal. [E], have proposed a conceptually simpler proof of security
However, the protocol proved secure has the unfortunateldrek of requiring a quantum computer. Recently, Shor
and Preskill EIB] have unified the techniques [23] [82% provided a simple proof of security of standard
BB84. (See aIsdﬂS] for a detailed exposition of this pripf.

The idea of an entanglement purification protocol (EF[F) [8y® a key role in Shor and Preskill's proof. An
EPP is a procedure allowing Alice and Bob to create a smallbmurof reliable EPR pairs from a larger number of
noisy pairs. More specifically, Shor and Preskill considdresnes for entanglement purification with a classical side
channel from Alice to Bob (one-way EPPs), which, by the eaxliork of Bennett, DiVincenzo, Smolin and Wootters
(BDSW)[E], are mathematically equivalent to quantum egoirecting codes (QECCs).

As noted by BDSW, EPPs involving two-way communicationsaaen two parties can tolerate a substantially
higher error rate than one-way EPPs. Those two-way EPPsafel dor the transmission of quantum signals, but not
their storage in a noisy memory, since in a two-way EPP, tbeiver Bob must send information to the sender Alice.

In this paper, we demonstrate that it is possible to createpgre-and-measure” QKD schemes based on two-way
EPPs, and that the advantages of two-way EPPs can surviwe. $@ecifically, we describe versions of BB84 and the
six-state schem(ﬂ[6] (another “prepare-and-measurehsehasing two-way communcations and prove their security
with allowed error rates substantially higher than any janes proofs.

Our results are significant for QKD for several reasons. tFosr scheme can tolerate substantially higher bit
error rates than all previous protocols. This may allow usxtend the distance of secure QKD and increase the
key generation rate. Second, we demonstrate clearly thensalye of usingwo-way classical communications in
the classical post-processing of signals in QKD. In paldicifor both BB84 and the six-state scheme, our protocol
tolerates a higher bit error rate than any one-way postgasing method. Third, our results show rigorously that the
six-state protocol can tolerate a higher bit error rate 8B84. These facts can help direct experimentalists towards
the most robust schemes for quantum key distribution.

There are good conceptual reasons as well for studying tayp®@KD. The Shor and Preskill proof of security
turns on the relationship between classical error comaaind privacy amplification and QECCs. EPPs have a close
relationship to QECCs, but the detailed connection betvi#Ps using one-way and two-way classical side channels
is not well understooo[[S]; in fact, very little is known alidwo-way EPPs. A study of two-way QKD elucidates the
relationship between the various aspects of quantum agygpdhy and two-way EPPs. It may help to spur progress in
both the theoretical study of two-way EPPs and also theatjwal applications in a real experiment. This is so because
“prepare-and-measure” QKD schemes, which we consideressentially be implemented in a real experimEt [27].

2Mayers’ and Shor-Preskill's proofs make different assuomst While Mayers’ proof assumes that Alice’s preparatidithe BB84 states is
perfect, Shor and Preskill limit the types of imperfecti@i®wed in Bob’s measurement apparatus. A proof that takesaccount more general
imperfections remains to be published.



Furthermore, the study of two-way QKD can clarify other gmoof security of QKD such as that due to Inamori
[L8,[19], and may make the connection to earlier studiesasfsital advantage distillatioh [9] $0] $1].

In sectionﬂz, we present the BB84 and six-state protocolsravidw known bounds on the bit error rates they
tolerate. Sectioﬂ 3 reviews the necessary concepts froth¢ley of quantum error-correcting codes and entanglement
purification protocols. Even readers already familiar wlitgse subjects may wish to read sect@s 2.3nd 3 to acquaint
themselves with our terminology. Sectiﬁn 4 presents the &ha Preskill proof of security. In sectigp 5, we attempt
a naive generalization of the proof to two-way protocolsjoliHails in an instructive way. In sectiqp 6 we present
the main theorem: EPPs satisfying the correct set of camdittan be made into secure “prepare-and-measure” QKD
schemes with two-way communications. An example EPP sagiyie conditions is presented in sect[(l)n 7; variations
of this EPP produce the achievable error rates cited in #ipep We prove the main theorem in secﬂ)n 8.

2 QKD protocols and bounds on performance

2.1 BBB84 and the six-state scheme

In the BB84 protocol for QKD, Alice sends a qubit (i.e., a gtuam bit or a two-level quantum system) in one of
four states to Bob. The staté® and|+) = (|0) + |1))/+/2 represent the classical lfit while the state$l) and

|—) = (]0) — |1))/+/2 represent the bit. Alice chooses one of these four states uniformly at randomd,sends it to
Bob, who chooses randomly to measure in eithet@hd1) basis (the Z” basis) or thg+), |—) basis (the X" basis).
Then Alice and Bob announce the basis each of them used forstate (but not the actual state sent or measured in
that basis), and discard any bits for which they used diffelbases. The remaining bits form the raw key, which will
be processed some more to produce the final key.

The six-state protocol is quite similar, but Alice sends ofhgix states instead of one of four. The four states from
BB84 are used (with the same meanings), plus the two sties 1))/+/2 and(|0) — i[1))/v/2, which represert
and1 in the “Y” basis. Bob chooses to measure randomly inXhe¥", or Z basis, and again Alice and Bob discard
any bits for which they used different bases. Thus, for tkestite scheme, the raw key consists of one-third of the
gubits received on average, as opposed to one-half for ﬁEBinever, as we shall see, the six-state scheme remains
secure under noisier conditions.

Once they have produced the raw key, Alice and Bob select alsasfisufficient size (assume one-half the total
raw key for simplicity), and publicly announce the valuedtudse bits. They compare and calculate the fraction of
bits which disagree; this is known as the “bit error rate. €™it error rate gives an estimate of the actual error rate for
the remaining key bits. If the bit error rate is too high, &liand Bob assume there is an eavesdropper and abort the
protocol. Otherwise, Alice and Bob take their remaining laihd may correct them using a classical error-correcting
code: that is, Alice announces her values for the paritykhe€a classical linear code, and Bob compares his values
for the same parity checks to deduce the locations of emdteiremaining key bits. He corrects those errors. Finally,
Alice and Bob perform privacy amplification whose goal isémiove the eavesdropper’s information on the final key:
they choose some set of parities, and the final key bits aredtlies of those parities. After this procedure, provided
the bit error rate is not too high, the final key is supposedetedrure against an eavesdropper Eve.

There are a few points about the protocols which deserveiaddi comment. First, all of Alice and Bob’s classical
communications occur over a public channel, so Eve also Vailahle to her any information that was announced.
However, the classical channel should be authenticatethagd=ve can only listen to it and not change it. Second,
after producing the raw key and before performing the egsi; tAlice and Bob should agree on a random permutation
to apply to their raw key bits. This simplifies the analysisce Eve’s attack under these circumstances might as
well be symmetric over all qubits sent, and improves theradike bit error rate. Third, the meaning of “security”
for this protocol is slightly subtle: for any attack chosgnBwve, either she will be detected, except with probability
exponentially small in some security parameterpr, with probability exponentially close to 1, she will leaan

3An important result in classical cryptography based onynoignnels is that a two-way side channel can actually iseré#e secrecy capacity
of a noisy channel. i.e., the secrecy capacity with a two-gidg channels, can be strictly greater than the secrecy capacity with amipe-way
side channelC}. See EOBl] for details. This is in sharp contrast witlar8ion’s channel coding theorem which states that two-udey s
channels do not increase channel capacity. The processngf tugo-way communications to share a secret in a way thahmssible with only
one-way communications is called “advantage distilldtion

4Prepare-and-measure QKD schemes can be made more efficiemiptoying a refined data analysis in which the bit errorsafethe sampled
data of the various bases are computed separately and eaendied to be small. SeEHﬂ 24] for discussions and a profeofinconditional
security of those efficient prepare-and-measure QKD scheme



BB84

one-way two-way
Upper bound 14.6% 1/4
Lower bound 11.0% 18.9%

Six-state Scheme

one-way two-way
Upperbound 1/6 1/3
Lower bound 12.7% 26.4%

Table 1: Bounds on the bit error rate for BB84 and the sixestaheme using one-way and two-way classical post-
processing. The lower bounds for two-way post-processifg®% for BB84 and26.4% for the six-state scheme,
come from the current work.

exponentially small amount of information, in some segupérameters, about the final key. A QKD scheme is
efficient if the resources (in terms of the number of qubitst,semount of computational power, etc) required for
its implementation are at most polynomial in the securityap@eters. For simplicity, it is quite common to take
the security parameters to be the total number of qubits sent. As discusseoIEu [25], otieices of the security
parameters are perfectly acceptable.

2.2 Known bounds on the performance of QKD

There are a number of upper and lower bounds known for thevalite bit error rate for these two protocols. In
table[]L, we summarize the bounds for BB84 and the six-stéense. The tables give bounds for schemes that use
one-way and two-way classical communications during thet-peocessing phase. The upper bounds are derived by
considering some simple individual attacks, and detemgimihen these attacks can defeat QKD. The lower bounds
come from protocols that have been proved secure. For bo84 BBd the six-state scheme, our new lower bounds for
two-way classical post-processing schemes are subshabtdter than the upper bounds for schemes with one-way
classical post-processing. Therefore, our results detraiaglearly that our schemes can tolerate higher bit eates

than any possible schemes with only one-way classical prastessing can.

The upper bounds for one-way post-processing come frorkstiaased on optimal approximate cloning ma-
chines ,|]7[|1]. Although perfect cloning of an unknown miuan state is strictly forbidden by the uncertainty
principle of quantum mechanics, approximate cloning issfiids. Optimal approximate cloning has recently been
experimentally demonstrateE[Zl]. More specifically, Bvieiicepts all of Alice’s signals from the quantum channel.
Using the appropriate optimal cloner, Eve can generate tjualéey good approximate copies of the original signal.
In the case of BB84, the resulting bit error rate in a singleycs aboutl4.6% [@,ﬂ], and it is1/6 for the six-state
schememl]. Eve then keeps one copy herself and sends thedseopy to Bob. With only one-way classical pro-
cessing, Bob is not allowed to send classical signals toefﬂll'ﬁherefore, Bob and Eve are in a completely symmetric
situation: if Bob can generate a key based on subsequesiaabsansmissions from Alice, Eve must be able to do the
same. Therefore, at this error ratel (% or 1/6), the QKD scheme must be insecure with one-way post-progess

The upper bounds for two-way post-processing come from &mdapt and resend eavesdropping strategy. Eve
intercepts each qubit sent by Alice. She chooses to measw@weandom basis from the appropriate li&t,(Z for
BB84 or X, Y, Z for the six-state scheme). She records her measuremewinoaitend prepares a single photon in
the polarization given by her measurement outcome andrmesssich a photon to Bob. Note that whatever Bob can
do from this point on can be simulated by a classical randamabi preparedby Eve, who has a classical record of
it, and a local random number generator possessed by Bobefbhe, secure QKD is impossible even with two-way
classical communications between Alice and Bob. For BBRd jintercept and resend strategy gives an error rate of
25%: half the time Eve has chosen the correct basis, so thereesrag and half the time she has chosen the wrong

51f one allows Bob to send classical messages to Alice onlyrfotfrom Alice to Bob), in the context of coherent state QKiDs known that
such backward one-way communications can actually help#b the approximate cloning attack. However, the issue obuaitional security
remains open. SeEIlG] for details.



basis, in which case there is5a% chance of an error, for a net error ratelgft. For the six-state scheme, intercept
and resend gives an error ratelgB: Eve has the correct basis only3 of the time, and the remainiry3 of the
time, she has &0% chance of introducing an error.

The lower bounds in tablﬂ 1 come from proofs of security. Ther&nd Preskill proof shows that QKD with
one-way communications can be secure with data rate atleasth(p), wherep is the bit error rate and(z) =
—xlogy x — (1 — ) logy(1 — ) is the Shannon entropy. This reacliewhenp is about11.0%. For the six-state
scheme, this result has been slightly improved by one of u.(Ho) [@] to allow secure QKD up to a bit error rate
of about12.7%.ﬂ With two-way communications during post-processing, St Preskill’s result and Lo’s result
remain the best prior results. (Lo’s result is marginallgtéethan Inamori’s resul9] for the six-state schemeiclrh
requires two-way classical post-processing.) In this pape present significant improvements on both those lower
bounds.

2.3 EPP schemes for QKD

For our proof of security, it will be helpful to consider ahet class of scheme based on EPPs (which are described in
more detail in sectioﬂ 3). For these QKD schemes, which werefiér to asEPP schemesr EPP protocolsﬂ Alice
prepares a number of EPR pajist) = (|00) + |11))/+/2. On the second qubit of each pair, Alice then performs a
random rotation chosen either from the $e# or the setl, T, T2. I is the identity operation is the Hadamard
transform, which swaps states in theand Z bases, and is a unitary operation which takes states in fidasis to
theY basis, states in thE basis to theZ basis, and states in ttibasis to theX basis.

We will refer to the first case (witlh and H) as thetwo-basisEPP protocol, and the second case (With", and
T?) as thethree-basi€EPP protocol. The two-basis scheme will produce a protaated to BB84, while the three-
basis scheme produces a protocol related to the six-statengc We can also considefficientschemes in which the
rotations are not performed with equal probabilities. Ehpsoduce efficient BB84 and six-state schen@s @5 24],
which have a higher rate of key generation per qubit trarisohit

After performing the rotation, Alice sends the second gabéach pair to Bob. When Bob acknowledges receiving
the transmission, Alice announces which rotation she pexéd for each pair. Bob reverses this rotation. Then Alice
and Bob agree on a random permutation of the EPR pairs, agct sesubset (half of the pairs by default) to measure
(in the Z basis) to test for errors. They compare the results of thedas abort if the error rate is too high. If not,
Alice and Bob perform an entanglement purification protdooéxtract good entangled pairs. Then they measure
(again in theZ basis) the remaining pairs and use the result as their dazyet

The security proofs we review in sectiﬂn 4 show that the sooirBB84 and the six-state scheme can be reduced
to the security of the above EPP schemes using appropri@egement purification protocols. The protocols that lead
to traditional prepare-and-measure one-way post-proggsshemes are EPPs using just one-way communications; in
this paper, we present two-way post-processing schemiegrtba from EPPs with two-way classical communications.

3 Entanglement purification and quantum error correction

Suppose Alice and Bob are connected by a noisy quantum ch@mkeperhaps also a noiseless classical channel).
Entanglement purification provides a way of using the noiggrqum channel to simulate a noiseless one. More
concretely, suppose Alice creatdBsEPR pairs and sends half of each pair to Bob. If the quantunaamication
channel between Alice and Bob is noisy (but stationary anchamgless), then Alice and Bob will sharé imperfect
EPR pairs, each in the state They may attempt to apply local operations (including pregion of ancillary qubits,
local unitary transformations, and measurements) andiclscommunications (LOCCSs) to purify thé imperfect
EPR pairs into a smaller number, EPR pairs of high fidelity. This process is called an entamgint purification
protocol (EPP) and was first studied by Bennett, DiVincet®molin and Wootters (BDSW]][3].

One way to classify EPPs is in terms of what type of classioaimunications they require. FigLEle la shows the
structure of EPPs that can be implemented with only one-Wasssical communications from Alice to Bob, known as

6The result in @2] makes use of the non-trivial mutual infatian between the bit-flip and phase error syndromes, artteaiégenerate codes
studied by DiVincenzo, Shor and Smolﬂl [9].

7“EPP protocol” sounds redundant since the second “P” in “E$d stands for “protocol.” However, it is not really rediant, since the full
phrase is short for “quantum key distribution protocol ltage an entanglement purification protocol.”
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Figure 1: a) A 1-EPP. Alice performs some unitary operatams$ measurements, then makes a transmission to Bob,
who performs another unitary transformation, possiblyedasn Alice’s classical transmission. b) A 2-EPP. Alice
and Bob alternate local operations and classical trangmssEach operation can depend on the contents of earlier
transmissions. The procedure can extend indefinitely.

one-way EPPs or 1-EPPs. Figlﬂe 1b shows the structure of EegRising two-way classical communications, known
as two-way EPPs or 2-EPPs.

Typically, a 1-EPP will consist of Alice measuring a seriés@mmuting operators and sending the measurement
result to Bob. Bob will then measure the same operators oguhigs. If there is no noise in the channel, Bob will
get the same results as Alice, but of course when noise ispiesome of the results will differ. From the algebraic
structure of the list of operators measured, Bob can dechecéotation and nature of the errors and correct them.
Unfortunately, the process of measuring EPR pairs will lasroyed some of them, so the resulting state consists of
fewer EPR pairs than Alice sent.

As noted by BDSW, a 1-EPP is mathematically equivalent to antum error-correcting code (seEl[ 28] for
background on QECCs). Instead of measuring a series ofopgend transmitting the results, Alice instead encodes
Bob’s qubits into a particular predetermined eigenspadbaefist of operators. Then when Bob receives the qubits,
he can measure the same list of operators, telling him tloe egndrome for the QECC given by that subspace. For
instance, if the channel only produces bit flip errors, Aie@ encode Bob’s state using a random coset of a classical
linear code, and then Bob measures the parity checks foctitlt. He determines what error the channel introduced
by calculating how the coset has changed since Alice’s tné&sson.

Two-way EPPs can be potentially more complex, but freqydrdl/e a similar structure. Again, Alice and Bob
measure a set of identical operators. Then they comparnerdseilts, discard some EPR pairs, and together select a
new set of operators to measure. An essential feature of avayoEPP is that the subsequent choice of measure-
ment operators may depend on the outcomes of previous nesasats. This process continues for a while until the
remaining EPR pairs have a low enough error rate for a 1-EBRdceed. Then, a 1-EPP is applied.

Unfortunately, not all EPPs are suitable for making a preggard-measure QKD protocol. The next few definitions
are designed to set the stage for the detailed sufficientittomslin our main theorem. We will, for instance, primarily
be interested in a restricted class of EPPs which involverteasurement of Pauli operators. The best studied EPPs
can all be described in the “stabilizer” formulation, whidmploys Pauli operators extensively. Other EPPs might stil
be useful for QKD, but are less well studied.

Definition 1 A Pauli operatoacting onn qubits is a tensor product of individual qubit operatorstthge of the form
I (the identity), X = (? (1)) Y = (? _OZ> andZ = (é _01). An X -type operator is a tensor product of
justIs andXs, and aZ-typeoperator is a tensor product of jugs andZs.

Note that the states in sectiﬂn 2 described as being iXthe, or Z bases are in fact eigenstates of the operators
X,Y,andZ. A CSS code involves measuring justtype andZ-type Pauli operators. Also, note that any pair of
X, Y, andZ anticommute with each other (so, for instan&e7 = —Z X). Finally, note that all Pauli operators have
only eigenvalues-1 and—1. Classical linear error-correcting codes can be undedstsa measurement of a series
of just Z-type operators: the eigenvalue ofatype operator is the parity of bits on which the operatos astZ. (For
instance, measuring ® I ® Z gives the parity of the first and third bits.)

When dealing extensively with Pauli operations, it is helpd also look at a more general class of operators which
interact well with Pauli operations.
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Figure 2: Structure of a symmetric EPP. Alice and Bob meatheesame sequence of operatorsand s are the
parities of the outcomes of Alice’s and Bob’s measuremehfdpand M., respectively.

Definition 2 A unitary operation belongs to th@lifford groupif it conjugates Pauli operators into other Pauli oper-
ators.

Thus, a Clifford group operation will map eigenstates of alPaperation into eigenstates of another Pauli op-
eration. For instance, CNOT arfd are both Clifford group operations. (In fact, the Clifforcbgp is generated by
CNOT, H, and the phase gafe) — |0), |1) — i|1).)

Definition 3 We say an EPP (one-way or two-waysiammetridif it can be described with a set of operatdra/,, },

plus unitary decoding operatior$, @ (P,U,). Each operator),, describes a measurement that may be made at
some point in the protocol; the indexdescribes a history of outcomes of earlier measurementsstring of0s and

1s. On the history:, Alice performs the measuremett, on her side, and Bob performs the measurendépton

his side. (They always perform the same sequence of meantgerthus the name “symmetric”) They then update
the historyu by appending the parity of their two measurement outcoridsr(the same outcomae, for opposite
outcomes). The protocol begins with each person measurengpieratorM. Each time the history is updated, Alice
and Bob measure the operator corresponding to the new vdlye and again update the history according to the
result. When there is nd/,, for the current history, Alice performs the operatidp and Bob performs the operation
P,U,, and the protocol terminates.

Figure|]2 shows a symmetric EPP. See also se@n 3.1and Eguranother representation.

Note that if the history is an extension of the histoyy (i.e., it is u with additional bits appended), the operators
M,,, M, should commute for the EPP to be realizeable using localatipeis and no additional resources. On the
other hand, for two different extensions, andvs, of the same history, the corresponding operatais,, and M,
donotneed to commute. This is because Alice and Bob never needdasureboth operators for the same state.

For a 2-EPP, the commutation requirement is the only consiwa the)M's. For a 1-EPP, we also require that the
operatorsV/,, depend only on the length pf(i.e., how many measurements have been made so far) ancerpettise
history. This is because in a 1-EPP, Alice cannot learn Botgasurement outcomes and therefore cannot know the
exact value of the history.

The final operatio/,, ® P,U,, serves two purposes. First of all, the measurements hagentied a good deal
of information about the state of the system, and we mushtisgle that from the residual Bell states. Second, it acts
to correct, discard, or otherwise eliminate any errorstified by the measurements. For instance, if the EPP locates
pairs with errors, but does not identify what kind of errorg present, the final operatidf, would likely permute
the qubits to move the errors to a standard set of locatiohighaare then discarded. It is convenient to separate the
decoding operation into two parts},, which is performed by both people and represents decoditigizcarding bad
EPR pairs, and’,, performed just by Bob, which represents correcting EPRspalhich will be kept. In practice, it
is often easier to specify an EPP by including unitary openatin between measurements as well as at the end of the
protocol, but this is an equivalent definition, since the sueament operatord/,, can instead be defined to take the
change of basis into account. Notice that in a 1-ERR;annot depend on, whereasP, invariably will — otherwise
there would be no way to correct any errors discovered in dliese of the protocol.

Definition 4 A symmetric EPP is atabilizerEPP if all measurementd/,, are of eigenspaces of Pauli operations,
the decoding operatioty,, is a Clifford group operation, and the correction operatiéh is a Pauli operation. For a
1-EPP, we again make the restriction tHa} = U is independent of. A stabilizer EPP iCSS-likeif all M,,s are
X-type orZ-type Pauli operations, antl,, involves only CNOTSs.
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Figure 3: a) The tree diagram representation of a 1-EPP. dingesice of operators is fixed, so there is no branching.
The 1-EPP shown corresponds to the 5-qubit QECC. b) The tageanin of a 2-EPP. Future operators may depend on
the outcome of a measurement, allowing a branched tree. Wikdaree branches, edges are labelled by the outcome
of the previous measurement. When it does not branch, nbitabeeded. Note that the tree does not need to branch
uniformly, or even have uniform depth. The EPP in part b) iSdige; the EPP in part a) is not.

Stabilizer 1-EPPs can be thought of as another guise ofligehguantum error-correcting codes. The measure-
ments)/,, correspond to the generators of the code stabiliZgiis the decoding operation, which for a stabilizer code
is always from the Clifford group, an, corrects the Pauli errors that have occurred. CSS-like RsE®rrespond to
the class of CSS codes; since they are based on classical éinges, the decoding only needs CNOT gates.

The same intuition applies to the case of 2-EPPs. The condtiat decoding only needs CNOT means intuitively
that the encoded operation is, in fact, also af-type; that is, it can be written as a tensor producZafperators.
The final correction operatioff, is a Pauli operator because the error syndrome (disclosix itwo-way classical
communication) should contain enough information to idgmthich Pauli error has occurred in the quantum channel.

The EPPs we will consider in this paper are all CSS-like ERP$act, we will need to consider Alice and Bob
choosing a random EPP out of a family of similar EPPs, butdb&s not produce any further intrinsic complications.
For simplicity, we may describe EPPs that involve Cliffordgp or Pauli group operations in the middle of the series
of measurements instead of the end, but this does not dffedefinition at all; these EPPs can be rewritten to conform
to the above definition of stabilizer or CSS-like EPPs.

3.1 A Tree Diagram Representation

The series of operators measured in a stabilizer 1-EPP d&*R2dan be represented using a tree diagram represen-
tationﬁ Each vertex is labelled by an operatbf,, that could be measured during the EPP. Each edge is labelled
with one or more possible outcomes of the previous measuramé&he edges are directed from the root of the tree
(labelled byA/y) towards the leaves (labelled wiid,, for 1« of maximal length), representing the time-ordering of the
measurements.

Given a tree diagram of the above form, we can read off thetsire of the EPP. We start at the root of the tree,
which is labelled by measuremehfy. We note the outcome and follow the edge which is labellechay d¢utcome.
Then we perform the measurement which labels the new vatekfollow the edge corresponding to the outcome
of that measurement. We repeat this process until we reachdtiom of the tree, at which point we perform the
appropriate unitary operatidi, ® P,U,,. Each history. corresponds to a path through the tree.

For any 1-EPP, the sequence of measurements does not dapdmelautcome of any measurement. Therefore,
a 1-EPP can be represented by a straight (directed) Iiner(é@al). On the other hand, in a 2-EPP, the choice of
measuremend/,, at any steg can depend on the outcome of an earlier measured¥nt This corresponds to a
branch in the tree at stef{see figur(ﬂ3b).

8We thank David DiVincenzo and Debbie Leung for suggestimgttae diagram representation.



4 The Shor and Preskill Security Proof

Next, we give the Shor and Preskill pro[33] of security @®&!. See alsom.S] for a more detailed version. Shor
and Preskill's proof begins by following Lo and Chau’s pr@] of the security of a scheme using EPPs, and then
shows that the security of BB84 follows from the securitylef EPP scheme.

As noted before, in the EPP scheme, Alice crefeEPR pairs and sends half of each to Bob. Alice and Bob
then test the error rates in tBé and Z bases on a randomly chosen subsetgbairs. If the error rate is too high,
they abort; otherwise, they perform an EPRon the remainingV — m pairs. Finally, they measure (in tiebasis)
each of then EPR pairs left aftet”, producing a shared random key about which, they hope, Eve$sentially no
information.

4.1 Noisy Quantum Channels and Eavesdropping Strategies

All of the QKD protocols we consider will take place over asyguantum channel, even when there is no eavesdrop-
per present. We shall be primarily interested in a specésscbf quantum channels known as Pauli channels.

Definition 5 A quantum channe$ any superoperator which acts on transmitted qubit®ahli channe(P;, ¢;) ap-
plies the Pauli operatiofP; with probability¢; (so we requiré>_ ¢; = 1). Anuncorrelated Pauli chann@lx, ¢y, qz)
applies a random Pauli operator independently on each ggdrit through the channel. It appliés with probability
qx, Y with probabilityqy, Z with probabilityq, and with probabilityl — ¢x — ¢y — qz.

From the perspective of Alice and Bob, noise in the channeldcbave been caused by an eavesdropper Eve.
We will need to consider two types of eavesdropping stratgglve. The first strategy, the joint attack, is the most
general attack allowed by quantum mechanics.

Definition 6 In a joint attackby Eve, Eve has a quantum computer. She takes all quantualsiggnt by Alice and
performs an arbitrary unitary transformation involvingdse signals, adding any additional ancilla qubits she cares
to use. She keeps any part of the system she desires and iteattsremainder to Bob. She listens to the public
discussion (for error correction/detection and privacyification) between Alice and Bob before finally deciding on
the measurement operator on her part of the system.

The joint attack allows Eve to perform any quantum operatiothe qubits transmitted by Alice. For the security
proof, we shall also consider a Pauli attack.

Definition 7 A Pauli attackby Eve is a joint attack where the final operation performedhmtransmitted qubits is a
general Pauli channel.

4.2 EPP protocols are secure

In this subsection, we will show that the EPP protocols dbedrin sectiorﬂZ are secure. The argument is essentially
that of [23]. First, what do we mean by “secure?”

Definition 8 A QKD protocol to generate key bits iscorrectif, for any strategy used by Eve, either Alice and Bob
will abort with high probability or, with high probabilityAlice and Bob will agree on a final keywhich is chosen
nearly uniformly at random. The protocol secureif, for any strategy used by Eve, either Alice and Bob will abo
with high probability or Eve’s information about the key Mik at mosiexp(—s) for some security parametey, In

all cases, “with high probability” means with probabilitytdeast1 — exp(—r) for some security parameter, The
resources required for the implementation of a QKD schenms tiat most polynomial inands. For simplicity, in
what follows, we will consider the case where- s and call it simply the security parameter.

Naively, one might consider a security requirement of thenfé.,. < dn, wherel.,. is the eavesdropper’s mutual
information with the final key and is the length of the final key. However, such a definition ofusig is too weak,
since it allows Eve to learn a few bits of a long message. Fsiaite, the eavesdropper may know something about
the structure of the message that Alice is going to send to Buobgine that the last few characters of the message
contain the password for launching a nuclear missile. Ihdhse, Eve could compromise the security of the message
by concentrating her information on the last few bits.



Another naive definition of security would be to require that < e~ ™ for any eavesdropping strategy. Unfor-
tunately, such a definition of security is too strong to bei@able. For instance, Eve can simply replace the signal
prepared by Alice by sending Bob some signals with specifiarfzations prepared by herself. Such an eavesdropping
attack is highly unlikely to pass the verification test (bpgumcing a small error rate). However, in the unlikely event
that it does pass the verification test, Eve will have peifdormation on the key shared between Alice and Bob, thus
violating the security requiremefif,. < e=*".

In fact, even the definition we give is probably not stronguegtofor some purposes: Eve can retaiquantum
state at the end of the protocol, and the security definittayukl refer to that rather than bounding tedassical
information about the key. For instance, a better definiisorior any eavesdropping strategy, either Eve will almost
surely be caught, or, for any two final values of the key, Eve&dual density matrices after the protocol concludes
will have high fidelity to each other. That is, Eve cannotabkly distinguish between any pair of values of the key. We
do not prove the stronger definition in this paper.

The question of defining security for quantum cryptographg iway that enables us to prove composibility of
protocols remains an important open problem. For this pdypevever, we simply use definiticﬂ1 8.

Our method will be to relate the security of BB84 and the satesscheme to the security of EPP schemes, and we
wish to say that when the EPP schemes are secure, so are¢pargrand-measure” schemes.

Definition 9 Suppose QKD protocdf is correct and secure, with a security parameter Then QKD protocob

is said to have securitgimilar to protocol 5 whena is also correct and secure, and its security parameges

polynomially related t@. Furthermore, protocod should abort at a given bit error rate only if protocGlalso aborts
at that bit error rate.

To prove the security of EPP protocols, we first observe tleah@ed only show Alice and Bob can generate states
close ton EPR pairs. This is a consequence of the following lemma ifwailty Note 28 of ]):

Lemma 1 If p has a high fidelityt — 2/ (for large [) to a state ofr perfect EPR pairs and Alice and Bob measure
along a common axis to generate arbit key fromp, then Alice and Bob will most likely share the same key, which
is essentially random. Moreover, Eve’s mutual informatidth the final key is bounded ¢ + O(272!), where
c=1-logy[2n + 1+ (1/log, 2)]. In other words, Eve’s information is exponentially smalleafunction of.

The proof is given in AppendEA. The next step is to restrigt attention to Pauli attacks.

Lemma 2 [@] Consider a stabilizer EPP protocol for QKD. Given anyrjbattack.4 by Eve, there is a Pauli attack
for which the final density matrix4 5 of Alice and Bob has the same fidelityt& PR pairs, and which gives the same
chance of having the QKD protocol abort.

We will only prove Lemma]2 for EPP protocols based on stadilEZPPs, but the result holds for any EPP designed to
correct Pauli channels (sge [15] for the general proof)liRhannels play a special role in the above Lemma because
most known quantum error correcting codes (stabilizer spfibe instance) are designed to correct Pauli errors.

Proof:

First, note that for a symmetric EPP, it would suffice if Alaed Bob had a way of measuridg, @ M, directly
instead of separately measurifg}, on Alice’s side and again on Bob’s side. This is because aisdms are based
on the parity of Alice’s and Bob’s results, which is equaltie eigenvalue of/,, ® M,,. Also, note that the EPR pair
|T+) = (]00) + |11))/v/2 is a+1 eigenstate of the Pauli operatofs X andZ ® Z. (Itis actually a—1 eigenstate
of Y ®Y.)

Thus, letlV,. be a Bell measurement for thth EPR pair — a measurement of both® X andZ ® Z. For a
stabilizer EPPW, commutesvith M, ® M, for all 1, r (note that eacld/,, is likely to involve more than one EPR
pair). Thus, if Alice and Bob first measure all the operatais® M, and then measuné’,. for all r after the EPP is
concluded, the result is the same as if they first mea8grand thenl/,, @ M,,. Since they do not need the results of
the measuremeni¥’,., it is again equivalent if Eve measurés. instead of Alice and Bob.

That is, the following two situations are the same: a) Evéquars her attack4d and then Alice and Bob measure
M, ® M,,, and b) Eve performgl, measure$l,., and then Alice and Bob measutg, ® M,,. By the argument of the
previous paragraph, the attack in b) produces a densitypwéth the same fidelity to n EPR pairs as the attack in a).
The attackA followed by measurement 67, is a Pauli attack: The initial state is a Bell state (the tepsoduct of
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|w) for all pairs), and the final state is a mixture of tensor pridof Bell states (the outcome of measuriig for
each pair). Each tensor produ¢® ;) of Bell states can be associated with the unique Pauli dper®; that maps
[T H)@N to |®,), so Eve's attack i$P;, ¢;), whereg; is the probability of getting the outconi@,). Therefore, the
lemma holds for a hypothetical protocol in which Alice andoBuoeasurel/,, ® M,, directly.

Of course, Alice and Bob have no way of doing this, so instkag must measurs/,, separately and compare
results (with one- or two-way communications, as appragyiaSince this gives them more information, it certainly
cannot help Eve. On the other hand, they don’t actually wesatiformation — from the definition of a symmetric EPP,
only the relative measurement outcome between Alice andrBafters. Therefore, having Alice and Bob measure
M, ® M, together produces the same fidelity and chance of abortinfias they measur&/,, separately. ~ QED

This Lemma is described irDZS] as a “classicalization” oudqtum-to-classical reduction” because it reduces
Eve’s general quantum attack to a Pauli attack, which issidakin the sense that it can be described by classical
probability theory. Lemmﬂz allows us to simplify our dissios to just Pauli channe(®;, ¢;).

We can simplify further by taking into account the symmetithe QKD protocol. Note that in the EPP protocols
we described, Alice and Bob permute their qubits randomfgigedoing any other operations. So we may as well
assumey; = g; wheneverP; is a permutation of;. That is, the attack is symmetric on the EPR pairs. Similamly
the two-basis scheme, Alice performs randomly one of thedparationd, H, which produces a symmetry between
the X andZ bases, so we can also assugne= ¢; wheneverpP; is related taP; by the Hadamard transform on any
number of qubits. In the three-basis scheme, we can asgume; whenP; andP; are related by" or 7% on some
set of qubits.

Now, in the EPP protocols, Alice and Bob measure a randonmeswbs: qubits to test the error rate. From this,
they are supposed to figure out what sort of Pauli channeltterm has undergone. If the noise occurs independently
on each qubit, this is just a straightforward problem inistiatl inference. Of course, an eavesdropper need not use
such a simple attack, but the symmetries of the protocobdliiw Alice and Bob to make a good guess as to the true
channel. For one thing, Eve has no way to distinguish betweetest bits and the key bits, so the error rate measured
for the test bits should be representative of the error ratthe key bits. What's more, Alice and Bob learn a good
deal about the basis-dependence of the channel as well.

Let us first consider the two-basis case more carefully. 8sgplice and Bob find there apem ; errors among the
mjy qubits for which Alice did the operatioh these represetX andY Pauli errors introduced by Eve. Similarly, they
find pgympyg errors in themy qubits for which Alice did the operatiof; these represent and Z errors introduced
by Eve. If this channel were an uncorrelated Pauli chatylel ¢y, ¢%), on average, we would expeet = ¢% + ¢}-
andpy = ¢% + ¢%. In fact, if we consider the effective error rates after undahe I, H operations, we find
qx = (¢% + q¢%)/2 andqz = (¢% + ¢%)/2 becausd and H are equally likely. Thatisgx = gz. The effectiveY’
error rategy = ¢%.

Note that in the two-basis case, Alice and Bob are unable docethe most likely values afx, gy, andgz;
they can only learpx = gy + qz andpz = gx + qy. Given the symmetry betweehand H, they in fact have
px = pz = (pr + pwu)/2, but our discussion will keepx andpy as separate parameters. This allows most of our
results to also apply to the efficient ca@ [@, 24], whHeaed H have different probabilities.

The fact that Alice and Bob cannot completely learn the attarastics of even an uncorrelated Pauli channel
suggests that it might be helpful to measure in more basess. iFthe advantage of the six-state scheme, which is
related to the three-basis EPP protocol. In that case, AlickBob measurg;, pr, pr2. For an uncorrelated Pauli
channel¢%, 4%, 4%), pr = ¢% + &%, pr = &% + ¢%, andpr2 = ¢% + ¢%. Given the symmetry of the problem, after
undoing the rotations, we get = ¢y = qz = (¢% +¢% + ¢%)/3 = (p1 + pr + pr2)/6. Again, our discussion will
allow gx, gy, andqz to be different to accommodate the efficient six-state maito

Given the error test, Alice and Bob deduce some values €ithery, p or for all three quantitiegx, gy, ¢z.
However, the error rate on the tested bits is ariyseto the error rate on the data bits. Therefore, they shouldnse
EPP that is flexible enough to correct slightly more or lessynBauli channels than indicated by the test. In particular
when they deducey, ¢y, andgz, they should perform an EPP capable of correcting any Phatiel(¢’ , ¢}, ¢%)
with |¢! — ¢;| < efori = X, Y, Z and some smadl. Further, we should assume that, for anshe fidelity of the final
state ton EPR pairs is exponentially close tan N.

When Alice and Bob only learpx andp, they should allow additional flexibility for the value ¢f.. That is,
their EPP should correct any Pauli chanfg} — a, a, py — a) (with all three parameters non-negative), again with
Ipt — pi| < 2¢, fori = X, Z. Provided Alice and Bob use such an EPP, the next lemma sayghtherror test works
and allows them to correct any symmetric Pauli channel,usitgn uncorrelated one.
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Lemma 3 Suppose thé&V EPR pairs experience a Pauli chann@;, ¢;) which is symmetric over th& pairs, and

that they use an EPP which corrects for any error rate closthtse shown by the test bits, as described above. Then
either they abort with high probability, or the final statedhfedelity exponentially close toin NV to the state ofi EPR
pairs.

Since we only need to consider Pauli channels, the proo$tsaju exercise in classical probability, and is given in
Appendix[B.

From Iemmaﬂz anﬂ 3, we know that for the EPP protocols we dengjiven any strategy for Eve, either she has a
large chance of getting caught, or the final state will hagh fidelity ton EPR pairs. Combining that with Iemnﬂa 1,
we have shown:

Theorem 4 The EPP protocols for QKD are secure and correct.

4.3 Prepare-and-Measure Protocols are Secure

Given theoren[|4, Shor and Presk|E|[33] showed that one camepthe security of BB84. The same technique can
be applied to show the security of the six-state sche@e [EBgse two results can be combined into the following
theorem:

Theorem 5 (]) Given a QKD protocol based on a CSS-like 1-EPP, there exiSggepare-and-measure” QKD
protocol with similar security. That is, for any strategy Bye to attack the “prepare-and-measure” protocol, there
exists a strategy to attack the EPP protocol with similar hability of causing the protocol to abort and similar
information gain to Eve if it does not abort. (Similar hereane that the security parameters are polynomially
related.)

Proof:

The reduction to a “prepare-and-measure” protocol is dena series of modifications to the EPP protocol to
produce equivalent protocols. The main insight is thatXhtype measurements do not actually affect the final QKD
protocol, and therefore are not needed. Théype measurements give the error syndrome for phagertors, which
do not affect the value of the final key. Instedflerrors represent information Eve has gained about the keg. T
phase information thus must be delocalized, but need noalibe corrected. The upshot is that Alice and Bob need
not actually measure th¥-type operators and can therefore manage without a quardgomuter. Our initial goal is
to manipulate the EPP protocol to make this clear. Xhtype measurements do not, however, disappear completely:
instead they become privacy amplification.

For the first step, we modify the EPP to put it in a standard foecause it is a CSS-like 1-EPP, there is
no branching in the tree diagram, and each operator beinguregis eithetX -type or Z-type. The operators all
commute, and do not depend on the outcome of earlier measatenso we can reorder them to put all of #hype
measurements before all of thé-type measurements. Let us recall Definition 4 for a CSS4#&EPP. Now we have
an EPP consisting of a series Bftype measurements, followed by a seriesXotype measurements, followed by
CNOTs and Pauli operations (which we can represeiiit a5 and/orZ on each qubit). Then Alice and Bob measure
all qubits in theZ basis.

As a second step, we can move dllPauli operations to before th€-type measurements, since they commute
with each other. Moreover, if Alice and Bob are simply goiagreasure a qubit in thg basis, there is no point in first
performing aZ phase-shift operation, since it will not affect at all thetdbution of outcomes of the measurement.

We now have an EPP protocol consistingtype measurements, followed By Pauli gates, followed by -
type measurements, followed by a sequence of CNOT gatedwlioies not depend on the measurement outcomes.
But nothing in the current version of the protocol dependshenoutcomes of the&-type measurements, so those
measurements are useless. We might as well drop them. Fudhes X Pauli operations and CNOT gates are just
classical operations, so we might as well wait to do theml aifiter the Z basis measurement, which converts the
qubits into classical bits.

What's more, it is redundant to perforfrtype measurements followed by measuremerif édr each qubit. We
can deduce with complete accuracy the outcome of Zattpe measurement from the outcomes of the measurements
on individual qubits. For instance, if a sequence of thrég isimeasured to have the valu@l, then we know that
measurement of; ® Z, ® Z3 will give the result+1, as the parity of the three bits is even.
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Thus, we are left with the following protocol: Alice prepam@number of EPR pairs, and sends half of each to Bob.
She and Bob each perform the correction rotatibor H for the two-basis schemé, T, or T2 for the three-basis
scheme), then measure each qubit in thbasis. They use some of the results to test the error rategratite rest
they perform some classical gates derived from the oridtRa?.

In fact, since Alice can perform her rotation and measurdrnefore sending any qubits to Bob, she need not
actually prepare entangled states. Instead, she simpérgis a random number, which corresponds to the outcome of
herZ basis measurement, and sends Bob the state to which the ERW®ph have collapsed, given that measurement
result. That is, she sends hi) or |1) rotated by the appropriate gatg ¢, T', or T2). Bob inverts the rotation and
measures.

Then they perform classical gates. To understand whiclsgdtes helpful to look more closely at the original
EPP. When the EPP is based on a CSS code/Ztigpe operators correspond to the parity checks of a clalssic
error-correcting cod€’;, and theX -type operators correspond to the parity checks of anothssical cod&’s, with
Cs- C Cy. The quantum codewords of the CSS code are superpositiaiisatdissical codewords from the cosets of
C5- in Cy. Measuring theZ-type operators therefore corresponds to determiningrtioe &yndrome foCy, whereas
measuring theX -type operators determines the error syndrome(fer The usual 1-EPP protocol for correcting
errors is for Bob to compute the difference, in both basetsyden Alice’s syndrome and his syndrome, and then to
perform a Pauli operation to give his state the same synds@seilice’s state. That is, Alice and Bob now each
have a superposition over the same cosét:pfwithin the same coset @, (or rather, they have an entangled state, a
superposition over all possible shared cosets for a giveropayndromes). The decoding procedure then determines
whichcoset ofCy- they share and uses that as the final decoded state.

More concretely, we can describe the classical procedudlass: For the error correction stage, Alice computes
and announces the parity checks for the cOgdeBob subtracts his error syndrome from Alice’s and flips fatscord-
ing to the optimal error correction procedure) to productatesvith0 relative error syndrome; that is, he should now
have the same string as Alice. Then Alice and Bob performapgiamplification: they compute the parity checks of
Cs5- (i.e., they multiply by thegeneratomatrix of C2) and use those as their final secret key bits.

There is one final step to convert the protocol to a “prepakraeasure” protocol. Instead of prepariNgjubits
and sending them to Bob, Alice prepa2@¢(1+¢) (for BB84) or3 N (1+¢) (for the six-state scheme). And instead of
waiting for Alice to announce which rotation she has perfedr{, H, T', or %), Bob simply chooses one at random.
Instead of rotating and then measuring in #idasis, Bob simply measures in thg Y, or Z basis, depending on
which rotation he chose. Then Alice and Bob announce thaiefizand discard those bits for which they measured
different bases. With high probability, there will be atde& remaining bits. Alice and Bob perform the error test on
m of them, and do error correction and privacy amplificatiortt@remainingV —m. Since the discarded bits are just
meaningless noise, they do not affect the security of thdtieg “prepare-and-measure” protocol. The only differen
is that security must now be measured in terms of the renminits rather than the original number of qubits sent.
When we begin with a two-basis scheme, we end up with BB84nwiebegin with a three-basis scheme, we end up
with the six-state protocol. QED

5 Difficulty in generalization to two-way EPPs

An obvious attempt to generalize theorﬂm 5 to two-way EPRgdme to simply use CSS-like (those wilrtype and
Z-type measurement operators only) 2-EPPs instead of GBI-EPPs. Unfortunately, this approach fails; another
condition is needed.

For instance, consider the following two-way EPP, which i EPP 1: Alice and Bob each measufex Z on
pairs of EPR pairs. This can be implemented as a bilateral X&iRe performs an XOR from the first pair to the
second, and Bob does the same. Then both Alice and Bob mdasirgubit in the second pair and broadcast the
measurement result. If Alice’s and Bob’s measurement anécdisagree, they discard both pairs. On the other hand,
if Alice’s and Bob’s measurement outcome agree, then thep kige first pair for subsequent operations. Now, if there
is exactly one bit flip error between the two pairs, Alice arubBvill disagree; otherwise they agree. Note that at most
one EPR pair out of the original two would survive the measwet, but if Alice and Bob disagree, they discard both
pairs. They do this for a large number of pairs; the surviERR pairs have a lower bit flip error rate than the original
ones.

Unfortunately, the surviving pairs also havaigherrate of phase errors, since phase errors propagate backward
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Figure 4: Tree diagram for EPP 1

along a CNOT. Therefore, in the next round of the EPP, Alicg BRab measuré& ® X on pairs of EPR pairs. This
can be implemented by performing a Hadamard transforngvi@t by the bilateral XOR and measurement described
above. Alice and Bob should then perform another Hadamaretton the surviving EPR pair to its original basis.
This procedure can detect the presence of a single phasearetine two pairs. If Alice and Bob discard EPR pairs for
which their measurement results disagree, the surviviirg pall have a lower rate of phase errors than before.

The bit flip error rate has increased again. However, the ffistteof the two rounds taken together has been to
decrease both th& and Z error rates (provided the error rates are not too high torbegth). Alice and Bob can
continue to repeat this procedure, measutfig X alternately withZ ® Z, and the error rates will continue to
improve. However, each round reduces the population of ERIR py at least half, so a better strategy is to switch to
a more efficient one-way EPP once the error rates have drdpghd point where one is viable. Provided the initial
error rate is not too large, this procedure eventually caye® The tree diagram for EPP 1 is given in figﬂre 4.

The whole procedure only consists of measuring operatoishwdre eitherX -type or Z-type, so the EPP is
CSS-like. Still, we cannot convert this EPP to a “prepard-areasure” BB84 QKD scheme.

What goes wrong? As is clear from figLI]e 4, the EPP describeerisdefinitely a two-way EPP, not a one-way
EPP. In order to know which measurement to perform for thersgcound of the protocol, both Alice and Bob must
know which EPR pairs survived the first round. Similarly,hie third round, they must know which EPR pairs survived
the second round, and so forth.

In a “prepare-and-measure” scheme, Alice and Bob make eill theasurements in thé basis, and ignore the
X -basis parity checks because phase errors have no direct eff the final key. They can therefore easily deduce
the values of any operators which are the product ofa| but have no way of figuring out the measurement result
for a product of allX's. Since the second round consists of measulingperators, Alice and Bob have no way of
determining which bits to keep for the third round of the pomtl, and therefore cannot complete the third round of
the error correction/detection process. That is, they dd&now along which branch in the tree diagram they should
proceed.

In a more intuitive language, the problem is that Alice andb Bo not have quantum computers in a prepare-and-
measure protocol. Therefore, they cannot compute the @resesyndrome, which corresponds to the eigenvalues of
the X -type operators. For this reason, they do not know whichqito throw away (conditional on the phase error
syndrome) and cannot complete the QKD process.

6 Two-Way QKD

Having understood the failure of EPP 1, we now present a géination of theorerﬁ| 5.

Theorem 6 (Main Theorem) Suppose a two-way EPP is CSS-like and also satisfies thevfioiaconditions:

1. The tree diagram only branchesAttype operators, not ak -type operators.
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Figure 5: Tree diagram of a 2-EPP satisfying the conditidnbenren{b.

2. The final decoding operatiori$, can depend arbitrarily on the outcome of the measufetype operators,
but cannot depend on the outcomes of the measkirtybe operators at all. The correction operatidf can
depend on the outcome &f-type operators, but only by factors &t

Then the protocol can be converted to a “prepare-and-meadSQKD scheme with security similar to the EPP-based
QKD scheme.

To understand these conditions, recall that the outcomé&styfpe operators represent the phase error syndrome.
Taken together, the two conditions say that the outcomastyfpe operators are used to perform phase error correction
(by the factors ofZ in the correction operatd?, ), but nothing else. For instance, no post-selection basé¢deophase
error syndrome is allowed. From there, the intuition is titel to that for the proof of the Shor-Preskill result
(theorerrﬂS): Phase errors do not affect the value of the kethere is no need for Alice and Bob to compute the
phase error syndrome at all. Therefore, Alice and Bob do ealiyr need quantum computers and can execute a
“prepare-and-measure protocol” instead.

The tree diagram of a 2-EPP satisfying the conditions ofttiféerem might look like the one depicted in figlﬂe 5.
The “prepare-and-measure” protocol produced by this #radras the following form:

1. Alice sends Bol2 N (1 + ¢) qubits, randomly choosini@) or |1) for each and putting each in either thieor Z
basis at random.

2. Bob chooses to measure each qubit inXher Z basis at random.

3. Alice and Bob compare their measurement bases and disezsd qubits for which the bases disagree. They
keepN remaining qubits.

4. Alice and Bob usen of the qubits to estimate the error rate from the channefingetaluesp x andp .

5. They now perform a combination of classical two-way edetection/correction and classical privacy amplifi-
cation based on the EPP. The outcomeg sfserve two different functions: “advantage distillatiand also
error correction. Indeed, Alice and Bob’s ability to choadeich branch to follow (e.g., which EPR pairs to
keep or throw away) depending on theoperators means that Alice and Bob can perform error detechot
necessarily all bit-flip errors are corrected. Since thikighly analogous to the “advantage distillation” pro-
cedure in classical cryptography, we will use the same namehote such a procedure. In addition, the
operators measured in the EPP can also act as classicglqiaitks performed for error correction. Finally, the
X operators measured become parities extracted for privagjification. If A/, is an.X-type operator, let,,
be a vector which ig for any coordinate wher&/,, has anX, and is0 for any coordinate wherg/,, acts as the
identity /. Consider the vector spadé generated by the,’s for consecutiveX -type operators. Then extract
the parity for all vectors: in the dual space/+, of V. These become the bits used in the next round of error
correction.
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7 Another Two-Way EPP

Before proving the main theorem, we give an example of a tag-BPP that satisfies the conditions of the theorem.
Like EPP 1, it will consist of alternating rounds of measueats designed to handle bit flip errors (“B steps”) and
phase errors (“P steps”).

B step A B step is just the same as the first round of EPP 1: Randonrinigte all the EPR pairs. Afterwards,
perform a bilateral XOR between pairs of EPR pairs, and nreasue of the output pairs. This effectively measures
the operatoZ @ Z for each of Alice and Bob, and detects the presence of a shiglip error. Again, if Alice and
Bob’s measurement outcomes disagree, they discard theniegn&PR pair.

Note that this is similar to a classical protocol by Maurarddvantage distillatiormg].

The second round must deal with phase errors; however, waatibe able to discard EPR pairs based on the
result, since the conditions of the theorem bar us fromiatjeyur protocol based on the measurement results. Instead,
we take inspiration from the classical repetition code.

A simple way to correct a single bit flip error is to use the mijovote and encode the sta® — |000), |1) —
|111). Therefore,

al0) 4+ B]1) — «|000) + G]111). (1)

Suppose the system is now corrupted by some bit flip errorsndlesbit flip error can be detected by performing a
majority vote. More precisely, one measutes’, to see if the first bit agrees with the second bit and as&s to
see if the first bit agrees with the third bit. These two measients can be done coherently. The outcomes of the
measurements are collectively called the error syndrordean be used to correct the state coherently.

The three-qubit bit flip error correction procedure can lseed into a three-qubit phase error correction procedure
by simply applying the Hadamard transform, and into an Eéle\ving BDSW B].

P step Randomly permute all the EPR pairs. Afterwards, group tR&pairs into sets of three, and measireX»
and X; X3 on each set (for both Alice and Bob). This can be done (foaimst) by performing a Hadamard transform,
two bilateral XORs, measurement of the last two EPR paidadinal Hadamard transform. If Alice and Bob disagree
on one measurement, Bob concludes the phase error was probaine of the EPR pairs which was measured and
does nothing; if both measurements disagree for Alice arlal Bob assumes the phase error was on the surviving
EPR pair and corrects it by performingZaoperation.

When there is only a single phase error among the three ERR, plaiis procedure outputs a single EPR pair
with no phase error. However, when there are two or threegpbasrs, the final EPR pair always has a phase error.
Therefore, when the phase error rate is low enough, iteratiaghis procedure will improve it indefinitely, while for
higher phase error rates, the state will actually get worse.

The complete EPP protocol (EPP 2) consists of alternatingdBasteps for a number of rounds, until the effective
error rate has decreased to the point where one-way EPPsilammver. Then we decide on an appropriate CSS
code and perform the corresponding one-way EPP. To get appisrformance, we should in fact uasymmetric
CSS codes, which correct a fractighn of bit-flips and a different fractiorf, of phase errors. Note that, whenever
1—H(f1)— H(f2) > 0, asymptotically, an asymmetric CSS code exists that willexi those fractions of errors with
high fidelity. (A better bound might be obtained by considgrthe correlations between bit-flip and phase errors. See
[@] for details.) We can view the whole EPP protocol as a kiftivo-way concatenated code.

EPP 2 satisfies the conditions of theorgm 6: it is CSS-likd,raasurements do not branch based on the outcome
of X-type measurements (which only occur during P steps anckifirial CSS code). Furthermore, we only do Pauli
operations based on the outcomeXftype measurements. Thus, we can apply thed]em 6 to conP&Yt2Ento the
following “prepare-and-measure” QKD scheme:

Protocol 2: repeated concatenation of BXOR with the three-gbit phase code

1. Alice sends Bob a sequenceléfsingle photons as in either BB84 or the six-state scheme.

2. Alice and Bob sacrificen of those pairs to perform the refined data analysis. Theytdithie error rates are
too large.
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3. Alice and Bob randomly pair up their photons. Alice pulfliannounces the parity (XOR) of the bit values of
each pair of her photons, say; 1 @ zo;. Bob publicly announces the parity (XOR) of his correspogdair
of photons, sayjs;—1 @ yo;. If their parities agree, they keep one of the bits from thie pai.e., Alice keeps
x2;—1 and Bob keepg,;_;. If their parities disagree, they throw away the whole p@ihis step comes from a
B step.)

4. Alice and Bob randomly form trios of the remaining bits aaanpute the parity of each trio. They now regard
those parities as their effective new bits. (This step caofimes a P step.)

5. Steps 3) and 4) are repeated a prescribed number of times, which depends on the error rate measured in
step 2.

6. Alice and Bob randomly permute their pairs. They then y@pmodified Shor and Preskill error correc-
tion/privacy amplification procedure. That s, Alice randy picks a codeword in the code”; and broadcasts
u + w to Bob, wherew is her remaining bit string. Owing to the remaining noisetia thannel, Bob’s current
bit string is insteadv 4 e. He now adds: + w to his string to obtain a corrupted stringt e. He can apply error
correction for the cod€’; to recoveru. Here we use a modified Shor and Preskill procedure that edoais
an asymmetric CSS code that corrects up to a fracfigrof bit-flip errors and a different fractiorfy, of phase
errors.

7. Alice and Bob perform the coset extraction procedure taiatihe coset: + Cs, which gives their final key.

In order to determine if the resulting QKD protocol is secaraot at a given error rate, we need only study the
behavior of EPP 2. Furthermore, by Iemrﬂas 2 Hnd 3 and thevartirg discussion, we need only study the behavior
of EPP 2 for uncorrelated Pauli channels with nice symmetoperties.

For the six-state scheme, this is completely straightfodwave just plug in the upper bounds on the error rates
(¢x,qv,qz) and see if EPP 2 converges. This upper bound on the errorgiatesthe worst case behavior. For the
usual six-state scheme, we may even asspgme: ¢y = ¢z = ¢q. We can test for convergence with a simple computer
program; we follow the error rates through B and P steps thif are small enough so that CSS coding is effective.
If the program indicates convergence {oithe EPP definitely converges, and we have proved the dix{statocol is
secure at bit error rate In this way, we have shown the six-state scheme remainsesézian error rate of at least
23.6%. If the program does not converge, that does not necesgaply that the six-state scheme is insecure using
this post-processing method; it simply means it did not eoge within the regime where our program is numerically
reliable.

A study of BB84 is slightly more difficult. Alice and Bob do nkhow (¢x, gy, qz), onlypx = ¢y + ¢z and
Pz = qx + qy. There is one free parameigr = a; then, for BB84gx = qz = p — a, wherep = px = pz is the
bit error rate. To show that BB84 is secure using this post@ssing scheme, we must show that EPP 2 converges for
all values ofa € [0, p]. However, this is not immediately compatible with a num&lrepproach, since we would have
to check infinitely many values af Instead, we first show analytically that= 0 (noY errors) gives the worst case;
the proofis in appendiEC. Then we need only check in our magthat EPP 2 converges for the uncorrelated Pauli
channelp, 0, p). Our program then indicates that BB84 is secure to an ertemfaat least 7.9%.

It turns out, however, that alternating B and P steps is ntitrgh. EPPs based on other arrangements of these two
steps can converge at higher error rates. For instancénddhtee-basis protocol, we have discovered that a sequence
of five B steps, followed by asymmetric CSS coding, convetges error rate of at leag6.4%, and that therefore
the six-state scheme remains secure to at least this bitraten Similarly, setting: = 0 in the two-basis protocol, a
sequence of five B steps, followed by six P steps, followeddyyrametric CSS coding converges up to an error rate
of at least18.9%. Sincea = 0 is again the worst case, this shows that BB84 can be securéei@sathis bit error rate.

We remark that, in the above discussion, we have assumedlibatand Bob simply throw away the error syn-
drome of each round immediately after its completion. Suthssumption greatly simplifies our analysis. However,
in principle, Alice and Bob can employ an improved decodicigegsne where they keep track of all the error syndromes
and use them to improve the decoding in future rounds of therdhm. It would be interesting to investigate in the
future how much the tolerable error rates can be increaseitly an improved decoding scheme. Of course, other
improvements might be possible as well, including differeinds of B and P steps. The threshold error rate (i.e.,
the maximal bit error rate that can be tolerated) of a prepatemeasure QKD scheme remains an important open
guestion.
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Figure 6: Two equivalent ways to measure the operaXqr¥, and X; X3.

8 Proof of the Main Theorem

To prove theorerﬂ 6, we begin with a QKD protocol using the tway EPP directly. The security of this protocol
follows immediately from theorerﬂ 4. As in the proof of thelmrE, we then rearrange the protocol into a standard
form in which it is clear that the(-type measurements are unnecesarry. From there, it is grstgsto a prepare-
and-measure protocol.

1. Alice preparesV EPR pairs. She performs a Hadamard transform on the secdmidfauhalf of them, chosen
at random.

2. Alice sends the second qubit from each EPR pair to Bob. B#hawledges receiving them, and then Alice
tells him which ones have the Hadamard transform. Bob regeah Hadamard transforms.

3. Alice and Bob seleat: EPR pairs to test the error rate in the channel.

4. Alice and Bob perform the two-way EPP on the remainiig m EPR pairs. They now have a number of EPR
pairs of very good fidelity.

5. Alice and Bob measure each remaining EPR pair iiihiasis to produce a secure shared key.

The above protocol assumes a two-basis QKD scheme. Forexlilasss scheme, Alice and Bob apply one of the
three operations, T, T? instead off or H.

To reduce the above EPP protocol to a prepare-and-measgjr@emvould like to eliminate the phase error correc-
tion steps in the EPP protocol. For a CSS-like EPP, phase@rection comes completely from the measurement of
X-type operatord,,. We can perform such a measurement as a Hadamard transétioweld by a series of CNOTs
with the same target qubit. Then we measure the target quidtHadamard transform the others back to the original
basis (see, for instance, the left network in ﬂg. 6). Thicprure computes the parity of all the control qubits and the
target qubit in theX basis, and gives the eigenvalueldf,. (Of course, in the context of an EPP, each of Alice and
Bob perform this procedure, and compare results.)

However, this series of gates — Hadamard, CNOT, Hadamardegtialent to a single CNOT gate with control
and target reversed. This means, for example, that the twaits depicted in fig[|6 are mathematically equivalent.
Note that the right hand side depicts an essent@lgsicalcircuit composed of CNOTs (with a couple of X-basis
measurements at the end). Instead of working with a quaninenitfor phase error correction, as depicted by the left
hand side of the figure, one can work with the essentiallysatascircuit in the right hand side.

The same principle holds in general-basis measurements can be written as effectively cldssicaits consist-
ing of a series of CNOTs (with the same control qubit but défe target qubits), followed by a Hadamard transform
and measurement on the control qubit. The qubits which gaitvie procedure have only experienced the CNOT
gates. So it will be easy to convert this circuit to a trulyssigal one.

Note that each target qubit gets replaced by its XOR with tr&rol qubit; in other words, by a parity which
is orthogonal to the vectar, derived from,, by replacingX’s with 1's. For instance, in our sample EPP 2, we
measure twoX operators in a row for a set of three qubits, X» and X'; X3. The effect of these measurements in the
Z basis is to mapa, b, ¢) — |a + b,b,¢) — |a + b+ ¢,b,c). Thatis, the first qubit gets replaced by the parity of all
three qubits. We could also see this by noting that the onhtmaal vector which is orthogonal to botfi, 1, 0) and
(1,0,1)is (1,1,1).
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However, for EPPs satisfying the conditions of theoﬂam 6¢maice of M, later in the protocol depends on the
outcome of theX-type measurement/,,. Therefore, we can delay making the actual measuremerth@tend of
the protocol, after we have measuredlbperators. The EPP may call for correcting phase errors uifatedy by
performingZ rotations based on the measurement results, but we canttielss/as well using the identities

CNOT(Z®I) = (Z®I)CNOT )
CNOT(I® Z) = (Z® Z)CNOT. 3)

That is, we can move 4 rotation from before a CNOT to after it, possibly at the pridédaving to do two of them
instead. Ultimately, we end up with a circuit consistingyof Z-basis measurements and quantum CNOT gates
(whose position may depend on the outcome ¢&f mmeasurement), followed h¥ -basis measurements and phase
shifts. This is an equivalent EPP to the one we began with.

In the QKD protocol, after performing the EPP, Alice and Bobasure each surviving EPR pair in thebasis to
produce a key. But phase shifts are irrelevant if we are iniately going to measure in the basis, so Alice and Bob
need not actually perform them or th&basis measurements controlling them.

Alice and Bob now have a completely classical circuit, faim by measuring all the qubits in tiebasis. They
get the same result if they instead measure all the qubitsdinsithenperform the classical circuit. The circuit they
have is exactly the error correction and privacy amplif@matprotocol described in se@. 6 as coming from the EPP.
Note that any communication from Bob to Alice occurs during tlassical circuiafter the initial measurement.

To complete the transformation to a “prepare-and-meagumbdcol, we follow a few additional steps from Shor
and Preskill. Instead of preparing a number of EPR pairs agalsaring them, Alice can just generate a random bit
string, and send Bob the state he would have gotten if she thadePR pairs and got that measurement result. That
is, she sends Bob a series(s and1s chosen at random, and puts half of them in #dasis (when in the EPP
protocol she would perform a Hadamard transform in ﬂepnk),mjts half of them in th& basis (when there would
be no Hadamard in the EPP protocol). Bob receives them, faai®slice to tell him the basis, and then measures in
that basis.

Of course, we can wait to decide on the EPP until after Bobivesdis states, so it is equally good if Bob guesses
a basis for each qubit and measures immediately. Then whea #lls Bob which basis she used, they discard any
bits where the bases disagree. This gives the final “prepademeasure” protocol.

To prove the security of a six-state protocol, one uses thasesX, Y, andZ in the appropriate place instead of
just theX andZ bases. Otherwise, the proof is identical.

9 Concluding Remarks

We have proven the unconditional security of standard qurakey distribution schemes including BB84 and the six-
state scheme. Our proof allows Alice and Bob to employ twg-alassical communications. Compared to previous
schemes, it has the advantage of tolerating substantiglhehbit error rates. Indeed, we have shown that the BB84
scheme can be secure even at a bit error rate of 18.9% andibits scheme at 26.4%. By tolerating such high bit
error rates, our result may extend the distance of QKD amgase the key generation rate. Our result is conceptually
interesting because it may spur progress in the study ofwasp-entanglement purification protocols (EPPs). We
have introduced a new subclass of two-way entanglemerfigatibn protocols (EPPs) and demonstrated that such a
subclass of protocols can be reduced to standard BB84 arsiktiséate scheme. Our results demonstrate clearly that
two-way classical communications can be used to enhancgetirecy capacity of a QKD scheme and also show the
six-state scheme can intrinsically tolerate a higher bdrenate than BB84.

Our versions of the BB84 and six-state QKD schemes requiveway classical communications between Alice
and Bob in the post-processing step of classical dataii.the error correction and privacy amplification stage)isTh
is not a bad thing in itself becausmy protocol of BB84 (or six-state) requires two-way classicammunications
anyway. Indeed, in the basis comparision step, Alice and @didicly announce their bases and throw away the
polarization data that are transmitted and received irudifit bases. In order for both Alice and Bob to know which
polarization data to keep, it is necessary to employ two-elagsical communications. Of course, the “one-way”
classical post-processing schemes require fewer roundsmmunication (and therefore less time) to complete, so
there appears to be a tradeoff between round-complexityegptotocol and tolerable error rate.
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Relating to earlier work on QKD, we remark that we have predithe first examples of unconditionally secure
schemes for advantage distillatiE[:@ , 31] in QKD. Hinawo-way entanglement purification techniques may
provide a simple way to understand other security proofsirfatance, in AppendED, we provide a simple derivation
of Inamori’s security proofsmq:j.g]. For future work, it wiol be interesting to take into account the effects of
imperfections including faulty photon sources, lossy ¢tes, and photon dark cou20].
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A Proof of Lemmal(]

The statements that Alice and Bob will most likely share tias key and that the key is essentially random are clear.
We will focus on proving the bound on Eve’s information. Thegf of this crucial part of LemmE 1 follows from the
following two claims, which originally appeared in supplemary Note Il of ].

Claim 7 (High Fidelity implies low entropy) If (n singlets|p|n singlets) > 1 — 4, whered < 1, then von Neumann
entropyS(p) < —(1 — 0) log,(1 — J) — dlog, ﬁ.

Proof: If (n singlets|p|n singlets) > 1 — §, then the largest eigenvalues of the density matrix musaiget than

1 — §. The entropy ofy is, therefore, bounded above by that@f = diag(1 — 9, (221;571), (221;571),---, (221371)).
That is, pg is diagonal with a large entryy — ¢ and with the remaining probability equally distributed between the
remaining22® — 1 possibilities. QED

Claim 8 (Entropy is a bound to mutual information) Given any pure statécp of a system consisting of two sub-
systemg’ and D, and any generalized measuremekitandY onC and D respectively, the entropy of each subsystem
S(pc) (wherepe = Trp|ocp){¢cpl) is an upper bound to the amount of mutual information betwgeandY .

Proof: This is a corollary to Holevo’s theoreﬂl?]. QED

B Proof of Lemma

We wish to show that, given any (not necessarily uncorrd)a®auli channel, our procedure of testing the error rate
and then choosing an appropriate code actually does conesetrors with high probability. The idea is that, because
of the random permutation, the EPP treats symmetricallgradirs with a given breakdown int§, Y, andZ errors
(the “type” of P;). The type of the true error will be close to the estimateatywye then show that the EPP performs
well for the likely types of error.

Since the channel is symmetric over Allpairs, the pairs chosen for error testing are a represeasdimple, and
the number of errors of any given kind in the sample will beselto the number of errors of the same kind in the
remaining pairs. What we mean by the “same kind” bears & itplanation. As discussed before the statement of
Lemmaﬂs, we only directly measure the presence of two outeottitee types of error, depending on which operation
(I, H, T, or T?) we perform. For instance, whehis performed, we measure the presence of onlpr Y errors.
However, since Eve has no knowledge of which operation id fmeany particular qubit, the sample of test bits with
a particular operation gives a good estimate of the numbtreoppropriate pair of errors in the remaining qubits of
the sample. For instance, the fraction of errors ambiegt qubits gives us a good estimate of the number of qubits
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with eitherX orY errors in them. Then the deduced ratesXqQfY’, andZ errors (as discussed before Lerrfpa 3) give
a good estimate of the actual error rates in the untestes. pair

For any particular instance of the protocol, the channeiopers a particulazV-qubit Pauli operatiorP; (with
probabilityg;). For any particulay, let¢¢ be the deduced fraction of errors of typgé = X, Y, Z) in the sample and
let ¢;* be the actual fraction of errors of typén the untested pairs (“d” for “deduced” and “u” for “untedt® Then
for large N, with high probability,

4 —af'| < e. )
(That is, the deduced error rate is close to the true errerralaturally,g¢ andg® will depend onj, but we suppress
this dependence to simplify the notation.

Let us now restrict attention to one particular set of vafiees;? andg® (which need not be equal, but which
satisfy condition@4)). If they! are large, Alice and Bob will abort the protocol. Otherwise, wish to show that the
EPP used by Alice and Bob will correct most errors with themameters.

To see this, we note that the EPP will correct the uncorreéRsili channelgy, ¢¥, ¢%») on N —m EPR pairs with
high fidelity . Suppose the EPP gives fidelif; whenever théV-qubit Pauli operatior; occurs (for a stabilizer
EPP,F; will be either( or 1). Then

F = Zp-ij’ (5)

wherep; is the probability of the Pauli operatiaf; for the uncorrelatedPauli channel (not the true channel). We
can break the sum ovgrinto two parts. The first part will consist of the sgtof j for which P; contains exactly
nx = ¢% (N —m) X errors;ny = ¢ (N —m) Y errors, andvz = ¢ (N — m) Z errors (then; are integers by the
definition ofg;*). The second part consists of all otheNow, letp be the probability of any particular error & so

S piFi <> pi=1-Y p, (6)

j¢s j¢s JjES
SO
F o= > piFi+Y niF )
jes i¢s
< pY Fj+1-pls] C)
jeSs
= 1-plS|(1 =) F/I8)). ©
jeSs
But
p=(g%)" (a¥)"™ (az)" (a1)"", (10)

whereq} =1 — (¢% + ¢5 + ¢%) is the probability of identity operations, amd = ¢} (N — m) is the actual number
of identity operationsS containg( N — m)!/(nx!ny!nz!n;!) elements, so using Stirling’s approximation, we find
2w 1
Nom' kg
This is only polynomially small invV — m. In order forF' to be exponentially close tbin equation Kp), we therefore
require thad 5 Fj be[l — exp(—O(N))] |5].
Now we can approximate the fidelity of the EPP for the geneaaliRhanne(P;, ¢;). We again writeF = > ¢; F;

(with the same;s, which only depend on the EPP, not the channel), and réedljt= ¢; = ¢n n, .n, Whenever
andj have the same numbensy, ny,nz) of X, Y, andZ errors. That means we can write

F= Z Anx ,ny,nz Z F;. (12)

nx,ny,nz 1€Sny ,ny ,ny

plS| = ( )2

(11)

But, except with exponentially small probability, the vedur x, ny, nz are within the allowed-sized window for
the EPP, which we have shown means thgt ¢ Fi = [1 — exp(—O(N))]|S|. Thus,

F= 3" ducnynlS|[l = exp(=O(N))] - exp(~O(N)). (13)

nx,ny,nz
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Since

Z an,ny,nz|s| = 17 (14)
nx,ny,nz
it follows that the fidelity for the general Pauli channeligenentially close td. QED

C Proofthat a = 0 is the worst case

In this section, we will show that it is sufficient to check the= 0 case (with noY errors) when determining
convergence of the 2-EPPs we study for the BB84 protocol.

Theorem 9 Suppose an EPP starts with a B step, followed by any seriesotibr P steps, followed by asymmetric
CSS coding. Supposge< p < 1/4. If the EPP converges for the uncorrelated Pauli char(ipe0, p), then it will also
converge for all uncorrelated Pauli channéls— a,a,p — a), with0 < a < p.

The initial conditionp < 1/4 simply ensures that (for any value @f the state is more likely to be correct than
incorrect, and will be satisfied easily by all parameter setsconsider. In fact, whep > 1/4, an intercept-resend
attack defeats BB84 (see sectﬂ)n 2).

Proof:

To do this, we will need to look at the behavior of the thre@erates as we perform steps of the protocol. After
each B or P step, there is a new set of effective error rateseopdirs surviving the round.

It is worth noting two things about protocols of the givenrforFirst, if the initial density matrix comes from a
Pauli channel, then the effective channel after any numberunds will also be a Pauli channel. This is because all
operations are from the Clifford group, which preservesRhali group. Second, if the initial channel causes errors
which are uncorrelated between EPR pairs, this propertyalgib be preserved after an arbitrary number of B and P
rounds. This is because both B and P rounds keep at most dme jpdirs which interact, so there is no opportunity to
create correlations between pairs which survive to themepid. Therefore, we can completely describe the effective
error rates at any given point in the protocol by a triglget, ¢y, ¢z).

Suppose we start with error rat@sy, gy, gz) and perform a B step. Given any of the 16 possible configuratio
of errors, we can deduce whether the remaining pair is diechiand if not, whether it has an error, and what kind of
error it is. The new error rates on the surviving pairs ara (& , ¢4, ¢%):

dx = (¢ +4)/ps, (15)
&y = 2qxqv/ps. (16)
a7z = 2(1—qx —qv —4qz)az/ps, (17)
ps = 1-2(gx +aqv)(1 —gx —aqv), (18)

wherepg is the probability that a pair will survive the check.
If we have error rate&gx, gy, gz) and perform a P step, we get new error rdtgs, ¢i-., ¢%):

dx = 3qi(gx +qv) +6q1gxqz + 3qxqy + %, (19)
¢y = 6aavaz +3ax(ay +qz) +3avay + ay, (20)
4z = 3a(gy +qz) +6axavaz + 3¢v-qz + 43, (21)
g = l—gx—qv —qz, (22)

whereg; is the initial probability of no error.
To prove the theorem, we change variables. Instead of wgmkith (¢x, ¢y, gz), we will work with (pz, px, A):

Pz = qx t+qy (23)
px = qvy +4qz (24)
A = qz —qy =px — 2a. (25)

As a increasespx andp stay the same, whilA decreases. We will show that the protocol behaves worsarget
A, so the worst case is = 0.

22



In the new variables, a B step maps the error rates fiompx, A) to (p, vy, A'):

Pz = pz/ps (26)
Px = [px —pXx + A =2pz - A)] /ps (27)
A" = [px(1—-2pz)+AQ - 2px)] /ps (28)
ps = 1—=2pz+2p7. (29)

Sincepx,pz < 1/2 always in the regime of interesf)’ is increasing inA, andp’, never depends on at all.
Providedl — 2pz — 2A > 0, p/y also increases with. When this is trueA’ andp’y also both increase with.
A P step takes the error rates frdpy, px, A) to (p7, p'y, A’) with the following relations:

Py = 3pz(1—pz)*+pY, (30)
Px = 3px(1—px)+0%, (31)
A = 3A%(1—2pz;—A)+ A3 (32)

This time,p’y andp’, only depend o x andpz, respectively, never oA. p’y increases withhx. A’ only depends
on A andpz, and increases with if two conditions —1 — 2pz — A > 0 andA > 0 — are simultaneously satisfied.

Claim 10 The following inequalities hold:
1. Atall points after the initial B step) > 0.

2. 1—2pz —2A > 0 always.

Note that whempx + pz < 1/2, so that at least half the time there is no error, it follownat th— 2pz — 2A > 0,
sinceA < px. However, it is not clear if the conditiony + pz < 1/2 is preserved under the B and P steps.

From this claim, the theorem will follow: consider runnirtgetprotocol starting with error ratég;, px, A) =
(p,p,p) Or (p,p, Ao), with Ay < p. Since the value gz at any given time only depends on the previous valyg0f
pz will always be equal in these two cases. At any time for the first case will be greater than or equaptpfor the
second case, anl for the first case will be greater than or equaltdor the second case. This is true by induction:
it is true initially, and at all stepgy’y, andA’ increase wittpx andA from the previous step. Thus, the worst case is
whenA = p, which means = 0.

Proof: (of claim)

Immediately after the initial B step)’ > 0, because in this stepx = pz = p by the symmetry of BB84, and
A > —p. After subsequent B stepd/ > 0if A > 0, sincel — 2px and1 — 2p are always positive.

Aftera P stepA’ > 0if 3(1—2pz—2/3A) > 0. This willimmediately follow if we can show —2p, —2A > 0,
since before a P ste@) > 0 always. Then by induction, we will have showhn > 0 at all points after the initial B
step.

Now, after a B step,

1—2py —2A" = [1-2p% —2px(1—2pz) — 2A(1 — 2px)] /ps (33)
= [2pz(1 —pz) + (1 —2pz — 2A)(1 - 2px)] /ps. (34)

The first term is always positive, so the sum is clearly pesiéis well when — 2p; — 2A > 0.
After a P step,

1—2p = (1—2pz)?, (35)

SO
1-2p, —2A" = (1-2pz)® —6A%(1 —2pz) +4A3 (36)
= (1—2pz—2A)[(1-2pz)*+2A(1 —2pz; — A)]. (37)

Again, this is positive wheth — 2p, — 2A > 0 andA > 0. This proves the claim and the theorem.
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D Inamori’s Security Proofs

In this Appendix, we provide a simple derivation of Inameroofs of BB84 and the six-state scheme and discuss
why our protocols can tolerate a higher rate than his.
Inamori’s protocols require two-way communications. Histpcol can be re-phrased as follows:

1. Alice and Bob are assumed to share initially a randomgstaimd the goal of QKD is to extend this string. Alice
and Bob also choose a classical error correcting €ode

2. Alice sends Bob a sequence of single photons as in eithB4BBthe six-state scheme.

3. Theythrow away all polarization data that are preparelifiarent bases and keep only the ones that are prepared
in the same bases.

4. Theyrandomly seleet of those pairs and perform a refined data analysis to find ewittor rate of the various
bases.

5. Alice measures the remainifg — m = s particles to generate a random string Sincev is a random string,
it generally has non-trivial error syndrome when regarded &orrupted state of the codeword®@f. Alice
transmits that error syndrome in an encrypted form to Bolis hdone by using a one-time pad encryption
with (part of) the common string they initially share as theg k

6. Bob corrects his error to recover the string
7. Alice and Bob discard all the bits where they disagree @sglonly the ones where they agree.
8. Alice and Bob now perform privacy amplification on the rémiag string to generate a secure string.

We remark that Inamori’s protocol is, in fact, a simple ercorrection scheme and satisfies the conditions of
Thm.|§. Therefore, it is convenient to study it using the laage of two-way EPPs introduced in the current extended
abstract.

D.1 BB84 with Inamori’s protocol

Let us now consider the efficiency of BB84 based on Inamorigqrol. Suppose the error rate of each basis is found
to bep in step 4. Now, in step 5 above, Alice and Bob have to sacrifigeeasshared secret key whose length must be
at least the size of the error syndrome ofsahit string. In other words, the length of the pre-sharedestdcey used
up by Alice and Bob is at least

lsac = sh(p) (38)

bits whereh(xz) = —zlogy x — (1 — z) logy(1 — z).

What is the length of the key they generate from the procegsalRhat in Step 7, Alice and Bob discard all the
bits where they disagree and keep only the ones where theg.aghe length of their reconciled key is, therefore,
given by the number of bits where Alice and Bob agree. In oftwds, Alice and Bob generate a reconciled key of
the length

r=s(l—p). (39)

Since Eve may have some partial information on the recosh&iyy, Alice and Bob have to sacrifice some of the
reconciled key for privacy amplification. Let us consideivacy amplification. For BB84, the worst case density
matrix is again of the form

diag(l — 2p, p, p, 0) (40)

in the Bell-basis using the convention Iﬂ [3].
In step 7, Alice and Bob post-select only the bits where thggga With such post-selection, the (unnormalized)
conditional density matrix becomes:
diag(1l — 2p,0,p,0). (42)

In other words, the phase error rate is:

p _p
(1-2p+p) 1-p “42)
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Therefore, Alice and Bob must sacrifice a further fraction

IBBsa=nh (%) (43)
-P
of their reconciled key for privacy amplification.

In summary, the length of the reconciled key-is= s(1 — p), as given by Eq[(39). Of which, a fractidnjﬁ)
has to be consumed for privacy amplification. Therefore,fiha key generated by Alice and Bob is of length
[1 — h(:E;)]s(1 = p). In addition, from Eq. [38), a length df.. = sh(p) of a pre-shared secret key has to be
consumed. Therefore, tieetkey generation rate is given by:

(2 o) —sh(p) = s(1—p) |1 _n (P _ )
[1 h(l—p)} s(1—p)—sh(p) =s(1—p) [1 h(l—p) l—p}' (44)
From Eq. ), one can conclude that in Inamori’s protodwd,riet key generation rate is positive provided that:
1—h(—p )——h(p) >0, (45)
L—p L—p

which is exactly what appears just before Section E@f [18].
Note that, for BB84, the maximal tolerable error rate of lwai's scheme is actually worse than in Shor-Preskill.

D.2 Six-state scheme with Inamori’s protocol

Let us now consider the six-state scheme. Suppose thatpmiStae error rate is found to he In Step 5, the length
of the pre-shared key sacrificed by Alice and Bob is the sanreBB84 and is given by Eq@S). Also, the length of
the reconciled key is the same as in BB84 and is given by. (39

Here is the key difference between the six-state scheme BBd:B-or the six-state scheme, there is more symme-
try. In particular, as discussed in Subsec 4.2, for aR BRt corresponds to the six-state scheme, one only needs
to consider a depolarizing channel. The density matrix is:

diag(1—3(p/2),p/2,p/2,p/2). (46)
On post-selecting the bits where Alice and Bob agree, thenfrmalized) density matrix becomes:

Therefore, the post-selected phase error rate is:

p/2 D
T30/ 102 20 D) (“8)

Comparing Eqs.@Z) anﬂ48), we see that a big differencedmat BB84 and six-state in the Inamori’s protocol
is that the post-selected phase error rate for the six-stately half of that for BB84. Consequently, Alice and Bob
sacrifice fewer bits for privacy amplification in the sixtgt@ase. In fact, only a smaller fraction, namely a fraction

fuiz = h (ﬁ) (49)

of the reconciled key needs to be sacrificed in the privacylifiogiion process.

In summary, the length of the reconciled key is- s(1 —p), as given by Eq.@Q). Of which, from Ed:d49), onlya
fraction h(ﬁ) has to be consumed for privacy amplification. Thereforefitrad key generated by Alice and Bob
is of length[1 — h(ﬁ)]s(l — p). In addition, from Eq.[(38), a length &f,. = sh(p) of a pre-shared secret key

has to be consumed. Therefore, tietkey generation rate is given by:

(gt |0 p s = s [ (g5 ) - 7 0)
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From Eq. ), one can conclude that in Inamori’s protocotlie six-state scheme, the net key generation rate is

positive provided that:
p h(p)

- () - 125> &1
which is precisely what Inamori gave in the Equation justenféroperty 1 on p. 3 om.9]. Comparing EqE(45) and
@), one can see that the key difference between BB84 arstatie for Inamori’s protocol is in the second term of
the expressions. In the case of the six-state scheme, thaneeixtra factor o? in the denominator inside the entropy
function. As noted before, this is because the six-stateraethas more symmetry and gives a lower phase error rate
(upon post-selection of bits where Alice and Bob do agrea) B3B84.

From Eq. ), Inamori’s protocol for the six-state casetcégrate a bit error rate of roughly2.6%. A more recent
protocol ] for the six-state scheme can tolerate a matlyitigher bit error rate and, unlike Inamori’'s scheme, it
requires only one-way classical post-processing. We rethart the six-state scheme with our Protocol 2 tolerates a
much higher error rate (abo2%, or as high ag6.4% varying the sequence of B and P steps) than a six-state scheme
with Inamori’s protocol.
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