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Abstract. We consider the scenario where Alice wants to send a se-
cret (classical) n-bit message to Bob using a classical key, and where
only one-way transmission from Alice to Bob is possible. In this case,
quantum communication cannot help to obtain perfect secrecy with key
length smaller then n. We study the question of whether there might
still be fundamental differences between the case where quantum as op-
posed to classical communication is used. In this direction, we show that
there exist ciphers with perfect security producing quantum ciphertext
where, even if an adversary knows the plaintext and applies an optimal
measurement on the ciphertext, his Shannon uncertainty about the key
used is almost maximal. This is in contrast to the classical case where
the adversary always learns n bits of information on the key in a known
plaintext attack. We also show that there is a limit to how different the
classical and quantum cases can be: the most probable key, given match-
ing plain- and ciphertexts, has the same probability in both the quantum
and the classical cases. We suggest an application of our results in the
case where only a short secret key is available and the message is much
longer. Namely, one can use a pseudorandom generator to produce from
the short key a stream of keys for a quantum cipher, using each of them
to encrypt an n-bit block of the message. Our results suggest that an
adversary with bounded resources in a known plaintext attack may po-
tentially be in a much harder situation against quantum stream-ciphers
than against any classical stream-cipher with the same parameters.

1 Introduction

In this paper, we consider the scenario where Alice wants to send a secret (clas-
sical) n-bit message to Bob using an m-bit classical shared key, and where only
one-way transmission from Alice to Bob is possible (or at least where interaction
is only available with a prohibitively long delay). If interaction had been avail-
able, we could have achieved (almost) perfect secrecy using standard quantum
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key exchange, even if m < n. But with only one-way communication, we need
m ≥ n even with quantum communication [1].

We study the question of whether there might still be some fundamental dif-
ferences between the case where quantum as opposed to classical communication
is used. In this direction, we present two examples of cryptosystems with perfect
security producing n-bit quantum ciphertexts, and with key length m = n+ 1,
respectively m = 2n. We show that given plaintext and ciphertext, and even
when applying an optimal measurement to the ciphertext, the adversary can
learn no more than n/2, respectively 1 bit of Shannon information on the key.
This should be compared to the fact that for a classical cipher with perfect secu-
rity, the adversary always learns n bits of information on the key. While proving
these results, we develop a method which may be of independent interest, for
estimating the maximal amount of Shannon information that a measurement
can extract from a mixture. We note that the first example can be implemented
without quantum memory, it only requires technology similar to what is needed
for quantum key exchange, and is therefore within reach of current technology.
The second example can be implemented with a circuit of O(n3) gates out of
which only O(n2) are elementary quantum gates.

We also discuss the composition of ciphers, i.e., what happens to the uncer-
tainty of keys when the same quantum cipher is used to encrypt several blocks
of data using independent keys. This requires some care, it is well known that
cryptographic constructions do not always compose nicely in the quantum case.
For composition of our ciphers, however, we shows that the adversary’s uncer-
tainty about the keys grows linearly with the number of blocks encrypted, and
in some cases it can be shown to grow exactly as one would expect classically.

On the other hand, we show that there is a limit to how different the quantum
and classical cases can be. Namely, the most probable key (i.e. the min-entropy
of the key), given matching plain- and ciphertexts, has the same probability in
both cases.

On the technical side, a main observation underlying our results on Shan-
non key-uncertainty is that our method for estimating the optimal measurement
w.r.t. Shannon entropy can be combined with known results on so called en-
tropic uncertainty relations [6, 4, 8] and mutually unbiased bases [9]. We note
that somewhat related techniques are used in concurrent independent work by
DiVincenzo et al. [3] to handle a different, non-cryptographic scenario.

While we believe the above results are interesting, and perhaps even some-
what surprising from an information theoretic point of view, they have limited
practical significance if perfect security is the goal: a key must never be reused,
and so we do not really have to care whether the adversary learns information
about it when it is used.

However, there is a different potential application of our results to the case
where only a short secret key is available, and where no upper bound on the
message length is known a priori. In such a case, only computational security
is possible and the standard classical way to encrypt is to use a stream-cipher:
using a pseudorandom generator, we expand the key into a long random looking



keystream, which is then combined with the plaintext to form the ciphertext.
The simplest way of doing such a combination is to take the bit-wise XOR of key
and plaintext streams. In a known plaintext attack, an adversary will then be
able to learn full information on a part of the keystream and can try to analyze
it to find the key or guess other parts of the keystream better than at random.
In general, any cipher with perfect secrecy, n-bit plain- and ciphertext and m-
bit keys can be used: we simply take the next m bits from the keystream and
use these as key in the cipher to encrypt the next n bits of the plaintext. It is
easy to see that for any classical cipher, if the adversary knows some n-bit block
of plaintext and also the matching ciphertext, then he learns n bit of Shannon
information on the keystream.

If instead we use quantum communication and one of our quantum ciphers
mentioned above, intuition suggests that an adversary with limited resources is
in a more difficult situation when doing a known plaintext attack: if measuring
the state representing the ciphertext only reveals a small amount of information
on the corresponding part of the keystream, then the adversary will need much
more known plaintext than in the classical case before being able to cryptanalyze
the keystream.

Care has to be taken in making this statement more precise: our results on
key uncertainty tell us what happens when keys are random, whereas in this
application they are pseudorandom. It is conceivable that the adversary could
design a measurement revealing more information by exploiting the fact that the
keystream is not truly random. This, however, is equivalent to cryptanalyzing
the generator using a quantum computation, and is likely to be technologically
much harder than implementing the quantum ciphers. In particular, unless the
generator is very poorly designed, it will require keeping a coherent state much
larger than what is required for encryption and decryption – simply because one
will need to involve many bits from the keystream simultaneously in order to dis-
tinguish it efficiently from random. Thus, an adversary limited to measurements
involving only a small number of qubits will simply have to make many such
measurements, hoping to gather enough classical information on the keystream
to cryptanalyze it. Our results apply to this situation: first, since the adversary
makes many measurements, we should worry about what he learns on average,
so Shannon information is the appropriate measure. Second, even though the
keystream is only pseudorandom, it may be genuinely random when considering
only a small part of it (see Maurer and Massey [5]).

In Sect. 9, we prove a lower bound on the amount of known plaintext the
adversary would need in order to obtain a given amount of information on the
keystream, for a particular type of keystream generator and assuming the size
of coherent states the adversary can handle is limited. We believe that quantum
communication helps even for more general adversaries and generators. However,
quantifying this advantage is an open problem. We stress that our main goal here
is merely to point out the potential for improved security against a bounded
adversary.



2 Preliminaries

We assume the reader is familiar with the standard notions of Shannon entropy
H(·) of a probability distribution, conditional entropy, etc. A related notion
that also measures “how uniform” a distribution is, is the so called min-entropy.
Given a probability distribution {p1, ..., pn}, the min-entropy is defined as

H∞(p1, ..., pn) = − log2(max{p1, ..., pn}) (1)

As usual, H∞(X) for random variable X is the min-entropy of its distribution.
Min-entropy is directly related to the “best guess” probability: if we want to guess
which value random variable X will take, the best strategy is to guess at a value
with maximal probability, and then we will be correct with probability 2−H∞(X).
Given the value of another random variable Y , we can define H∞(X |Y = y) sim-
ply as the min-entropy of the distribution of X given that Y = y, and similarly
to Shannon entropy, we can define H∞(X |Y ) =

∑

y Pr(Y = y) ·H∞(X |Y = y).
The min-entropy can be thought of as a worst-case measure, which is more

relevant when you have access to only one sample of some random experiment,
whereas Shannon entropy measures what happens on average over several ex-
periments. To illustrate the difference, consider the two distributions (1/2, 1/2)
and (1/2, 1/4, 1/4). They both have min-entropy 1, even though it intuitively
seems there should be more uncertainty in the second case, indeed the Shannon
entropies are 1 and 1.5. In fact, we always have H(X) ≥ H∞(X), with equality
if X is uniformly distributed.

3 Classical Ciphers

Consider a classical cryptosystem with n-bit plain and ciphertexts, m-bit keys
and perfect secrecy (assuming, of course, that keys are used only once). We
identify the cryptosystem with its encryption function E(·, ·). We call this an
(m,n)-cipher for short.

Definition 1. Consider an (m,n)-cipher E. We define the Shannon key-uncer-
tainty of E to be the amount of Shannon entropy that remains on an m-bit key
given n-bit blocks of plain- and ciphertexts, i.e. H(K|P,C), where K,P,C are
random variables corresponding to the random choices of key, plaintext and ci-
phertext blocks for E, and where the key is uniformly chosen. The min-entropy
key-uncertainty of E is defined similarly, but w.r.t. min-entropy, as H∞(K|P,C).

From the definition, it may seem that the key uncertainties depend on the dis-
tribution of the plaintext. Fortunately, this is not the case. The key-uncertainty
in the classical case is easy to compute, using the following slight generalization
of the classical perfect security result by Shannon:

Proposition 1. Let E be a cipher with perfect security, and with plaintext,
ciphertext and keyspace P , C,K, where |P| = |C|. Furthermore, assume that keys



are chosen uniformly. For any such cipher, it holds that the distribution of the
key, given any pair of matching ciphertext and plaintext is uniform over a set of
|K|/|P| keys.

Proof. By perfect security, we must have |K| ≥ |P|. Now, let us represent the
cipher in a table as follows: we index rows by keys and columns by plaintexts,
and we fill each entry in the table with the ciphertext resulting from the key
and plaintext on the relevant row and column. Then, since correct decryption
must be possible and |P| = |C|, each ciphertext appears exactly once in each
row. Fix any ciphertext c, and let tc be the number of times c appears in, say,
the first column. Since the probability distribution of the ciphertext must be the
same no matter the plaintext, c must appear tc times in every column. Since
it also appears in every row, it follows that the length of a column satisfies
|K| = tc|P|. So tc = |K|/|P| is the same for every c. If we know a matching
plaintext/ciphertext pair, we are given some c and a column, and all we know is
that the key corresponds to one of the tc possible rows. The proposition follows.

⊓⊔
Corollary 1. For any classical (m,n)-cipher, both the Shannon- and min-en-
tropy key-uncertainty is m− n bits.

This result shows that there is no room for improvement in classical schemes:
the natural constraints on (m,n)-ciphers imply that the key-uncertainty is always
the same, once we fix m and n. As we shall see, this is not true for quantum
ciphers. Although they cannot do better in terms of min-entropy key uncertainty,
they can when it comes to Shannon key-uncertainty.

4 Quantum Ciphers and Min-Entropy Key-Uncertainty

In this section, we consider quantum ciphers which encrypt classical messages
using classical keys and produce quantum ciphers.

We model both the encryption and decryption processes by unitary opera-
tions on the plaintext possibly together with an ancilla. This is the same model
as used in [1], with the restriction that we only encrypt classical messages.

Definition 2 ((m,n)-quantum cipher). A general (m,n)-quantum cipher is
a tuple (P , E), such that

– P ⊆ H is a finite set of orthonormal pure-states (plaintexts) in the Hilbert
space H, and ‖P‖ = N and N = 2n.

– E = {Ek : H → H| k = 1, . . . ,M} is a set of unitary operators (encryptions),

and M = 2m. Decryption using key k is performed using E
†
k.

And the following properties hold:

– Key hiding: (∀k, k′ ∈ {1, . . . ,M}),
∑

a∈P

1

N
Ek|a〉|0〉〈0|〈a|E†

k =
∑

a∈P

1

N
Ek′ |a〉|0〉〈0|〈a|E†

k′ . (2)



– Data hiding: (∀|a〉, |b〉 ∈ P),

M
∑

k=1

1

M
Ek|a〉|0〉〈0|〈a|E†

k =

M
∑

k=1

1

M
Ek|b〉|0〉〈0|〈b|E†

k. (3)

The key and data hiding properties guarantee that an adversary cannot gain
any information about the key and message respectively when an arbitrary ci-
phertext is seen. In [1], it was shown that data hiding implies that m ≥ n.

The key hiding property states that an adversary with no information on the
message encrypted expects to see the same ensemble no matter what key was
used. We denote this ensemble

ρ =
∑

a∈P

1

N
Ek|a〉|0〉〈0|〈a|E†

k, (4)

for any k ∈ {1, 2, . . . ,M}. As motivation for the key-hiding property, we mention
that it is always satisfied if ciphertexts are as short as possible (dim(H) = 2n).
On the other hand, if the key-hiding property does not hold then the cipher-
state on its own reveals information about the secret-key. This is certainly an
unnecessary weakness that one should avoid when designing ciphers.

The data hiding property states that the adversary expects to see the same
ensemble no matter what message was encrypted. We denote this ensemble

σ =

M
∑

k=1

1

M
Ek|a〉|0〉〈0|〈a|E†

k, (5)

for any a ∈ P . We first prove that ρ = σ.

Lemma 1. ρ = σ.

Proof. Define the state

ξ =

M
∑

k=1

∑

a∈P

1

MN
Ek|a〉|0〉〈0|〈a|E†

k. (6)

Observe that

ξ =

M
∑

k=1

∑

a∈P

1

MN
Ek|a〉|0〉〈0|〈a|E†

k =

M
∑

k=1

1

M
ρ = ρ. (7)

Similarly, when switching the sums in (6), we get ξ = σ. We conclude that ρ = σ.
⊓⊔

We are now ready to prove that for any (m,n)-quantum cipher there exists
a measurement that returns the secret key with probability 2n−m given any
plaintext and its associated cipher-state. In other words and similarly to the
classical case, the min-entropy key-uncertainty of any (m,n)-quantum cipher is
at most m− n.



Theorem 1 (Min-entropy key uncertainty). Let (P , E) be an (m,n)-quantum
cipher, encoding the set P. Then

(∀a ∈ P)(∃ POVM {Mi}M
i=1)(∀k ∈ {1, . . . ,M})[tr(MkEk(|a〉〈a|)) = 2n−m]. (8)

Proof. Let |a〉 ∈ P be given. Consider the set M = {Mk = N
M Ek|a〉|0〉〈0|〈a|E†

k | k =
1, . . . ,M}. Lemma 1 gives

M
∑

k=1

Mk =

M
∑

k=1

N

M
Ek|a〉|0〉〈0|〈a|E†

k = Nσ = Nρ. (9)

Since the plaintexts are orthogonal quantum states, and since unitary op-
erators preserve angles, we have that N

∑

a∈P
1
N Ek|a〉|0〉〈0|〈a|E†

k is the eigen
decomposition of Nρ, and that 1 is the only eigenvalue. Therefore there exists a
positive operator P such that Nρ+ P = I, and thus

M
∑

k=1

Mk + P = Nρ+ P = I, (10)

and M∪{P} (and therefore also M) is a valid POVM.
The probability of identifying the key with the measurement M is

tr(MkEk|a〉|0〉〈0|〈a|E†
k) = tr(

N

M
Ek|a〉|0〉〈0|〈a|E†

kEk|a〉|0〉〈0|〈a|E†
k)

=
N

M
tr(Ek|a〉|0〉〈0|〈a|E†

k)

= 2n−m,

(11)

which proves the theorem. ⊓⊔

5 Some Example Quantum Ciphers

In this section, we suggest a general method for designing quantum ciphers that
can do better in terms of Shannon key-uncertainty than any classical cipher
with the same parameters. The properties of our ciphers are analyzed in the
next section.

The first example is extremely simple:

Definition 3. The Hn cipher is an (n + 1, n)-quantum cipher. Given message
b1, b2, . . . , bn and key c, k1, . . . , kn, it outputs the following n q-bit state as ci-
phertext:

(H⊗n)c(Xk1 ⊗Xk2 ⊗ . . .⊗Xkn |b1b2 . . . bn〉), (12)

where X is the bit-flip operator and H is the Hadamard transform. That is, we
use the last n bits of key as a one-time pad, and the first key bit determines
whether or not we do a Hadamard transform on all n resulting q-bits.



Decryption is trivial by observing that the operator (Xk1 ⊗ Xk2 ⊗ · · · ⊗
Xkn)(H⊗n)c is the inverse of the encryption operator. It is also easy to see that
the data hiding property is satisfied: if c, k1, . . . , kn are uniformly random, then
the encryption of any message produces the complete mixture (in fact this would
be the case, already if only k1, . . . , kn were uniformly random).

This cipher can be described from a more general point of view: let B =
{B0, . . . , B2t−1} be a set of 2t orthonormal bases for the Hilbert space of dimen-
sion 2n. We require that the bases do not overlap, i.e., no unit vector occurs in
more than one basis. For instance B could consist of the computational basis and
the diagonal basis (i.e. {H⊗n|x〉|x ∈ {0, 1}n}). Let Ui be the unitary operator
that performs a basis shift from the computational basis to the basis Bi. Finally,
let [k1, . . . , kt] be the number with binary representation k1, . . . , kt. Then we can
define an (n + t, n)-cipher CB which on input a key c1, . . . , ct, k1, . . . , kn and a
plaintext b1, . . . , bn outputs

U[c1,...,ct](X
k1 ⊗Xk2 ⊗ . . .⊗Xkn |b1b2 . . . bn〉). (13)

The Hn-cipher above is a special case with U0 = Id, U1 = H⊗n. Using arguments
similar to the above, it is easy to see that

Lemma 2. For any set of orthonormal non-overlapping bases B, CB is a quan-
tum cipher satisfying the data hiding and unique decryption properties.

The lemma holds even if B contains only the computational basis, in which
case CB is equivalent to the classical one-time pad. The point of having several
bases is that if they are well chosen, this may create additional confusion for the
adversary, so that he will not learn full information on the key, even knowing
the plaintext. We shall see this below.

For now, we note that Wootters and Fields have shown that in a Hilbert
space of dimension 2n, there exists 2n + 1 orthonormal bases that are mutually
unbiased, i.e., the inner product between any pair of vectors from different bases
has norm 2−n/2. Using, say, the first 2n of these bases, we get immediately from
the construction above a (2n, n) cipher:

Definition 4. The Wn-cipher is the cipher CB obtained from the above con-
struction when B is the set of 2n mutually unbiased bases obtained from [9].

5.1 Efficient Encoding/Decoding

In this section we look at how to implement Wn efficiently. In [9], a construction
for 2n + 1 mutually unbiased bases in the space of n qubits is given. In the

following, we denote by v
(r)
s with s, r ∈ {0, 1}n the s-th vector in the r-th

mutually unbiased basis. We write v
(r)
s in the computational basis as,

|v(r)
s 〉 =

∑

l∈{0,1}n

(

v
(r)
s

)

l
|l〉, (14)



where
∑

l |(v
(r)
s )l|2 = 1. Wootters and Field[9] have shown that 2n mutually

unbiased bases are obtained whenever

(

v
(r)
s

)

l
=

1√
2n
il

T

(r·α)l(−1)s·l, (15)

for α a vector of n matrices each of dimensions n × n with elements in {0, 1}.
The arithmetic in the exponent of i should be carried out over the integers (or
equivalently mod 4). The elements of α are defined by

fifj =

n
∑

m=1

α
(m)
i,j fm, (16)

where {fi}n
i=1 is a basis for GF (2n) when seen as a vector space. Therefore, α

can be computed on a classical computer (and on a quantum one) in O(n3).

Let c = c1, . . . , cn and k = k1, . . . , kn be the 2n bits of key with c defining one
out of 2n mutually unbiased basis and k defining the key for the one-time-pad
encoding. The circuit for encrypting classical message a starts by computing:

|ψk
a〉 = H⊗nX⊗k|a〉 = H⊗n|a⊕ k〉 = 2−n/2

∑

l

(−1)(a⊕k)·l|l〉. (17)

The state (17) differs from (14) only with respect to the phase factor il
T

(r·α)l

in front of each |l〉 with r = c. Transforming (17) into (14) (i.e. that is trans-

forming |ψk
a〉 7→ |v(c)

k⊕a〉) can easily be achieved using a few controlled operations
as described in App. A. The complexity of the quantum encryption circuit is
O(n3) out of which only O(n2) are quantum gates. The decryption circuit is the
same as for the encryption except that it is run in reverse order. A similar en-
cryption/decryption circuit can easily be implemented for any CB-cipher where
B is a set of mutually unbiased bases.

6 Optimal measurements w.r.t. Shannon Entropy

Our ultimate goal is to estimate the Shannon key-uncertainty of an (m,n)-
quantum cipher, i.e., the amount of entropy that remains on the key after making
an optimal measurement on a ciphertext where the plaintext is given. But actu-
ally, this scenario is quite general and not tied to the cryptographic application:
what we want to answer is: given a (pure) state chosen uniformly from a given
set of states, how much Shannon entropy must (at least) remain on the choice
of state after having made a measurement that is optimal w.r.t. minimizing the
entropy?

So what we should consider is the following experiment: choose a key k ∈ K
uniformly. Encrypt a given plaintext p under key k to get state |ck〉 (we assume
here for simplicity that this is a pure state). Perform some measurement (that



may depend on p) and get outcome u. Letting random variablesK,U correspond
to the choices of key and outcome, we want to estimate

H(K|U) =
∑

u

Pr(U = u)H(K|U = u). (18)

Now, H(K|U = u) is simply the Shannon entropy of the probability distribution
{Pr(K = k|U = u)|k ∈ K}. By the standard formula for conditional probabili-
ties, we have

Pr(K = k|U = u) =
Pr(U = u|K = k)Pr(K = k)

Pr(U = u)
. (19)

Note that neither Pr(U = u), nor Pr(K = k) depend on the particular value of
k (since keys are chosen uniformly).

The measurement in question can be modeled as a POVM, which without loss
of generality can be assumed to contain only elements of the form au|u〉〈u|, i.e.,
a constant times a projection determined by a unit vector |u〉. This is because
the elements of any POVM can be split in a sum of scaled projections, leading
to a measurement with more outcomes which cannot yield less information than
the original one. It follows immediately that

Pr(U = u|K = k) = |au|2|〈u|ck〉|2. (20)

Note that also the factor |au|2 does not depend on k. Then by (19) and (20), we
get

1 =
∑

l∈K

Pr(K = l|U = u) =
|au|2Pr(K = l)

Pr(U = u)

∑

l∈K

|〈u|cl〉|2. (21)

Which means that we have

Pr(K = k|U = u) =
|〈u|ck〉|2

∑

l∈K |〈u|cl〉|2
. (22)

In other words, H(K|U = u) can be computed as follows: compute the set of
values {|〈u|ck〉|2|k ∈ K}, multiply by a normalization factor so that the resulting
probabilities sum to 1, and compute the entropy of the distribution obtained.
We call the resulting entropy H [|u〉, SK ], where SK is the set of states that may
occur {|ck〉|k ∈ K}. This is to emphasize that H [|u〉, SK ] can be computed only
from |u〉 and SK , we do not need any information about other elements in the
measurement. From (18) and H(K|U = u) = H [|u〉, SK ] follows immediately

Lemma 3. With notation as above, we have:

H(K|U) ≥ min|u〉{H [|u〉, SK ]}, (23)

where |u〉 runs over all unit vectors in the space we work in.

This bound is not necessarily tight, but it will be, exactly if it is possible to
construct a POVM consisting only of (scaled) projections au|u〉〈u|, that minimize
H [|u〉, SK ]. In general, it may not be easy to solve the minimization problem
suggested by the lemma, particularly if SK is large and lives in many dimensions.
But in some cases, the problem is tractable, as we shall see.



7 The Shannon Key-Uncertainty of Quantum Ciphers

In this section, we study the cipher CB constructed from a set of 2t orthonormal
bases B as defined in Sect. 5. For this, we first need a detour: each basis in our
set defines a projective measurement. Measuring a state |u〉 in basis Bi ∈ B
produces a result, whose probability distribution depends on |u〉 and Bi. Let
H [|u〉, Bi] be the entropy of this distribution. We define the Minimal Entropy
Sum (MES) of B as follows:

MES(B) = min|u〉{
2t−1
∑

i=0

H [|u〉, Bi]}, (24)

where |u〉 runs over all unit vectors in our space. Lower bounds on the minimal
entropy sum for particular choices of B have been studied in several papers,
under the name of entropic uncertainty relations [6, 8, 4]. This is motivated by
the fact that if the sum is large, then it is impossible to simultaneously have
small entropy on the results of all involved measurements. One can think of this
as a “modern” version of Heisenberg’s uncertainty relations. It turns out that
the key uncertainty of CB is directly linked to MES(B):

Lemma 4. The Shannon key uncertainty of the cipher CB (with 2t bases) is at
least MES(B)/2t + t.

Proof. We may use Lemma 3, where the set of states SK in our case consists of
all basis states belonging to any of the bases in B. To compute H [|u〉, SK ], we
need to consider the inner products of unit vector |u〉 with all vectors in SK . In
our case, this is simply the coordinates of |u〉 in each of the 2t bases, so clearly
the norm squares of the inner products sum to 2t. Let zij be the i’th vector in
the j’th basis from B. We have,

H [|u〉, SK ] =

2t−1
∑

j=0

2n−1
∑

i=0

1

2t
|〈u|zij〉|2 log(2t|〈u|zij〉|−2)

=

2t−1
∑

j=0

2n−1
∑

i=0

1

2t
|〈u|zij〉|2 log(|〈u|zij〉|−2) +

2t−1
∑

j=0

2n−1
∑

i=0

1

2t
|〈u|zij〉|2 log(2t)

=
1

2t

2t−1
∑

j=0

2n−1
∑

i=0

|〈u|zij〉|2 log(|〈u|zij〉|−2) + t
1

2t

2t−1
∑

j=0

2n−1
∑

i=0

|〈u|zij〉|2

=
1

2t

2t−1
∑

j=0

H [|u〉, Bj] + t ≥ 1

2t
MES(B) + t.

(25)

The lemma follows. ⊓⊔



We warn the reader against confusion about the role of |u〉 and B at this point.
When we estimate the key uncertainty of CB, we are analyzing a POVM, where
|u〉 is one of the unit vectors defining the POVM. But when we do the proof of
the above lemma and use the entities H [|u〉, Bj], we think instead of |u〉 as the
vector being measured according to basis Bj . There is no contradiction, however,
since what matters in both cases is the inner products of |u〉 with the vectors
in the bases in B. We are now in a position to give results for our two concrete
ciphers Hn and Wn defined earlier.

Theorem 2. The Hn-cipher has Shannon key-uncertainty n/2 + 1 bits.

Proof. The main result of [6] states that when B is a set of two mutually unbiased
bases in a Hilbert space of dimension 2n then MES(B) ≥ n. Using Lemma 4,
it follows that Hn has Shannon key-uncertainty at least n/2 + 1. Moreover,
there exists measurements (i.e. for example the Von Neumann measurement in
either the rectilinear or Hadamard basis) achieving n/2 + 1 bit of Shannon key-
uncertainty. The result follows. ⊓⊔

For the case of Wn, we can use a result by Larsen[4]. He considers the proba-
bility distributions induced by measuring a state |u〉 in N +1 mutually unbiased
bases, for a space of dimension N . Let the set of bases be B1, . . . , BN+1, and
let π|u〉,i be the collision probability for the i’th distribution, i.e., the sum of the
squares of all probabilities in the distribution. Then Larsen’s result (actually a
special case of it) says that

N+1
∑

i=1

π|u〉,i = 2 (26)

In our case, N = 2n. However, to apply this to our cipher Wn, we would like to
look at a set of only 2n bases and we want a bound on the sum of the entropies
H [|u〉, Bi] and not the sum of the collision probabilities. This can be solved
following a line of arguments from Sánchez-Ruiz[8]. Using Jensen’s inequality,
we obtain the following:

N
∑

i=1

H [|u〉, Bi] ≥ −
N
∑

i=1

log π|u〉,i

≥ −N log

(

1

N

N
∑

i=1

π|u〉,i

)

= −N log

(

1

N

(

−π|u〉,N+1 +

N+1
∑

i=1

π|u〉,i

))

= N log

(

N

2 − π|u〉,N+1

)

≥ N log

(

N

2 − 1/N

)

.

(27)

Together with Lemma 4, we get:

Theorem 3. The Wn-cipher has Shannon key-uncertainty greater than 2n− 1
bits.



Unlike for Hn (i.e. Theorem 2), Theorem 3 only provides a lower bound for the
key uncertainty of Wn.

Let B be any set of 2t mutually unbiased bases living in a Hilbert space of
dimension 2n. The largest value we could hope forMES(B) is (2t−1)n bits, since
this value is exactly matched when the state measured is a state that belongs
to a basis in B. It is natural to define ∆(n, t) as the distance between MES(B)
and the the maximum possible value:

∆(n, t) = (2t − 1)n−MES(B).

Given what we know already, it seems reasonable to conjecture that ∆(n, t)
is, in some sense, small: we know that ∆(n, 1) = 0 and also that ∆(n, n) ≤
(2n − 1)n− 2n(n− 1) = 2n − n. Let us consider the following conjecture:

Conjecture 1. For any set B containing 2n mutually unbiased bases in a Hilbert

space of dimension 2n, it holds that ∆(n,n)
2n ∈ o(1) (i.e. note that we know the

fraction is strictly smaller than 1).

In this case, we easily conclude that cipher Wn has almost full Shannon key-
uncertainty:

Lemma 5. Under Conjecture 1, Wn has Shannon key-uncertainty at least 2n−
o(1) bits.

Proof. From Lemma 4, the Shannon key-uncertainty of Wn is at least n +
MES(B)/2n. Conjecture 1 leads to MES(B)/2n = ((2n − 1)n−∆(n, n))/2n =
n− o(1). The result follows. ⊓⊔

The Hn and Wn-ciphers represent two extremes, using the minimal non-
trivial number of bases, respectively as many of the known mutually unbiased
bases as we can address with an integral number of key bits. It is not hard to
define example ciphers that are “in between” and prove results on their key-
uncertainty using the same techniques as for Wn. However, what can be derived
from Larsen’s result using the above line of argument (i.e. Equation 27) becomes
weaker as one considers a smaller number of bases.

8 Composing Ciphers

What happens to the key uncertainty if we use a quantum cipher twice to en-
crypt two plaintext blocks, using independently chosen keys? Intuition based on
classical behavior suggests that the key uncertainty should now be twice that
of a single application of the cipher, since the keys are independent. But in the
quantum case, this requires proof: the adversary will be measuring a product
state composed of of two ciphertext blocks. If the adversary was to measure
each block individually then clearly the key uncertainty would be twice the key
uncertainty of a single block. However, coherent measurements involving both
blocks simultaneously may provide more information on the key than what is
achievable by measuring the blocks individually.



In the following, we consider composition of the cipher CB with itself, where
B consists of 2t bases for a space of dimension 2n. This is a (2(t+n), 2n)-cipher
which we call C2

B. Say B consists of the bases B = {B0, ...., B2t−1}. Let us
consider the tensor product of two Hilbert spaces of dimension 2n each. Then
Bi⊗Bj denotes the basis of this tensor product space that one obtains by taking
all pairwise tensor products of the 2n basis vectors in each of Bi and Bj . We
will let B ⊗ B denote the set of all 22t bases that can be formed this way. Since
each such basis consists of 22n basis vectors, B ⊗ B can also be thought of as a
collection of 22t+2n pure states.

On the adversary’s point of view, determining the two t+n-bit keys from two
ciphertext blocks is equivalent to the following experiment: choose uniformly a
state in B⊗B, now the adversary wants to make a measurement that minimizes
the uncertainty about the state that was picked.

To study this question, we split B⊗B in subsets: let Bi be the set of 2t bases
defined by

Bi = {Bj ⊗Bj+i mod 2t | j = 0, 1, ..., 2t − 1} (28)

It is now easy to see that B⊗B is the disjoint union of the Bi’s, for i = 0, 1, ..., 2t−
1.

Now, the choice of a state in B ⊗ B can be rephrased as follows: choose
i uniformly from [0..2t − 1], and then choose a state uniformly from Bi. Let
I, J be random variables representing these choices, and let U be the random
variable representing the adversary’s measurement result. Standard properties
of Shannon entropy give:

H(I, J | U) = H(I| U) +H(J | I, U).

It is straightforward to see that a uniform mixture over all 2t+2n states in
Bi is in fact the complete mixture, and so has the same density matrix for any
i, hence no measurement can reveal information on I and we have H(I| U) = t.
We define M2(B) = mini{MES(Bi)}. Then, using exactly the same line of
argument as for Lemma 4, one finds that for each particular value of i, we have
H(J | I = i, U) ≥ t+MES(Bi)/2

t and hence H(J | I, U) ≥ t+M2(B)/2t. Putting
things together gives,

Lemma 6. C2
B has Shannon key-uncertainty at least 2t+M2(B)/2t.

Considering composition of CB v times with itself, denoted Cv
B, the techniques

above extend in a straightforward way. In particular, we end up defining a min-
imum Mv(B) over entropy sums for a generalization of the Bi’s. This leads to,

Lemma 7. Cv
B has Shannon key-uncertainty at least vt+Mv(B)/2t.

Note that by the construction defined in (28), each Bi is a set of mutually
unbiased bases, and this holds also for any of the v-wise generalizations. In the
special case ofHn, we have t = 1, and each Bi (as well as its v-wise generalization)
contains 2 mutually unbiased bases. Lemma 7 together with the result of [6] (i.e.
which in our notation reads Mv(B) = vn) immediately implies,



Theorem 4. The cipher Hv
n has Shannon key uncertainty v(n/2 + 1) bits.

We do not know of any strong results on the minimal entropy sum for any
set of mutually unbiased bases except when its cardinality is 2[6] or is close to
the dimension of the space[4, 8]. Therefore, we cannot prove a good lower bound
on the Shannon key-uncertainty for the composition of Wn. Already for W 2

n ,
we need to consider a set of 2n mutually unbiased bases living in a space of
dimension 22n. Using the notation of the previous section, we need to bound
∆(2n, n), or more generally ∆(vn, n).

While ∆(vn, n) = 0 may be too much to hope for, it seems reasonable to
conjecture a result similar to the one we know for ∆(n, n):

Conjecture 2. For any set B of 2n mutually unbiased bases living in a Hilbert
space of dimension 2vn, it holds that ∆(vn, n) ≤ 2n − vn.

We then have,

Lemma 8. Under Conjecture 2, W v
n has Shannon key-uncertainty at least 2vn−

1 bits.

9 Application to Stream-Ciphers

We can use the quantum ciphers we just described to build a (computationally
secure) quantum stream-cipher using a short key K of length independent from
the message length. In fact, any (m,n)-cipher and classical pseudorandom gen-
erator can be used: we seed the generator with key K, and use its output as a
keystream. To encrypt, we simply take the next m bits from the keystream and
use these as key in the cipher to encrypt the next n bits of the plaintext.

Since an (m,n)-cipher has perfect security, this construction would have per-
fect security as well if the keystream was genuinely random. By a standard
reduction, this implies that breaking it is at least as hard as distinguishing the
output of the generator from a truly random string.

All this is true whether we use a classical or an (m,n)-quantum cipher. How-
ever, by our results on Shannon key-uncertainty, the adversary is in a potentially
much harder situation in the quantum case. For intuition on this, we refer to the
discussion in the introduction. As a more concrete illustration, we consider the
following scenario:

1. We have a pseudorandom generator G, expanding a k-bit seed K into an
N -bit sequence G(K). Furthermore, any subset containing at most e bits
of G(K) is uniformly random. Finally, no polynomial time (in k) classical
algorithm can with non-negligible advantage distinguish G(K) from a truly
random sequence when given any piece of data that is generated from G(K)
and contains at most t bits of Shannon information on G(K). Both e and t
are assumed to be polynomial in k.

2. Coherent measurements simultaneously involving µ qubits or more are not
possible to implement in practice. However, technology has advanced so that
the Wn-cipher can be implemented for some n << µ.



3. We will consider an adversary that first obtains some amount of known plain-
text. Given the plaintext, he decides on a number of complete measurements
that he executes on parts of the ciphertext (under the constraints of assump-
tion 2). For simplicity we assume that each measurement involves an integral
number of n-bit ciphertext blocks.1 Finally he executes any polynomial time
classical algorithm to analyze the results.

The first assumption can be justified using a result by Maurer and Massey [5] on
locally random pseudorandom generators. Their result asserts that there exists
pseudorandom generators satisfying the assumption that any e bits are genuinely
random, provided e ≤ k/ log2N . Their generators may not behave well against
attacks having access to more than e bits of the sequence, but one can always
xor the output from their generator with the output of a more conventional one
using an independent key. This will preserve the local randomness.

Note that the size of k does not influence the size of the quantum computer
required for the honest party to encrypt or decrypt. The third assumption es-
sentially says that we do not expect that results of (incomplete) measurements
obtained on one part of the ciphertext will help significantly in designing mea-
surements on other parts. This is justified, as long as not too many measurements
are performed: as long as results from previous measurements contain less than t
bits of information on the keystream, then by assumption 1, these results might
(from the adversary’s point of view) as well have been generated from measuring
a random source, and so they do not help in designing the next measurement.
This assumption can therefore be dropped in a more careful analysis since it
esssentially follows from assumptions 1 and 2. For simplicity, we choose to make
it explicit.

Lemma 9. Assume we apply the Wn-cipher for stream encryption using a pseu-
dorandom generator and with an adversary as defined by assumptions 1,2, and
3 above. Suppose we choose e = 2µ and k ≥ 2µ log2N . Then, assuming Con-
jecture 2, the adversary will need to obtain tn bits of known plaintext, in order
to distinguish the case of a real encryption from the case where the keystream is
random.

Proof. Assume the PRG satisfies assumption 1 which is possible since k ≥
e log2N . By assumption 2, any attack that measures several blocks of cipher-
text in one coherent measurement can handle at most µ = e/2 qubits at any
one time. By construction, this ciphertext was created using less than e bits
of the keystream, which is random by assumption 1. Therefore, the measure-

ment will give the same result as when attacking the composition W
v/n
n since

the measurement involves v ≤ µ qubits (since different blocks of the keystream
are independent if the stream is truly random) and by assumption 3. Hence, by
Lemma 8 and under Conjecture 2, the adversary learns less than 1 bit of infor-
mation on the key stream from each measurement. Now, if the adversary has
1 This assumption can be dropped so that we can still prove Lemma 9 using a more

complicated argument and provided the local randomness of the generator is ex-
panded from e to n

2
e



T bits of known plaintext, and hence measures T ciphertext bits, the maximal
number of measurements that can take place is T/n so he needs to have T/n > t
in order for the classical distinguisher to work, by assumption 1. The lemma
follows. ⊓⊔

This lemma essentially says that for a generator with the right properties, and for
an adversary constrained as we have assumed, quantum communication allows
using the generator securely to encrypt tn bits, rather than the t bits we would
have in the classical case. Depending on how close the actual key uncertainty of
compositions of Wn is to the maximal value, the number of required plaintext
bits can be much larger. The best we can hope for would be if ∆(vn, n) = 0 for
all n, v, in which case the adversary would need t2n plaintext bits.

A similar result can be shown without assuming any conjecture for the Hn

cipher. In this case, we gain essentially a factor 2 in plaintext size over the
classical case.

Of course, these results do not allow to handle adversaries as general as we
would like, our constraints are different from just assuming the adversary is
quantum polynomial time. Nevertheless, we believe that the scenario we have
described can be reasonable with technology available in the foreseeable future.
Moreover, it seems to us that quantum communication should help even for
more general adversaries and generators. Quantifying this advantage is an open
problem.

10 Conclusion and Open Problems

We have seen that, despite the fact that quantum communication cannot help to
provide perfect security with shorter keys when only one-way communication is
used, there are fundamental differences between classical and quantum ciphers
with perfect security, in particular the Shannon key uncertainty can be much
larger in the quantum case. However, the min-entropy key-uncertainty is the
same in the two cases. It is an open question whether encryption performed
by general quantum operations allows for quantum ciphers to have more min-
entropy key-uncertainty than classical ones.

We have also seen an application of the results on Shannon key uncertainty
to some example quantum ciphers that could be used to construct a quantum
stream-cipher where, under a known plaintext attack, a resource-bounded ad-
versary would be in a potentially much worse situation than with any classical
stream-cipher with the same parameters.

For the ciphers we presented, the Shannon key-uncertainty is known exactly
for the Hn-cipher but not for the Wn-cipher. It is an interesting open question
to determine it. More generally, are Conjectures 1 and 2 true?
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A Encryption Circuit for the Wn-Cipher

The circuit depicted in Fig. 2 implements the encryption of any plaintext a =
a1, . . . , an ∈ {0, 1}n according the secret key (c, k) ∈ {0, 1}2n. It uses three
sub-circuits (1), (2), and (3) as defined in Fig. 1.

A, given c and α, produces the matrix c ·α in the register denoted A. Notice
that circuit A is a classical circuit. It can be implemented with O(n3) classical
gates. The sub-circuit (2) accepts as input α̂ = c · α together with l, computes
d = l

T
α̂l ∈ [0, . . . , 3], and stores the result in a 2-qubit register I. In (3), an

overall phase factor id is computed in front of the computational basis element |l〉.
The last gates allow to reset registers I and A making sure registers containing
the encrypted data are separable from the other registers. It is straightforward

to verify that registers initially in state |a1〉⊗ . . .⊗|an〉 ends up in state |v(c)
k⊕a〉 as

required. The overall complexity is O(n2) quantum gates since (3) requires only
O(n2) cnot’s which is of the same complexity as super-gate (2). In conclusion,
the total numbers of gates is O(n3) out of which O(n2) are quantum.
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Fig. 1. Sub-circuits to the encryption circuit of Fig. 2.
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Fig. 2. Encoding circuit for cipher Wn.


