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Abstract- This paper provides a general treatment of pri- 
vacy amplification by public discussion, a concept introduced by 
Bennett, Brassard, and Robert for a special scenario. Privacy 
amplification is a process that allows two parties to distill a 
secret key from a common random variable about which an 
eavesdropper has partial information. The two parties generally 
know nothing about the eavesdropper’s information except that 
it satisfies a certain constraint. The results have applications 
to unconditionally secure secret-key agreement protocols and 
quantum cryptography, and they yield results on wiretap and 
broadcast channels for a considerably strengthened definition of 
secrecy capacity. 

Index Terms- Cryptography, secret-key agreement, uncondi- 
tional security, privacy amplification, wiretap channel, secrecy 
capacity, RCnyi entropy, universal hashing, quantum cryptogra- 
phy. 

I. INTRODUCTION 

RIVACY amplification is the art of distilling highly secret P shared information, perhaps for use as a cryptographic 
key, from a larger body of shared information that is only 
partially secret. Let Alice and Bob be given a random variable 
W, such as a random a-bit string, while an eavesdropper Eve 
learns a correlated random variable V,  providing at most t < n 
bits of information about W, i.e., H(WIV) 2 n-t. The details 
of the distribution PVW are generally unknown to Alice and 
Bob, except that it satisfies this constraint as well as possibly 
some further constraints. They may or may not know Pw. 
Alice and Bob wish to publicly choose a compression function 
g : (0,l)” + (0, l}’ such that Eve’s partial information on 
W and her complete information on g give her arbitrarily 
little information about K = g(W), except with negligible 
probability (over possible choices for g). The resulting K is 
virtually uniformly distributed given all Eve’s information; it 
can hence be used safely as a cryptographic key. 

The size T of the secret that Alice and Bob can distill 
depends on the kind as well as the amount of information 
available to Eve. Assuming that W is a random n-bit string, 
various possible scenarios to consider are that Eve can obtain 
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1) t arbitrary bits of W, 2)  t arbitrary parity checks of W, 
3) the result of an arbitrary function mapping n-bit strings 
to t-bit strings, or 4) the string W transmitted through a 
binary symmetric channel with bit error probability E satisfying 
h(e) = 1 - t /n ,  and hence with capacity t /n ,  where h(.) 
denotes the binary entropy function. We present a solution 
for a more general scenario of which all the above are 
special cases. In ithis scenario, Eve is allowed to specify 
an arbitrary distribution PVW (unknown to Alice and Bob) 
subject to the only constraint that R(WIV = w) 2 n - t 
with high probability (over values U), where R(WIV = w) 
denotes the second-order conditional R&yi entropy [ 151, [27] 
of W, given V = w (see Section IV). For any s < n - t ,  
Alice and Bob can distill T = n - t - s bits of the secret 
key K = G(W)  while keeping Eve’s information about K 
exponentially small in s, by publicly choosing the compression 
function G (which is now a random variable) at random from 
a suitable class of maps into (0, l}n-t--s. More precisely, 
we show that H(.K(G,V = w) 2 T - 2-”/ln2, provided 
only that R(WJV = w) 2 n - t. It is shown that this result 
cannot be generalized to allow Eve to obtain t arbitrary bits 
of information in Shannon’s sense without further restriction: 
H(WIV = w )  2 n - t is not a sufficient restriction on PVW 
for privacy amplification to be possible. 

In the following, we provide the motivation and background 
for this research. One of the fundamental problems in cryp- 
tography is the generation of a shared secret key by two 
parties, Alice and IBob. In large networks it is impractical and 
unrealistic to assume that a secure channel (such as a trusted 
courier) is available between Alice and Bob when the need 
for a secret key arises. Therefore, we consider a scenario in 
which Alice and Bob are connected only over an insecure 
channel: all messages exchanged between Alice and Bob can 
be received completely by an eavesdropper Eve. However, it 
will be assumed throughout the paper that Eve cannot actively 
tamper with the channel by inserting or modifying messages, 
without being detected. The validity of this assumption can be 
guaranteed by well-known unconditionally secure authentica- 
tion techniques [32] that will not be discussed here, provided 
Alice and Bob initially share a short unconditionally secure 
secret key. Assuming the existence of such a short secret 
key for the purpose of authentication does not render key- 
agreement protocols useless: such protocols can be interpreted 
as allowing an arbitrary unconditionally secure expansion of 
a short key. Otheir means, such as speaker recognition on a 
telephone line, could also be used in practice. 

In this paper we are interested in proving the security of 
cryptographic schemes, in particular key agreement protocols. 
The significance of a proof of security of a cryptosystem 
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depends crucially on three questions: 1) How strong is the def- 
inition of security? 2) How realistic are the assumptions about 
an eavesdropper’s available information and computational 
resources? 3) How practical is the system? For most previous 
approaches to provable security, either the definition of secu- 
rity or the assumptions about an eavesdropper’s information 
are not satisfactory, or the system is not practical. For instance, 
the perfectly secure one-time pad uses an impractically long 
key. Moreover, assumptions of the type that the channel from 
Alice to Bob is less noisy than the channel from Alice to Eve 
[16], [33] is unrealistic in many applications. 

We will make no assumptions about the eavesdrop- 
per’s computing power: we will consider unconditional 
or information-theoretic rather than computational security. 
There are two reasons for this: first, results obtained without 
any assumptions are stronger, and second, proving anything 
reasonable about the computational difficulty of breaking 
a cryptosystem appears to be completely out of reach of 
the current research in computational complexity theory 
and cryptography. Note that allowing Eve to use unlimited 
computing power rules out public-key cryptography [17] as 
a possible technique for secret-key agreement. Of course, 
public-key cryptography is an important tool for implementing 
security on large networks, but no plausible restriction on 
Eve’s computing power has been found that would allow a 
proof of security for any public-key cryptosystem. 

The strongest possible notion of security of a cryptosystem 
is per$ect secrecy defined by Shannon [28]. A system is 
perfect if and only if the plaintext message M is statistically 
independent of the ciphertext C, i.e., I ( M ;  C) = 0. Shannon 
proved the pessimistic result that perfect secrecy can be 
achieved only when the secret key K is at least as long as 
the plaintext message M or, more precisely, when H ( K )  2 
H ( M ) .  However, this proof is based on the assumption that 
an eavesdropper has available precisely the same information 
as the legitimate receiver, except for the secret key K ,  and 
this assumption is often unnecessarily restrictive. 

For instance, when information is encoded in nonorthogorial 
states of a quantum system such as nonorthogonal polariza- 
tions of a single photon, the uncertainty principle prevents an 
eavesdropper-or even the intended receiver-from extracting 
complete information from the quantum signal. This fact, and 
the related impossibility of making local measurements on 
entangled quantum states without disturbing their nonlocd 
correlations, can be exploited to limit an eavesdropper’s in- 
formation in key agreement protocols [21, 141, [91, as well 
as to prevent excessive indiscreet information flow in pro- 
tocols for oblivious transfer [31 and bit commitment [lo] 
between two cooperating but mutually susBicious parties. 
All these quantum-cryptographic protocols, especially when 
implemented with real equipment [2], [231, [26], 2301, generate 
partly secret information that needs to be cleaned up (e.g., by 
privacy amplification) before it can be fully exploited. 

Similarly, Maurer [24] has suggested a key agreement 
protocol using a satellite to broadcast random bits that cannot 
be received completely reliably on the Earth, even with very 
expensive receiver technology. One can think of many other 
situations where the information seen by various parties is 

correlated without giving an eavesdropper perfect knowledge 
of all the other parties’ information. Surprisingly, secret-key 
agreement does not require the correlation between Alice and 
Bob’s information to be stronger than between Alice’s and 
Eve’s or Bob’s and Eve’s information. 

Privacy amplification, and the key agreement it makes 
possible, have a broad range of cryptographic applications. 
This paper deals with key agreement, but of course an uncon- 
ditionally secure key-agreement protocol can be transformed 
into an unconditionally secure encryption scheme by using the 
generated key as the key stream in the well-known one-time 
pad [28], [31]. Also, privacy amplification plays a major role 
in various two-party protocols for oblivious transfer [3] and 
bit commitment [lo]. 

Finally, a shared secret key is required for unconditionally 
secure authentication [32], which, like one-time-pad encryp- 
tion, uses up key bits and renders them unfit for reuse. Thus 
we see that unconditionally secure authentication and privacy 
amplification can benefit from one another: the former serves 
the latter to make sure that the public discussion between 
Alice and Bob is not tampered with by Eve, and some of the 
resulting secret shared key bits can be used for subsequent 
authentication purposes. A short initial secret key between 
Alice and Bob is necessary to prime this system and avoid 
the apparent vicious circle. 

The paper is organized as follows. Unconditionally secure 
key agreement is discussed in Section 11, where the privacy 
amplification problem is motivated. In Section 111, the general 
privacy amplification scenario considered in this paper is 
described and various types of side information available to an 
eavesdropper are discussed. Privacy amplification by universal 
hashing and the main results of this paper are presented in 
Section N. In Section V, the gap between the achievable size 
of the secret key and the theoretical upper bound is illustrated, 
and in Section VI a technique for closing this gap is presented. 

Tz. UNCONDITIONALLY SECURE SECRET-KEY AGREEMENT 

Unconditionally secure secret-key agreement by public dis- 
cussion was introduced by Bennett, Brassard, and Robert 
in [5], [6] and generalized by Ahlswede and CsiszAr [ l ]  
and by Maurer [24] who introduced a general information- 
theoretic model described below. It takes place in a scenario 
where Alice and Bob are connected by an insecure channel 
to which a passive eavesdropper Eve has perfect access, 
and where Alice, Bob, and Eve know the correlated random 
variables X ,  Y, and 2, respectively, which are distributed 
according to some joint probability distribution Pxuz. The 
distribution Pxyz may be partially under Eve’s control. 
Quantum cryptography is an example of such a scenario where 
Eve’s measurement influences the outcome of the random 
experiment. A surprising fact demonstrated in [24] is that even 
if Eve’s channel is much superior compared to Alice’s and 
Bob’s channels, unconditionally secure secret-key agreement 
is possible, provided Alice and Bob know PXYZ. 

A key agreement protocol for such a scenario generally 
consists of three phases. The first phase, introduced in [24] and 
called advantage distillation in [12], is needed when neither 
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Alice nor Bob has an advantage compared to Eve, i.e., if 
neither I ( X ;  Y )  > I ( X ;  2) nor I ( X ;  Y )  > I ( Y ;  2) or, more 
precisely, if the forward key-capacity stated in [ 1, Theorem 11 
is zero. After this phase, involving a sequence of messages 
summarized in a random variable C,  Alice can compute a 
string W from X and C about which Bob has less uncertainty 
than Eve: H ( W ( X C )  = 0 and H(W(YC)  < H(W(2C). 

In the second phase, often referred to as information rec- 
onciliation [5], [2], [ l l] ,  Alice and Bob exchange redundant 
information and apply error-correction techniques in order for 
Bob to be able to learn W with very high probability but such 
that Eve is left only with incomplete information about it. Gen- 
erally, Alice can send a bit string D whose length L is slightly 
larger than H(W1YC) so that H ( W ( Y C D )  E 0. Eve’s 
remaining uncertainty will be .H( W 1 ZCD)  2 H (  W I Z C )  - L, 
which can be substantially positive. 

In the third phase, which is called privacy amplification 
and is the subject of this paper, Alice and Bob distill from 
W a shorter string K about which Eve has only a negligible 
amount of information. For instance, Alice and Bob publicly 
agree on a function g that becomes known to Eve, and they 
let K = g(W). Whether or not Alice and Bob can generate 
such a secret key depends on the particular information about 
W known to Eve and, to only a surprisingly small extent, 
on Alice’s and Bob’s knowledge about the type of Eve’s 
information. 

The key agreement scenario we describe should be con- 
trasted with previously proposed scenarios for unconditionally 
secure message transmission. Wyner [33] considered a com- 
munications scenario in which Alice can send information 
to Bob over a discrete memoryless channel such that a 
wiretapper Eve can receive Bob’s channel output only through 
an additional cascaded independent channel, giving Eve a 
degraded version of what Bob receives. Wyner’s model and 
results were generalized by Csisztir and Korner [16] who 
considered a discrete memoryless broadcast channel for which 
Eve’s received message is not necessarily a degraded version 
of the legitimate receiver’s message, but Bob’s channel must 
be less noisy than Eve’s. In these scenarios, as in most of those 
considered in this paper, perfect secrecy cannot be achieved 
exactly. 

For characterizing “almost-perfect” secrecy, Wyner [33] 
and Csiszk and Korner [16] defined the secrecy capacity of a 
broadcast channel scenario as the maximal rate at which Alice 
can send secret information to Bob while keeping the rate 
at which Eve obtains this information arbitrarily small, and 
they characterized the secrecy capacity for general broadcast 
channels. However, the results of [33] and [16] are not in the 
most desirable form for several reasons: 

The assumption that the legitimate users’ channel is less 
noisy than an eavesdropper’s channel [16] is unrealistic 
in many cases. 
The results of [33] and [16] depend on random coding 
arguments. While the step of selecting such a random 
code is efficient, decoding it is highly inefficient by all 
known techniques. 
A model in which exactly the same randohftexperiment 
is repeated many times is generally good enough for a 

b 

scenario where the goal is reliable communication. How- 
ever, in a cryptographic scenario involving an intelligent 
opponent, a more general treatment allowing the opponent 
to choose from a large variety of strategies is more 
desirable and useful. 
Finally, the definition of secrecy capacity is not strong 
enough: because the rate rather than Eve’s absolute 
amount of information is bounded, and especially in 
view of the fact that a very large block length must 
be used when the secrecy capacity should closely be 
achieved, it is conceivable that, although the rate at 
which Eve receives information is small, all or part of 
the information rshe is really interested in is contained in 
this small fraction of the whole message. 

The first problem can be solved by using advantage- 
distillation techniques discussed in [24]. The techniques 
presented in this paper allow the second problem to be 
solved when the rnain channel from Alice to Bob is 
noiseless because privacy amplification is entirely practical 
and efficient. The sollution of this problem is also considered 
in [21]. The problem of achieving secrecy capacity efficiently 
when information reconciliation and perhaps also advantage 
distillation are necessary is currently under investigation; see 
[ 1 I] for preliminary findings. The third problem is addressed 
in that our results can handle quite general scenarios of 
eavesdropping infomation. 

Addressing the last problem, the results of this paper were 
shown in [25] to imply that in the key agreement scenarios 
of [l]  and [24], a stronger definition of key-capacity and 
secret-key rate, respiectively, can be used instead of the old 
definition, by requiring Eve’s total amount of information to 
be arbitrarily small (a notion pioneered in [ 5 ] ) .  For the case of 
broadcast channels with confidential messages [ 161, in which 
the goal is to transmit securely a meaningful message rather 
than merely to agree on a secret key, one can use the broadcast 
channel together with privacy amplification to generate secret 
key bits at a rate equal to the secrecy capacity [25]. Because 
the broadcast channel can also be used as a regular channel 
from Alice to Bob (with capacity at least equal to the secrecy 
capacity), the shared secret key can be used as the key in 
a one-time pad encryption of the message to be transmitted. 
Note that because E,ve’s distribution is known, it is possible 
to fix a suitable compression function beforehand, at the same 
time when the code for the broadcast channel is fixed. Let 
the strong secrecy capacity of a broadcast channel be defined 
like the secrecy capacity [16], except that the wiretapper’s total 
information-rather than the rate-is required to be arbitrarily 
small. The above arguments show that the strong secrecy 
capacity is at least half the secrecy capacity, but it is an open 
problem whether they are equal. 

111. PRIVACY AMPLIFICATION BY PUBLJC DISCUSSION 
Let W and V be two random variables with joint distri- 

bution Pvw, where W (which takes on values in the set 
W )  is known to Alice and Bob and V summarizes all of 
Eve’s information about W. Eve might be able to choose 
which partial information about W she would like to see, 
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i.e., PVW could partially be under Eve's control. In other 
words, Eve might be able to choose PVW from a set of 
admissible such distributions, where Pw could or could not be 
the same for all possible choices. If PW cannot be influenced 
by Eve, her choice can be characterized by a conditional 
distribution PVlw. Alice and Bob generally do not know PVW 
and possibly not even Pw, but they know that PVW satisfies a 
certain constraint. For instance, in quantum cryptography this 
constraint follows from the uncertainty principle of quantum 
physics. 

Alice and Bob publicly agree on a function g : W --f (0, l}' 
for a suitable r and compute the r-bit secret key K = g(W). 
In general, g is selected randomly from an appropriate set 
G of functions in order to avoid that Eve knows g before 
deciding about her strategy for accessing information about W. 
In other words, the compression function is actually a random 
variable G taking on as values functions W + (0,l)' from 
6. Rather than statements for specific functions g, our results 
will be statements in the form of averages over choices of G 
or, alternatively, about the probability of picking a function g 
with a certain property. 

We are interested in upper bounds of the form I ( K ;  GV) 5 
E for some arbitrarily small E, provided PVW satisfies a given 
constraint. More precisely, we will derive bounds of the form 

H ( K I G , V = ' U )  > T - E  (1) 

for a very small E ,  which hold for the concrete value 'U of V 
known to Eve, rather than only on the average, provided that 
P w ~ v / = ~  satisfies a given constraint. Results of this form are 
therefore stronger and generally imply average results if the 
constraint on P W I V , ~  is satisfied for all 'U or at least with 
high probability. Note that (1) implies that given all Eve's 
information, K is virtually uniformly distributed. If (1) is 
satisfied for a set of values 'U with total probability at least 
1 - 6 for a small 6, then K has almost maximal entropy for 
Eve 

(1 - S ) ( T  - E )  5 H(KIGV) 5 T. 

The length r of the secret key K that can be distilled by 
Alice and Bob of course depends on PVW. More generally, 
it depends on the type of constraint that PVW must satisfy. 
The more strongly W and V are correlated, the smaller is r. 
Similarly, the more restrictive the constraint on Eve's strategy 
for selecting PVW, the larger is r in general. In the following 
we discuss various types of constraints on PVW. In order to 
have a common denominator for these examples, we let W be 
a random n-bit string which takes on all 2" possible values 
with equal probability, and we allow Eve to obtain t bits of 
information about W. However, our results apply to general 
distributions PVW. 

The extreme cases are not interesting: when Eve cannot 
obtain any information about W (i.e., t = 0) then Alice and 
Bob can let K = W and hence r = n. On the other hand, if 
Eve knows W precisely ( t = n) then it is not surprising that 
Alice and Bob cannot generate an information-theoretically 
secret key. (Nevertheless, the proofs of this fact and that T > n 
is impossible even when t = 0 are not completely trivial [24].) 

If Eve knows (i.e., V consists of) at most t physical bits 
of W and Alice and Bob know which bits Eve knows, then 
they can use the remaining n - t bits as the secret key. 
However, if Eve can choose the positions of the t bits secretly, 
then the problem is more interesting. This situation has been 
considered independently in [5] and [14]. Provided t < n, it 
is always possible for Alice and Bob to distill a shorter string 
K = g ( W )  about which it is guaranteed that Eve has no 
information whatsoever (except for its length). The function g 
may even be chosen in full view of Eve before she decides 
which t bits to access. However, K must in general be much 
shorter than W even for small values of t (i.e. T << n - t). 
For instance, it is proven in [14] that when t = 2 the length 
of K can be at most roughly 2/3 of that of W. Larger values 
o f t  have also been investigated [IS], [7]. It is known that the 
most efficient functions g must be nonlinear for some values 
of n and t [29]. 

A less restrictive constraint on PVW is that Eve is allowed 
to obtain t arbitrary parities of bits of W. A still much less 
restrictive constraint on PVW is that Eve is allowed to secretly 
specify an arbitrary function e : {O,l}"  i { O , l } t  of her 
choice and to receive e(W). In other words, Eve can obtain t 
arbitrary bits of deterministic information about W. This case 
was solved in [SI (see [6] for more details). 

However, this result cannot be applied in many realistic 
scenarios because in general Eve's infomation is probabilistic 
rather than deterministic. For instance, in a scenario that arises 
in the secret-key agreement protocols discussed in [24], Eve 
can receive the bits of W through a binary symmetric channel 
with fixed bit error probability E. Similarly, in scenarios arising 
in quantum cryptography, Eve can receive the bits of W 
through binary symmetric channels whose bit error probability 
she can control, subject to a global constraint over the bit error 
probabilities for all the n bits. Our results apply to these as 
well as more general scenarios. 

In the process of further generalizing the constraint on the 
type of the t bits of information available to Eve such that 
Alice and Bob can still generate an almost secret string K 
of length close to n - t ,  it is clear that we cannot allow Eve 
to obtain t arbitrary bits of information in the most general 
sense of Shannon's information theory. For instance, if W 
is assumed to be uniformly distributed over n-bit strings, we 
cannot allow her to specify an arbitrary distribution PvlW 
subject only to the constraint I ( W ;  V )  5 t ,  nor even to the 
stronger constraint H(WIV = 'U) > n - t for the specific 
value v that she gets to observe This is too much freedom for 
Eve because an admissible strategy for her would be to obtain 
an n-bit string V that is equal to W with probability t /n  
but an independent n-bit random string otherwise, and where 
Eve does not learn which of the two cases has occurred. It is 
easy to see that this "channel" gives Eve slightly less than t 
bits of information about W. However, it is straightforward 
to compute that Eve will have more than r t /n  - 1 bits 
of information about K ,  regardless of which function g is 
publicly chosen to transform the n-bit string W into an r-bit 
string K ,  because g ( V )  is equal to K with probability greater 
than t/n. In other words, Eve will have essentially the same 
proportion of information about K as she had about W. 
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This leads to the following natural question: Which is the 
most general information measure f such that when Eve 
is allowed to obtain t arbitrary bits of information about 
W according to this measure, i.e., to specify an arbitrary 
distribution PVW subject to the constraint f ( W ;  V )  5 t,  then 
Alice and Bob can nevertheless distill essentially n - t bits 
of a secret key. A general measure, which is based on RCnyi 
entropy of order 2 [27], is discussed below. 

Iv. UNIVERSAL HASHING AND RENYI ENTROPY 

It was first discovered by Bennett, Brassard, and Robert [6] 
that an important technique for privacy amplification against 
deterministic eavesdropping is universal hashing, a concept 
introduced by Carter and Wegman [13]. Our method also 
draws on the subsequent work of Impagliazzo, Levin, Luby, 
and Zuckerman [19], [20], who used RCnyi entropy to quantify 
the randomness produced by universal hashing, but in the 
context of quasi-random number generation rather than privacy 
amplification. 

Definition 1 [13]: A class 6 of functions A + B is 
universal2 (“universal” for short) if, for any distinct z1 and 
2 2  in A, the probability that g(xl) = g(z2) is at most 1/1B1 
when g is chosen at random from 4 according to the uniform 
distribution. 

When A = B, the class consisting only of the identity 
function is trivially a universal class, although there are 
others.In all cases, the class of all functions from A to B 
is universal, but it is not useful because there are too many 
functions in that c1ass.A more useful universal class is that 
of all linear functions from ( 0 ,  l}” to (0, l}T [13].These 
functions can be described by r x n matrices M over GF (2), 
i.e., by rn  bits. Other universal classes, which are more 
economical in terms of the number of bits needed to specify 
them, are discussed in [13], [32]. Such a class, requiring only 
n bits to specify a function, is given in the following lemma 
whose proof is omitted. 

Lemma I :  Let a be an element of GF ( 2 ” )  and also interpret 
z as an element of GF (2”). Consider the function (0, l}” + 

(0,1}‘ assigning to an argument IC the first r bits of the 
element ax of GF (2n). The class of all such functions for 
a E GF (2”) is a universal class of functions for 1 5 T- 5 n. 

Definition 2: Let X be a random variable with alphabet X 
and distribution Px. The collision probability P c ( X )  of X 
is defined as the probability that X takes on the same value 
twice in two independent experiments: 

PC(X) = p x ( z ) 2  
X E X  

The R h y i  entropy of order two (“RCnyi entropy” for short) 
of X [15], [27] is defined as the negative logarithm of the 
collision probability of X :  

R ( X )  = -log2 PC(X) .  

For an event E ,  the collision probability and the RCnyi entropy 
of X conditioned on E ,  Pc(XIE), and R(XIE),  are defined 
naturally as the collision probability and the RCnyi entropy, 
respectively, of the conditional distribution Px I€. The RCnyi 

entropy conditioned on a random variable R(X1Y)  is the 
expected value of the conditional RCnyi entropy 

In order to contrast RCnyi entropy with the standard entropy 
measure defined by Shannon, we will refer to the latter as 
“Shannon entropy” throughout the paper. Note that RCnyi 
entropy (like Shannon entropy) is always positive. R ( X )  can 
equivalently be expressed as 

R ( X )  = -log, E [ P x ( X ) ]  

where E[.] denotes the expected value. Shannon entropy 
H ( X )  can be expressed similarly as 

It follows from Jensen’s inequality (see [8, p. 4281) that RCnyi 
entropy is upper-bounded by the Shannon entropy, a result 
already known to RCnyi. 

Lemma 2: For every discrete probability distribution PX 

with equality if and only if Px is the uniform distribution over 
X or a subset of X. Moreover, for every distribution Pxu 

.R(XIY) 5 H(X1Y) .  

At first it seems natural to extend the analogy between RCnyi 
and Shannon entropiies to the notion of information. In other 
words, it is tempting to define the mutual RCnyi information 
between X and Y to be I R ( X ; Y )  = R ( X )  - R(X1Y) .  
However, this notion is not symmetric as R ( X )  - R(X1Y)  
is different from R(Y) - R(Y1X)  in general. Moreover, 
R(X) -R(XIY)  can be negative, as we shall see in Section VI. 

The following theorem demonstrates that RCnyi entropy can 
play the role of a general information measure that we are 
looking for. 

Theorem 3: Let X be a random variable over the alphabet 
X with probability distribution PX and RCnyi entropy R ( X ) ,  
let G be the random variable corresponding to the random 
choice (with uniform distribution) of a member of a universal 
class of hash functions X --+ (0, l}T, and let Q = G ( X ) .  Then 

Note that G is a random variable and the quantity 
H(Q1G) = H(G(X) IG)  is an average over all choices of 
the function g. It is possible that even when R ( X )  >> r ,  
H(G(X)IG = g )  = H ( g ( X ) )  differs from T by a 
nonnegligible amount for some g, but such a g can occur 
only with negligible probability. 
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Pro08 The first inequality follows from Lemma 2. The 
other two inequalities are proved as follows: 

R(G(X) IG)  = P G ( g ) R ( G ( X ) / G  = 9) 
9 

= CPG(g)( - logZpc(G(X)IG = 9)) 
9 

where the last step follows from Jensen's inequality. The sum 
in the last term is equal to the probability that g(x1) = g(x2) 
if g is chosen at random according to PG and x1 and x, 
are chosen at random, independently of each other and of g, 
according to Px. Therefore, we have 

x g P G ( g ) p c ( G ( X ) \ G = g )  
=Prob [G(X1)=G(X2)]  
= Prob [ X I  = X,] 

+ Prob [ X I  # X Z ]  
.Prob [ G ( X i ) ] = G ( X 2 ) I X i f X z  

5 PC(X)+(1  - P J X ) )  .2-' 
< 2 - W )  +2-' 

=2- ' (1+2 ' -m 1. (3) 

Here the first inequality follows from the fact that the class 
of functions is universal and by noting that 1/)231 = 2-' 
according to Definition 1. The second and third inequalities 
of the theorem now follow immediately from (2) by taking 
logarithms on both sides of (3), and from the inequality 

0 
This theorem clearly applies also to conditional probability 

distributions such as PWlv=, discussed above. We therefore 
have the following result on privacy amplification. 

Corollary 4: Let PVW be an arbitrary probability distsibu- 
tion and let v be a particular value of V observed by Eve. 
If Eve's RCnyi entropy R ( W J V  = v )  about W is known to 
be at least c and Alice and Bob choose K = G ( W )  as their 
secret key, where G is chosen at random from a universal 
class of hash functions from W to (0, l}', then 

log, (1 + y) 5 y/ln 2, respectively. 

2r-c 
H(KIG, V = v) 2 r - log, (1 + 2r-c) 2 T - - 

ln2 . 
Thus we see that when r < c, Eve's entropy of the 

secret key K is close to maximal, i.e., her distribution of 
N is close to uniform. In particular, her information about 
K ,  namely H ( K )  - H(KIG,V = U ) ,  is arbitrarily small. 
More precisely, her total information about K decreases 
exponentially in the excess compression c - r.  It should be 
pointed out that Corollary 4 cannot be generalized to RCnyi 
entropy conditioned on a random variable, i.e., both 

H(K1GV) 2 r - log 2 

as well as the weaker inequality 

are false in general. However, if the probability is at least 1 - 6 
that V takes on a value TJ satisfying R(WIV = U )  2 c, then 
we have 

H ( K J G V )  2 (1 - S)(r - l o g z ( l +  2'-')). 

and therefore 

I ( K ;  G V )  5 S r  + (1 - 6) log, (1 + 2'-') 

5 Sr + 2'-"/ln 2. 

The following is a slightly strengthened version of [6, 
Theorem 101. The proof given here is much simpler than the 
original proof. 

Corollary 5: Let W be a random n -bit string with uniform 
distribution over {O, l J " ,  let V = e(W) for an arbitrary 
eavesdropping function e : (0, l}" + (0, l}t for some 
t < n, let s < n - t be a positive safety parameter, and let 
T = n - t - s. If Alice and Bob choose K = G ( W )  as their 
secret key, where G is chosen at random from a universal class 
of hash functions from (0,1}" to (0 ,  l}', then Eve's expected 
information about the secret key K ,  given G and V,  satisfies 

I ( K ;  G V )  5 2-'/ In 2. 

Note that, in contrast to Corollary 4, this result is (and must 
be) stated as an average over the values of I/. Note also that 
Alice's and Bob's strategy does not depend on e and hence 
privacy amplification works even if they have no information 
about e, provided they know an upper bound on t. 

Pro03 For U E (0, l}t, let e, be the number of w E 
(0,1}" that are consistent with v ,  i.e., satisfying e(w) = U .  

Given V = v, all consistent w are equally likely candidates 
for W and hence Pw~v=, = l/c, for all w with e(w) = 'U. 

Therefore, we have 

PC(WlV = U )  = c, . (1/CV),  = l/c, 

and 

R(WIV = v )  = log, e, 

and thus according to Corollary 4 

Averaging over values of v and using Pv(w) = ~ , 2 - ~  we 
obtain 

I ( K ;  G V )  H ( K )  - H(K1GV) 
- < r - Pv(w)H(KIG,  V = U )  

~ E { O , l } t  
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v. mE GAP BETWEEN m N Y I  AND SHANNON ENTROPY 

Let us now investigate the implication of Corollary 4 in a 
genuine case of probabilistic information. Assume that Alice 
and Bob share a random n-bit string W (uniformly distributed 
over the n-bit strings) and that Eve can receive the output V 
when W is sent through a binary symmetric channel with bit 
error probability E. Hence we have 

from W if Alice and Bob know that Eve used the second 
strategy. However, Wyner's results on the wiretap channel 
[33] provide an alternative (albeit inefficient and less secure) 
approach to privacy amplification when Eve uses the first 
strategy. Wyner's technique allows Alice and Bob to derive 
a secret key K at a rate arbitrarily close to h(&) in the 
limit as n + m while giving Eve only a negligiblefraction 
of information about K.  When E = sin222i0, this means 
that K can be as long as 0.6n bits for sufficiently large n, 
which is better than the length achievable if Eve used the 
deterministic strategy. This apparent contradiction is resolved 
in the following sec,,ion. 

where d(w, w) is the Hamming distance between w and w. It 
is easy to check that RCnyi entropy, like Shannon entropy, is 
additive for independent random variables. It follows that 

H ( W I V = v )  =nh(&)  = -n(&log2&+(1-&)log,(1-&)) 

R(W(V = v) = -nlog, ((1 - €)2 + €2) 

and 

for all U. 
Example: Consider an example relevant to quantum cryp- 

tography [ 2 ] :  E = sin2 22i0  M 0.15. In this case, R(W) - 
R(WJV = U) M 0.585n whereas H ( W )  - H(WIV = U) M 

0.399n for all 'U. Note that these bounds also apply to the 
averages over choices for 'U: R(W) - R(WIV) M 0.585 n and 
H ( W )  -H(WIV) = 0.399 n. Observe that this eavesdropping 
strategy reduces Eve's RCnyi entropy significantly more than 
it does her Shannon entropy. 

It is instructive to contrast the described eavesdropping sce- 
nario with the following eavesdropping strategy, also relevant 
to quantum cryptography. If Eve could obtain consisting 
of n/2 arbitrary bits of W of her choice, this would reduce 
her RCnyi entropy by R(W) - R(W1V = 6) = 0.5n bits 
and would also reduce her Shannon entropy by H ( W )  - 
H(W1V = V) = 0.5n for all V E {0,1}"/2. Note that in 
these examples we have 

H(WJV = U) = H(WIV) 

R(WIV = v) = R(WIV) 

H(WIV = 6) = R(W1V = V) = H(WIV) = R(WIV) 

R(W) - R(WJV) > R(W) - R(WJP) 

H ( W )  - H(WIV) < H ( W )  - H(W1V). 

and 

for all U, and 

for all 6. Therefore 

whereas 

In other words, Eve obtains a better reduction in RCnyi entropy 
with the first strategy, but she obtains a better reduction in 
Shannon entropy with the second strategy. It is hence an 
interesting question which strategy is better for Eve. 

If the first eavesdropping strategy is adopted, then it seems 
that the resulting secret K can be of length at most 0.415 n- s, 
where s is Alice's and Bob's safety parameter. On the other 
hand, as many as 0.5n - s highly secret bits can be distilled 

VI. AUXILIARY RANDOM VARIABLES 

Our goal is to leave Eve with negligible Shannon informa- 
tion about the secret Ikey. By virtue of Lemma 2 we know that 
this can be accomplished by making her RCnyi entropy close to 
maximal, but this maiy be overkill. To illustrate this, consider 
a random variable lilr chosen with uniform distribution over 
the n-bit strings, and let Eve's distribution PWlv=v over the 
n-bit strings be defined by 

( 2 - n ~  i f w = v  

, otherwise. 

Although 

P,(WIV = w) > (2-"/*), = 2-"12 

and hence R(W(V = w) < n/2  is far from maximal, it is 
straightforward to check that 

H(WJV = U )  > n( l -  2-"14) 

and hence Eve has an exponentially small amount of informa- 
tion about W. Therefore, K = W can be used directly as the 
secret key, with no need to sacrifice more than half the key 
length to privacy amplification, as Corollary 4 would suggest. 

This example also illustrates a counter-intuitive property of 
RCnyi entropy, which we are going to exploit in the sequel. 
Unlike Shannon entropy, Rtnyi entropy can increase when it 
is conditioned on a random variable. In other words 

W I Y )  > R ( X )  

is possible. In the pirevious example, consider an oracle who 
gives Eve for free the random variable U defined by U = 0 
if w = v and U == 1, otherwise. With probability 2-"14, 
this gives Eve complete information about W, and her RCnyi 
entropy falls from roughly n/2 bits to 0 bits: R(WIU = 0, 
V = w) = 0. However, with overwhelming complementary 
probability 1 - 2-"14, we have 

R(WIU = 1, v = w) = log, (242 - 1) 

R(WIU, v == .) = (1 - 2-"14) log, (2" - 1) 

and hence 

2 (1 - 2-n/4)(n - 2l-") 
- n2-n/4 - 21-n 
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provided n 2 1, which is approximately twice as large as the 
unconditioned RCnyi entropy R( W I V = w) . 

The fact that conditioning on an auxiliary random variable 
can increase RCnyi entropy can be used to prove that privacy 
amplification allows Alice and Bob to distill a secret key K 
from a given string W that is potentially much longer than 
suggested by considering R(WIV = v) and Corollary 4. 

Consider the scenario and notation of Theorem 3. An 
auxiliary random variable U is useful if its range can be 
partitioned into two sets: a set of very small total probability 
and its complement consisting of values U for which the Rknyi 
entropy of X conditioned on U = U is high. This leads to the 
following generalization of Theorem 3. 

Corollary 6: Let X ,  G, and Q be defined as in Theorem 3, 
and let U be another random variable, jointly distributed with 
X according to an arbitrary distribution PXU for which the 
marginal distribution for X coincides with Px.  Then 

and 

U 

H(Q1G) 2 T - Pu(u) . min 

In particular, H(Q1G) is lower-bounded by the maximum, 
over choices of PXU consistent with the given Px, of either 
expression on the right-hand side. 

Pro08 The first inequality follows from 

N(QIG) 2 H(QIGU) = PU(U) . H(QIG, U = U )  
U 

and by application of Theorem 3 to lower-bound the terms 
H(QIG, U = U )  by T - log, (1 + 2T--R(XIU=u) ). The second 
inequality follows from the trivial bound H(QIG, U = U> 2 0 
and from the weaker inequality of Theorem 3, namely 

0 

This raises the following interesting question, which is sug- 
gested as an open problem: which auxiliary random variable 
U maximizes the right-hand side of Corollary 6 for a given 
distribution Px? Because this auxiliary random variable de- 
notes information that would increase Eve's RCnyi entropy of 
X with high probability, and hence make her more vulnerable 
to privacy amplification via Theorem 3, it has been suggested 
to call it spoiling knowledge, a term coined by Silvio Micali 
in the context of zero-knowledge proofs, 

Corollary 6 clearly applies also to conditional probability 
tions such as P w ~ v = ~ ,  which arise when privacy 
cation is called upon because the eavesdropper has 

ned information on the string common to Alice and Bob. 
Corollary 7: Let W, V, G, and K be defined as in Corollary 

4 and let U be another random variable, jointly distributed with 
W and V according to some distribution PUVW for which the 
marginal distribution of [V, W ]  coincides with P ~ T w .  Then 

H(KIG, V = w) 

N(QIG, U = U) 2 r - 2r-R(XIU=u) / III 2. 

and 

'LL,'u 

In particular, H(KIG,V = v) and H(KIGV)  are lower- 
bounded by the maximum of the respective right-hand sides 
over choices of PUVW consistent with the given PVW. 

The bound on H(K1GV) can be very close to the maximum 
T- if R(WIU = u,V = v) is large (compared to r )  with 
very high probability (over choices of U and U). These results 
generalize a technique introduced in [3] to perform a more 
careful analysis of eavesdropping through a binary symmetric 
channel with error probability E.  Recall that 

R(WIV = U )  = -nlog, ((1 - &), + 2) 
for ail 'U. Consider the auxiliary random variable U = d(W, w) 
consisting of the Hamming distance between W and the 
particular value 'U known to Eve. Given U = U ,  all (z) strings 
w at distance U from 'U are equally likely candidates for W, i.e. 

R(W(U = U ,  v = U) = log, . (3 
For any X between 0 and 1, we have 

The left inequality is proved as Lemma 7 in [22, p. 3091 and 
the second inequality follows from 8A(1 - A) 5 2. Consider 
now an ahitrarily small positive constant 6 5 &(I - E ) .  

By the law of large numbers we have 

( E  - 6)n < d(W, U) < (& + 6)n 

and hence also 

except with probability exponentially small in n. Hence, 
inequality (4) implies that 

2nh(c--S) 

(:I) >3r 
and hence that 

R(WIU = U, v = w) > nh(& - 6) - log, & 
except with probability exponentially small in n. Consider now 
any fixed y > 0 and let 6 > 0 be so that h ( ~ - 6 )  > h ( ~ ) - 7 / 3 .  
We conclude that 

R(WIU = U, v = U) > @ ( E )  - 7/2)n 

for all sufficiently large n, except with probability expo- 
nentially small in n. This exponentially small probability 
cannot contribute more than an exponentially small amount 
of Shannon information for Eve. 
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The next result follows immediately. 
Theorem 8: For all positive E and y, there exists a positive 

a such that if Alice and Bob share a random n-bit string W, 
which Eve receives through a binary symmetric channel with 
bit-error probability E ,  and if they apply privacy amplification 
with universal hashing to obtain an r-bit string K where 
T = L(h(&) - 7)n] ,  then for all sufficiently large n, Eve’s 
expected information about K is at most 2-“n bits. 

VII. CONCLUSIONS 

The results of this paper have several applications in cryp- 
tography, namely, in all scenarios where an eavesdropper Eve 
is known for some reason to have only incomplete information 
about a certain random variable. In general, Alice and Bob 
will not have complete information about the random variable 
either, and they will first need to generate a common string 
about which Eve has only partial information. A genera1 
model of correlated random variables available to Alice, 
Bob, and Eve is discussed in [l] and [24]. Using privacy 
amplification by public discussion, as described in this paper, 
they can subsequently distill a secret key about which Eve has 
arbitrarily little information [25]. 

A typical scenario of the type described is that arising in 
quantum cryptography [ 2 ] ,  where the uncertainty principle of 
quantum physics prevents Eve (and also Bob) from obtaining 
complete information about the polarization of a photon sent 
by Alice. Another scenario, discussed in [24], is one in which 
Alice, Bob, and Eve can all receive a random sequence 
broadcast by a satellite over partially independent channels, 
where Eve’s channel could be much more reliable than the 
other two channels. 

A further application of privacy amplification is for achiev- 
ing higher secrecy in the broadcast channel scenario of [16]. 
Whenever the secrecy capacity is positive, so is the strong 
secrecy capacity for which the wiretapper’s total amount 
(rather than the rate) of information about the exchanged 
message is required to be arbitrarily small. 
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