A Crash Course on Coding Theory

Madhu Sudan MIT

Disclaimer

This is an opinionated survey of coding theory, unbiased by actual reading of papers.

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

Trivial Constructions

(Think binary, then generalize)

- Trivial code:
 - E is the identity function.
 - Has n = k, d = 1.
 - Generalizes to all alphabets!
- Parity code:
 - Append parity of all k bits to message.
 - Gives n = k + 1, d = 2.
 - More generally, append sum of the first k letters.

Hamming code

- Historically first (approximately).
- For any l, $[n=(q^l-1)/(q-1), n-l, d=3]_q$ code.
- Rows of parity check matrix *H*:
 - All non-zero vectors of length l,
 - Scalar multiples removed (say by fixing first non-zero entry to 1).
- Since any two rows of H are linearly independent, distance is greater than 2.

Meet Singleton bound: $k + d \le n + 1$.

Hamming code (contd).

Hadamard code

$$[n=q^l,k=l,d=q^l-q^{l-1}]_q \ \mathsf{code}.$$

(Roughly, the dual of the Hamming code.)

Construction:

- Message: $m = \langle m_1, \dots, m_k \rangle$ associated with $M(x_1, \dots, x_k) = \sum_{i=1}^k m_i x_i.$
- $\bullet \ \underline{\mathsf{Encoding:}} \ E(m) = \langle M(x) \rangle_{x \in \Sigma^k}.$
- <u>Distance</u> = Why?

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

Polynomials over finite fields

Some facts (Fix size of field to q).

- Non-zero deg. $\leq l$ poly. has $\leq l$ zeroes. (alt'ly, zero on $\leq l/q$ fraction of inputs.)
- $\mathrm{Deg} \leq l \ \mathrm{polys} = \mathrm{vector} \ \mathrm{space} \ \mathrm{of} \ \mathrm{dim}. \ l+1.$
- Non-zero deg. $\leq l$, m-variate, poly. zero on $\leq l/q$ fraction of inputs.
- $\begin{array}{l} \bullet \ l < q \Rightarrow \quad \mathrm{Deg.} \leq l, \ m\text{-variate, polys} \\ = \dim. \ {m+l \choose l} \ \mathrm{vector \ space}. \end{array}$

Poly facts (contd.)

- Non-zero deg. $\leq l$, m-var., poly. zero on $\leq 1 q^{-(l/(q-1))}$ fraction of inputs.
- Vector space of dimension $\geq \binom{m}{l}$.
- Actual dimension = # of ordered partitions of l into integers from $\{0, \ldots, q-1\}$.

Hadamard codes (contd).

- ullet Codewords are evaluations of degree 1polynomials over \mathbb{F}_q .
- May agree in at most 1/q fraction of indices.
- \Rightarrow Distance $\geq q^l q^{l-1}$.

Reed-Solomon Codes

Reed-Solomon Codes:

$$[n,k,n-k+1]_q$$
 code for $q \ge n$.

- Fix distinct $x_0, \ldots, x_{n-1} \in \Sigma$.
- Message: Coefficients of polynomials $\langle m_0, \dots, m_{k-1} \rangle \approx M(x) = \sum_{i=0}^{k-1} m_i x^i$
- Encoding: Evaluations of polynomials $\langle M(x_0),\ldots,M(x_{n-1})\rangle$
- Distance follows from fact on univariate polynomials.

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

Aside

Standard textbooks give very different presentation of RS codes.

Next few slides explain the connection.

(May skip till "End of Aside")

Primitive roots and Canonical RS code

Defn: w is a primitive nth root of unity if: $w^n = 1 \text{ but } w^i \neq 1, 1 \leq i < n.$

Fact: $0 < k < n \Rightarrow$

$$1 + w^k + (w^k)^2 + \dots + (w^k)^{n-1} = 0.$$

Proof:

$$w^{n} = 1 \Rightarrow (w^{k})^{n} = 1 \Rightarrow (w^{k})^{n} - 1 = 0$$

 $\Rightarrow (w^{k} - 1) = 0$
or $(1 + w^{k} + \cdots + (w^{k})^{n-1}) = 0$.

Defn: Canonical RS code:

Set
$$x_i = w^i$$
, $0 < i < n - 1$.

Dual of Canonical RS code

Exploring the dual:

$$\langle c_0, \ldots, c_{n-1} \rangle \in \mathrm{RS}^{\perp}$$

1

$$\sum_{i=0}^{n-1} c_i M(w^i) = 0, \forall \text{ deg. } \leq k-1 \text{ poly. } M$$

$$\sum_{i=0}^{n-1} c_i(w^i)^j = 0$$
, $\forall 0 \le j \le k-1$

1

$$(x-w^j) \mid C(x) \stackrel{\triangle}{=} \sum_{i=0}^{n-1} c_i x^i$$

Dual of RS code (contd).

• Let
$$G(x) = \prod_{j=0}^{k-1} (x - w^j)$$

• Message: Coeffs of polys
$$\langle d_0, \dots, d_{n-k-1} \rangle \approx D(x) = \sum_i d_i x^i$$

• Encoding: Coeffs of poly multiplied with
$$G(x)$$
.

Let $C(x) = G(x) \cdot D(x) = \sum_i c_i x^i$.

Encoding = $\langle c_0, \dots, c_{n-1} \rangle$

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

1

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

Alternate description of Dual

Thm:
$$RS^{\perp} = \left\{ \begin{array}{c} \langle M(w^i) \rangle_{i=0}^{n-1} \mid M(0) = 0, \\ \deg(M) < n - k \end{array} \right\}$$

Proof: Need to verify

$$(x-w^l) \mid \sum_{i=0}^{n-1} M(w^i)x^i, \quad 0 \le l \le k-1$$

$$\Leftrightarrow \sum_{i=0}^{n-1} M(w^i)(w^l)^i$$

$$\Leftrightarrow \sum_{i=0}^{n-1} ((w^i)^j)(w^l)^i, \quad 1 \leq j \leq n-k$$

$$\Leftrightarrow \sum_{i=0}^{n-1} ((w^i)^j)(w^l)^i$$

$$\Leftrightarrow \sum_{i=0}^{n-1} (w^{j+l})^i, \quad 1 \le l+j \le n-1$$

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

Follows from primitivity.

End of Aside

Conclusion: Reed-Solomon codes are (almost) their own duals.

Statement of great importance.

Or as Levin would say

Magnitude of importance very large. Unfortunately sign is negative.

Reed-Muller Codes

Codes based on multiv. polynomials.

variables = m; degree < r.

Coding theory favorite: q=2, $[n,k,d]_2$] code

$$n = q^m; k = \left({m \choose r} \right); d = q^{m-r}$$

Complexity th. favorite: q > r, $[n, k, d]_q$ code

$$n = q^m; k = {m+r \choose r}; d = q^m - rq^{m-1}$$

Latter version:

Larger alphabet; larger distance.

Can also take indiv. degree bounded polys.

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

Random linear codes

Pick $c_1, \ldots, c_k \in_R \Sigma^n$ and let

$$G = \begin{bmatrix} - & - & c_1 & - & - \\ - & - & c_2 & - & - \\ & \vdots & & \\ - & - & c_k & - & - \end{bmatrix}$$

Analysis (of Distance):

- For fixed $\langle \alpha_1, \dots, \alpha_k \rangle \neq \vec{0}$ $\Pr \left[\alpha G \in B(\vec{0}, d) \right] \leq q^{(H_q(d/n) - 1)n}.$
- Thus $\Pr\left[\exists \alpha \text{ s.t.} \alpha G \in B(\vec{0}, d)\right] \leq q^{k + (H_q(d/n) 1)n}.$
- Thus if $k/n < 1 H_q(d/n)$ then code is $[n, k, d]_q$ code.

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

Hamming Balls

- Recall $B(\vec{x},r)$ ball of radius r around \vec{x} .
- V(n,r,q) = "volume" of $B(\cdot,r)$ in Σ^n .
- Let $H_q(p)$ be q-ary entropy function.

$$H_q(p) = p \log_q \left(\frac{q-1}{p}\right) + (1-p) \log_q \left(\frac{1}{1-p}\right)$$

Fact:

$$V(n, pn, q) \approx q^{H_q(p)n}$$

Summary

- Reed-Solomon codes are great, but alphabet is too large.
- Hadamard codes are exponentially large but have great distance.
- Random codes are great. Achieve k/n, d/n > 0 over binary alphabet.

But non-constructive; non-verifiable; non-decodable.

Operations on codes

Can produce codes from other codes by some basic operations.

Puncturing:

Throw away column of generator matrix.

$$[n,k,d]_q \rightarrow [n-1,k,d-1]_q$$

Asymptotically weaker.

(Every linear code is punctured Hadamard code.)

• Pasting:

Adjoin generators of codes of same dim. to get longer code.

$$[n_1, k, d_1]_q \mid [n_2, k, d_2]_q$$

 $\rightarrow [n_1 + n_2, k, d_1 + d_2]_q$

Asymptotically weaker.

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

Direct Products

- $[n_1, k_1, d_1]_q \otimes [n_2, k_2, d_2]_q$ $\rightarrow [n_1 n_2, k_1 k_2, d_1 d_2]_q$
- Let R generate $[n_1, k_1, d_1]$ code. Let C generate $[n_2, k_2, d_2]$ code.
- Codewords of $R \otimes C$ are $n_1 \times n_2$ matrices: $\{C^T X R \mid X \in \Sigma^{k_1 \times k_2}\}$
- Columns of tensor are codewords of C.
 Rows of tensor are codewords of R.
- Asymptotically weakening.

Example: tensor product of RS codes, gives bivariate polynomials of degree k_1-1 in x and k_2-1 in y.

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

Concatenation of codes [Forney]

$$[n_1, k_1, d_1]_{q^{k_2}} \circ [n_2, k_2, d_2]_q$$

$$\to [n_1 n_2, k_1 k_2, d_1 d_2]_q.$$

- Compare with Tensor Products!
- Terminology: First code is "outer code"
 Second code is "inner code".
- Encoding:

Encode message with outer encoder.
Then encode each letter w. inner code.

 Linearity achieved with care. Outer alphabet must be properly extended from inner alphabet.

Example: RS o Hadamard

- Fix k_2 .
- Let $n_1 = 2^{k_2}, k_1 = .5n_1, q = 2$.
- RS outer code: $[n_1, \cdot 5n_1, \cdot 5n_1]_{n_1}$
- Hadamard inner code: $[n_1, k_2, \cdot 5n_1]_2$
- \bullet Concatenate code: $[n_1^2, \cdot 5k_2n_1, \cdot 25n_1^2]_2$
- Let $n=n_1^2$, Use $k_2=\cdot 5\log_2 n$ $[n,\cdot 25\sqrt{n}\log_2 n,\cdot 25n]_2$ code
- Constant distance, poly rate!
 Good for many complexity th. applications.

Forney Codes

- Concat. RS codes with random linear code.
- At each level code has constant d/n, k/n.
- Concat. code has constants for both ratios.

Thm: (Unflattering version). Asymptotically good code can be found in quasi-polynomial time.

Thm: (Flattering version). By using 2 levels of concatenation, asymptotically good code can be found in nearly linear time, with polylog space.

(Not the end of story.)

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

25

Justesen's sample space

- The Wozencraft ensemble.
- Let $n_1 = q^{k_2}$.
- Let $F = GF(q^{k_2})$.
- Message for inner code: $x \in F$.
- α -th code maps $x \mapsto \langle x, \alpha x \rangle$.
- ullet For most lpha, get $[2k_2,k_2,H_q^{-1}(\frac{1}{2})(2k_2)]_q$ code.
- (I.e., most codes, as good as random code!)

Justesen Codes

(More "explicit" codes; Nice idea; Exposition due to Zuckerman)

Suppose: Can explicitly describe sample space containing n_1 codes such that all but ϵ fraction of the codes are $[n_2,k_2,d_2]_q$ codes.

Then concatenate codes as follows:

- ullet Encode message using $[n_1,k_1,d_1]_{a^{k_2}}$ code.
- Encode ith letter of result using ith code from sample space.
- Result is a $[n_1n_2, k_1k_2, (d_1 \epsilon n_1)d_2]_q$ code.

Can get asymptotically good code!

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two

Wozencraft ensemble (contd).

(Ignoring subscript on k_2 below.)

 α is d-bad if $\alpha\text{-th}$ code not $[2k,k,d]_q$ code.

Claim: # of bad α 's is at most

$$V(2k, d, q) \approx q^{H_q(d/(2k))\cdot(2k)}$$
.

Proof:

- If $\alpha_1 \neq \alpha_2$ then intersection of corr. codes is the 0-vector.
- Each bad code must have non-zero vector in $B(\vec{0}, d)$. These must be distinct.
- ullet Thus, at most V(2k,d,q) bad codes.

Further pointers

- Weldon codes: $x \mapsto \langle x, \alpha x, \alpha^2 x, \dots \rangle$.
- \bullet Gets distance arbitrarily close to $1-\frac{1}{q}.$
- Alternate route: Can apply Zuckerman exposition with 2-level concatenation and random linear codes.
- Sugiyama et al. papers: Get better rates than Weldon.

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Two