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Trivial Constructions

(Think binary, then generalize)

e Trivial code:

— FE is the identity function.
— Hasn=Fk,d=1.
— Generalizes to all alphabets!

e Parity code:

— Append parity of all £ bits to message.

— Givesn=Fk+1,d=2.

— More generally, append sum of the first
k letters.

Meet Singleton bound: k +d <n + 1.
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Disclaimer

This is an opinionated survey of coding theory,
unbiased by actual reading of papers.
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Hamming code

e Historically first (approximately).

e Foranyl, [n= (¢'=1)/(¢g—1),n—1,d = 3],
code.
e Rows of parity check matrix H:

— All non-zero vectors of length [,
— Scalar multiples removed (say by fixing
first non-zero entry to 1).

e Since any two rows of H are linearly
independent, distance is greater than 2.
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Hamming code (contd).
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Parity check matrix
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Polynomials over finite fields

Some facts (Fix size of field to ¢).

e Non-zero deg. <[ poly. has <[ zeroes.
(alt’ly, zero on < [/q fraction of inputs.)

e Deg < [ polys = vector space of dim. [+ 1.

e Non-zero deg. < [, m-variate, poly.
zero on < [/q fraction of inputs.

o [ <qg= Deg. <I, m-variate, polys
= dim. (m;rl) vector space.
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Hadamard code

n=4q¢ k=1d=q — ¢ '], code.
(Roughly, the dual of the Hamming code.)

Construction:

e Message: m = (my,... ,my)
associated with
M(z1,...,z) = Zle miT;.

e Encoding: E(m) = (M(x)),cxp-

e Distance = Why?
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Poly facts (contd.)

e Non-zero deg. < [, m-var., poly. zero on
< 1— ¢~ /=1 fraction of inputs.

e Vector space of dimension > ('}').

e Actual dimension = # of ordered partitions
of [ into integers from {0,... g — 1}.
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Hadamard codes (contd).

e Codewords are evaluations of degree 1
polynomials over [f,.

e May agree in at most 1/q fraction of
indices.

e = Distance > ¢/ — ¢/ 7.
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Aside

Standard textbooks give very different
presentation of RS codes.

Next few slides explain the connection.

(May skip till “End of Aside”)
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Reed-Solomon Codes

Reed-Solomon Codes:
[, k,n —k+ 1], code for ¢ > n.

e Fix distinct zq,... ;2,1 € 2.

e Message: Coefficients of polynomials

(moy ... ,mg_1) ~ M(z) = Zi‘:ol m;x

e Encoding: Evaluations of polynomials
(M(z0)y... ,M(zp_1))

e Distance follows from fact on univariate
polynomials.

Madhu Sudan, : 10

Primitive roots and Canonical RS code

Defn: w is a primitive nth root of unity if:
wt=1lbutw'#1, 1<i<n.

Fact: 0 <k <n =

1+ wh + (wh)? + -+ (W)™ = 0.

Proof:
w'=1= (W=1= (W "-1=0
= (wF—-1)=0
or (1+wk+--- (wk)"=1) = 0.

Defn: Canonical RS code:
Set z; = w*, 0<i<n-—1.
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Dual of Canonical RS code

Exploring the dual:
<C(), . ,Cn_1> S RSJ_

()
n—1
ZCiM(wi)ZO,V <k-1 M
1=0
()
S e(w) =0, Y0O<j<k-1

0

(z —w?) | Cz) 2 1) et
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Alternate description of Dual

pal o { (Mwh)iZg | M(0) =0,
Thm: RS —{ deg(M)Sn—k:}

Proof: Need to verify
(z—w') | iy M(w)a', 0 <1< k=1
& Yisy M(wh) ()
& Y ()W), 1<j<n—k
& Y (i) ()
& S (Wit 1<i4j<n-1
Follows from primitivity.
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Dual of RS code (contd).
k—1 ;
o Let G(z) =[[;_o(z — w’)

e Message: Coeffs of polys
<d0, ce ,dn—k—1> ~ D(.CU) == Zz di.TZ

e Encoding: Coeffs of poly
multiplied with G(z).
Let C(z) = G(z) - D(z) = 3, ciz.

Encoding = (cq,... ,¢pn—1)
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End of Aside
Conclusion: Reed-Solomon codes are

(almost) their own duals.
Statement of great importance.
Or as Levin would say ....

Magnitude of importance very large.
Unfortunately sign is negative.

Madhu Sudan, : 16



Reed-Muller Codes

Codes based on multiv. polynomials.
# variables = m; degree < r.

Coding theory favorite: ¢ = 2, [n, k, d]2| code

e ()

Complexity th. favorite: ¢ > r, [n, k, d], code

n=qmk= (m:T>;d=qm—rqm‘1

Latter version:
Larger alphabet; larger distance.

Can also take indiv. degree bounded polys.
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Hamming Balls

e Recall B(Z,r) ball of radius  around 7.
e V(n,r,q) = “volume” of B(:,7) in X",
e Let H,(p) be g-ary entropy function.

Hy(p) = plog, (q]Tl) +(1-p) log, (%p)

Fact:

V(n,pn, q) ~ ¢Ta®n
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Random linear codes

Pick c1,... ,cr €r 2™ and let

Analysis (of Distance):
e For fixed (ay,...,a;) #0
Pr [aG e B(D, d)} <
e Thus
Pr [Ela s.t.aG € B(0, d)} < ghH(Ho(d/m)=1)n,
e Thusif k/n <1 — H,(d/n)
then code is [n, k, d], code.

g(Ha(d/m=Dn.
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Summary

e Reed-Solomon codes are great, but
alphabet is too large.

e Hadamard codes are exponentially large but
have great distance.

e Random codes are great.
Achieve k/n, d/n > 0 over binary alphabet.

But non-constructive; non-verifiable;
non-decodable.
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Operations on codes

Can produce codes from other codes by some
basic operations.

e Puncturing:
Throw away column of generator matrix.
n,k,dly, — [n—-1kd-1]
Asymptotically weaker.
(Every linear code is punctured Hadamard
code.)

e Pasting:
Adjoin generators of codes of same dim.
to get longer code.
[nla k, dl]q | [nQa k, dQ]q
—  [n1+ng, k,di + do),
Asymptotically weaker.
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Concatenation of codes [Forney]
[nla kl? dl]qu o [712’ k27 dQ]q
—  [ning, kika, dids),.
e Compare with Tensor Products!

e Terminology: First code is “outer code”
Second code is “inner code”.

e Encoding:
Encode message with outer encoder.
Then encode each letter w. inner code.

e Linearity achieved with care. Outer
alphabet must be properly extended from
inner alphabet.
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Direct Products
o [n1,k1,d1]q @ [ng, ka,da],
—  [ning, ki1ke, d1d2]g

e Let R generate [ny, k1, d;] code.
Let C' generate [ns, ko, ds| code.

e Codewords of R®C are n; X ny matrices:
{CTXR| X € xhixk}

e Columns of tensor are codewords of C.
Rows of tensor are codewords of R.

e Asymptotically weakening.

Example: tensor product of RS codes, gives
bivariate polynomials of degree k1 — 1 in =
and ko — 1 in y.
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Example: RS o Hadamard

o Fix ko.

o Let ny =22 k; = By, q = 2.

e RS outer code: [ny, -5nq, 511,

e Hadamard inner code: [n1, k2, -Bn1]2
e Concatenate code: [n2, -5kony, -25m3)5

o Let n = n?, Use ky = -5logyn
[n, -254/nlogy m, -25n], code

e Constant distance, poly rate!
Good for many complexity th. applications.
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Forney Codes

e Concat. RS codes with random linear code.
e At each level code has constant d/n, k/n.

e Concat. code has constants for both ratios.

Thm: (Unflattering version). Asymptotically
good code can be found in quasi-polynomial
time.

Thm: (Flattering version). By using 2 levels
of concatenation, asymptotically good code
can be found in nearly linear time, with
polylog space.

(Not the end of story.)

Madhu Sudan, : 25

Justesen’s sample space

e The Wozencraft ensemble.

o Let n; = ¢*2.

o Let F = GF(¢").

e Message for inner code: = € F'.
e a-th code maps z — (z, ax).

o For most «a, get [2ks, ko, H,'(5)(2k2)],
code.

e (l.e., most codes, as good as random code!)
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Justesen Codes

(More “explicit” codes; Nice idea; Exposition
due to Zuckerman)

Suppose: Can explicitly describe sample space
containing 7, codes such that all but ¢
fraction of the codes are [ns, ks, ds], codes.

Then concatenate codes as follows:
e Encode message using [nl,kl,dl]qkz code.

e Encode ith letter of result using 7th code
from sample space.

e Result is a [nﬂlg, kiks, (d] — 6n1)d2]q code.

Can get asymptotically good code!
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Wozencraft ensemble (contd).

(Ignoring subscript on k2 below.)
« is d-bad if a-th code not [2k, k, d], code.

Claim: # of bad «'s is at most

V(2k,d, q) ~ gHald/(2k)-(2k)

Proof:
e If ai; # s then intersection of corr.
codes is the O-vector.
e Each bad code must have non-zero vector
in B(0,d). These must be distinct.
e Thus, at most V' (2k, d, q) bad codes.

Madhu Sudan, : 28



Further pointers

e Weldon codes: z  (z, ax, oz, ... ).
e Gets distance arbitrarily close to 1 — é.

e Alternate route: Can apply Zuckerman
exposition with 2-level concatenation and
random linear codes.

e Sugiyama et al. papers: Get better rates
than Weldon.
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