A Crash Course on Coding Theory

Madhu Sudan
MIT

Disclaimer

This is an opinionated survey of coding theory, unbiased by actual reading of papers.
Trivial Constructions

(Think binary, then generalize)

- **Trivial code:**
 - E is the identity function.
 - Has $n = k, d = 1$.
 - Generalizes to all alphabets!

- **Parity code:**
 - Append parity of all k bits to message.
 - Gives $n = k + 1, d = 2$.
 - More generally, append sum of the first k letters.

Meet **Singleton bound:** $k + d \leq n + 1$.

Hamming code

- Historically first (approximately).
- For any l, $[n = \frac{q^l - 1}{q - 1}, n - l, d = 3]_q$ code.
- Rows of parity check matrix H:
 - All non-zero vectors of length l, scalar multiples removed (say by fixing first non-zero entry to 1).
- Since any two rows of H are linearly independent, distance is greater than 2.
Hamming code (contd).

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{bmatrix}
\]

\[l = n - k\]

\[\text{Parity check matrix}\]

Hadamard code

\[[n = q^l, k = l, d = q^l - q^{l-1}]_q\] code.

(Roughly, the dual of the Hamming code.)

Construction:

- **Message**: \(m = \langle m_1, \ldots, m_k \rangle\)
 - associated with \(M(x_1, \ldots, x_k) = \sum_{i=1}^{k} m_i x_i\).

- **Encoding**: \(E(m) = \langle M(x) \rangle_{x \in \Sigma^k}\).

- **Distance** = Why?
Polynomials over finite fields

Some facts (Fix size of field to q).

- Non-zero deg. $\leq l$, poly. has $\leq l$ zeroes.
 (alt’ly, zero on $\leq l/q$ fraction of inputs.)

- Deg $\leq l$ polys $=$ vector space of dim. $l+1$.

- Non-zero deg. $\leq l$, m-variate, poly.
 zero on $\leq l/q$ fraction of inputs.

- $l < q \Rightarrow$ Deg $\leq l$, m-variate, polys $=$ dim. $\binom{m+l}{l}$ vector space.

Poly facts (contd.)

- Non-zero deg. $\leq l$, m-var., poly. zero on
 $\leq 1 - q^{-\left(\frac{l}{l(q-1)}\right)}$ fraction of inputs.

- Vector space of dimension $\geq \binom{m}{l}$.

- Actual dimension $=$ # of ordered partitions
 of l into integers from $\{0, \ldots, q-1\}$.
Hadamard codes (contd).

- Codewords are evaluations of degree 1 polynomials over \mathbb{F}_q.
- May agree in at most $1/q$ fraction of indices.
- \Rightarrow Distance $\geq q^l - q^{l-1}$.

Reed-Solomon Codes

Reed-Solomon Codes:

$[n, k, n-k+1]_q$ code for $q \geq n$.

- Fix distinct $x_0, \ldots, x_{n-1} \in \Sigma$.
- **Message:** Coefficients of polynomials $\langle m_0, \ldots, m_{k-1} \rangle \approx M(x) = \sum_{i=0}^{k-1} m_ix^i$
- **Encoding:** Evaluations of polynomials $\langle M(x_0), \ldots, M(x_{n-1}) \rangle$
- **Distance** follows from fact on univariate polynomials.
Reed-Muller Codes

Codes based on multiv. polynomials.

variables = \(m \); degree \(\leq r \).

Coding theory favorite: \(q = 2, [n, k, d]_2 \) code

\[
n = q^m; \quad k = \left(\binom{m}{r} \right); \quad d = q^{m-r}
\]

Complexity th. favorite: \(q > r, [n, k, d]_q \) code

\[
n = q^m; \quad k = \left(\binom{m+r}{r} \right); \quad d = q^m - rq^{m-1}
\]

Latter version:
Larger alphabet; larger distance.

Can also take indiv. degree bounded polys.

Random linear codes

Pick \(c_1, \ldots, c_k \in R \Sigma^n \) and let

\[
G = \begin{bmatrix}
- & - & c_1 & - & - \\
- & - & c_2 & - & - \\
\vdots & & & & \\
- & - & c_k & - & -
\end{bmatrix}
\]

Analysis (of Distance):

- For fixed \(\langle \alpha_1, \ldots, \alpha_k \rangle \neq \vec{0} \)
 \[
 \Pr \left[\alpha G \in B(\vec{0}, d) \right] \leq q^{(H_q(d/n) - 1)n}.
 \]
- Thus
 \[
 \Pr \left[\exists \alpha \text{ s.t. } \alpha G \in B(\vec{0}, d) \right] \leq q^{(k + (H_q(d/n) - 1)n)}.
 \]
- Thus if \(k/n < 1 - H_q(d/n) \)
 then code is \([n, k, d]_q \) code.
Hamming Balls

- Recall $B(x, r)$ ball of radius r around x.

- $V(n, r, q) =$ "volume" of $B(\cdot, r)$ in Σ^n.

- Let $H_q(p)$ be q-ary entropy function.

$$H_q(p) = p \log_q \left(\frac{q - 1}{p}\right) + (1 - p) \log_q \left(\frac{1}{1 - p}\right)$$

Fact:

$$V(n, pn, q) \approx q^{H_q(p)n}$$

Summary

- Reed-Solomon codes are great, but alphabet is too large.

- Hadamard codes are exponentially large but have great distance.

- Random codes are great. Achieve $k/n, d/n > 0$ over binary alphabet.

 But non-constructive; non-verifiable; non-decodable.
Operations on codes

Can produce codes from other codes by some basic operations.

- **Puncturing:**
 Throw away column of generator matrix.
 \[[n, k, d]_q \to [n - 1, k, d - 1]_q \]
 Asymptotically weaker.
 (Every linear code is punctured Hadamard code.)

- **Pasting:**
 Adjoin generators of codes of same dim.
 to get longer code.
 \[[n_1, k_1, d_1]_q \ | \ [n_2, k_2, d_2]_q \to [n_1 + n_2, k, d_1 + d_2]_q \]
 Asymptotically weaker.

Direct Products

- \[[n_1, k_1, d_1]_q \otimes [n_2, k_2, d_2]_q \to [n_1 n_2, k_1 k_2, d_1 d_2]_q \]

- Let \(R \) generate \([n_1, k_1, d_1] \) code.
 Let \(C \) generate \([n_2, k_2, d_2] \) code.

- Codewords of \(R \otimes C \) are \(n_1 \times n_2 \) matrices:
 \[\{ C^T X R \mid X \in \Sigma^{k_1 \times k_2} \} \]

- Columns of tensor are codewords of \(C \).
 Rows of tensor are codewords of \(R \).

- Asymptotically weakening.

Example: tensor product of RS codes, gives bivariate polynomials of degree \(k_1 - 1 \) in \(x \) and \(k_2 - 1 \) in \(y \).
Concatenation of codes [Forney]

\[[n_1, k_1, d_1]_{d_2} \circ [n_2, k_2, d_2]_q \rightarrow [n_1n_2, k_1k_2, d_1d_2]_q. \]

- Compare with Tensor Products!
- Terminology: First code is "outer code"
 Second code is "inner code".
- **Encoding:**
 Encode message with outer encoder.
 Then encode each letter w. inner code.
- Linearity achieved with care. Outer alphabet must be properly extended from inner alphabet.

Example: RS \circ Hadamard

- Fix \(k_2 \).
- Let \(n_1 = 2^{k_2}, k_1 = \cdot 5n_1, q = 2. \)
- RS outer code: \([n_1, \cdot 5n_1, \cdot 5n_1]_{n_1}\)
- Hadamard inner code: \([n_1, k_2, \cdot 5n_1]_2\)
- Concatenate code: \([n_1^2, \cdot 5k_2n_1, \cdot 25n_1^2]_2\)
- Let \(n = n_1^2 \), Use \(k_2 = \cdot 5 \log_2 n \)
 \([n, \cdot 25\sqrt{n} \log_2 n, \cdot 25n]_2\) code
- Constant distance, poly rate!
 Good for many complexity th. applications.
Forney Codes

- Concat. RS codes with random linear code.
- At each level code has constant $d/n, k/n$.
- Concat. code has constants for both ratios.

Thm: (Unflattering version). Asymptotically good code can be found in quasi-polynomial time.

Thm: (Flattering version). By using 2 levels of concatenation, asymptotically good code can be found in nearly linear time, with polylog space.

(Not the end of story.)
Justesen Codes

(More "explicit" codes; Nice idea; Exposition due to Zuckerman)

Suppose: Can explicitly describe sample space containing \(n_1 \) codes such that all but \(\epsilon \) fraction of the codes are \([n_2, k_2, d_2]_q \) codes.

Then concatenate codes as follows:

- Encode message using \([n_1, k_1, d_1]_q k_2 \) code.
- Encode \(i \)th letter of result using \(i \)th code from sample space.
- Result is a \([n_1 n_2, k_1 k_2, (d_1 - \epsilon n_1) d_2]_q \) code.

Can get asymptotically good code!

Justesen's sample space

- The Wozencraft ensemble.
- Let \(n_1 = q^{k_2} \).
- Let \(F = GF(q^{k_2}) \).
- Message for inner code: \(x \in F \).
- \(\alpha \)-th code maps \(x \mapsto \langle x, \alpha x \rangle \).
- For most \(\alpha \), get \([2k_2, k_2, H_q^{-1}(\frac{1}{2})(2k_2)]_q \) code.
- (I.e., most codes, as good as random code!)
Wozencraft ensemble (contd).

(Ignoring subscript on k_2 below.)

α is d-bad if α-th code not $[2k; k, d]_q$ code.

Claim: # of bad α's is at most

$$V(2k; d, q) \approx q^{H_q(d/(2k))\cdot(2k)}.$$

Proof:

- If $\alpha_1 \neq \alpha_2$ then intersection of corr. codes is the 0-vector.
- Each bad code must have non-zero vector in $B(\vec{0}, d)$. These must be distinct.
- Thus, at most $V(2k; d, q)$ bad codes.

Further pointers

- Weldon codes: $x \mapsto \langle x, \alpha x, \alpha^2 x, \ldots \rangle$.
- Gets distance arbitrarily close to $1 - \frac{1}{q}$.
- Alternate route: Can apply Zuckerman exposition with 2-level concatenation and random linear codes.
- Sugiyama et al. papers: Get better rates than Weldon.