The Berlekamp-Welch Decoder

This section presents the solution to the following problem first introduced by Berlekamp and Welch as part of a novel method for decoding Reed-Solomon codes.

Problem 4

Given : m pairs of points $\left(x_{i}, s_{i}\right) \in F \times F$ such that there exists a polynomial K of degree at most d such that for all but k values of $i, s_{i}=K\left(x_{i}\right)$, where $2 k+d<m$.
Question : Find K
NOTA: unfortunately, k and d are the opposite of what we have used so far !!!! Also, m stands for n ...

The Berlekamp-Welch Decoder

Consider the following set of equations:

$$
\begin{equation*}
\exists W, K \quad \operatorname{deg}(W) \leq k, \operatorname{deg}(K) \leq d, W \frac{1}{\tau} 0, \text { and } \forall i \quad W\left(x_{i}\right) * s_{i}=W\left(x_{i}\right) * K\left(x_{i}\right) \tag{1}
\end{equation*}
$$

Any solution W, K to the above system gives a solution to Problem 4. (Notice that we can cancel W from both sides of the equation to get $s_{i}=f\left(x_{i}\right)$, except when $W\left(x_{i}\right)=0$, but this can happen at most k times.)

The Berlekamp-Welch Decoder

Conversely, any solution K to Problem 4 also gives a solution to the system of equations .
(Let $B=\left\{x_{i} \left\lvert\, s_{i} \frac{1}{T} f\left(x_{i}\right)\right.\right\}$. Let $W(z)$ be the polynomial $\prod_{x \in B}(z-x)$. W, K form a solution to the system 1.)
Thus the problem can be reduced to the problem of finding polynomials K and W that satisfy (1).

The Berlekamp-Welch Decoder

Now consider the following related set of constraints

$$
\begin{equation*}
\exists W, N \quad \operatorname{deg}(W) \leq k, \operatorname{deg}(N) \leq k+d, W \frac{1}{\tau} 0, \text { and } \forall i \quad W\left(x_{i}\right) * s_{i}=N\left(x_{i}\right) \tag{2}
\end{equation*}
$$

If a solution pair N, W to (2) can be found that has the additional property that W divides N, then this would yield K and W that satisfy (1). Berlekamp and Welch show that all solutions to the system (2) have the same N / W ratio (as rational functions) and hence if equation (2) has a solution where W divides N, then any solution to the system (2) would yield a solution to the system (1). The following lemma establishes this invariant.

The Berlekamp-Welch Decoder

Lemma 6 Let N, W and L, U be two sets cf solutions to (2). Then $N / W=L / U$.
Proof: For $i, 1 \leq i \leq m$, we have

$$
\begin{gathered}
L\left(x_{i}\right)=s_{i} * U\left(x_{i}\right) \quad \text { and } \quad N\left(x_{i}\right)=s_{i} * W\left(x_{i}\right) \\
\Rightarrow L\left(x_{i}\right) * W\left(x_{i}\right) * s_{i}=N\left(x_{i}\right) * U\left(x_{i}\right) * s_{i} \\
\Rightarrow L\left(x_{i}\right) * W\left(x_{i}\right)=N\left(x_{i}\right) * U\left(x_{i}\right) \quad \text { (by cancellation) }
\end{gathered}
$$

(Cancellation applies even when $s_{i}=0$ since that implies $N\left(x_{i}\right)=L\left(x_{i}\right)=0$.) But both $L * W$ and $N * U$ are polynomials of degree at most $2 k+d$ and hence if they agree on $m>2 k+d$ points they must be identical. Thus $L * W=N * U \Rightarrow L / U=N / W$

The Berlekamp-Welch Decoder

All that remains to be shown is how one obtains a pair of polynomials W and N that satisfy (2). To obtain this, we substitute unknowns for the coefficients of the polynomials i.e., let $W(z)=$ $\sum_{j=0}^{k} W_{j} z^{j}$ and let $N(z)=\sum_{j=0}^{k+d} N_{j} z^{j}$. To incorporate the constraint $W \frac{1}{\tau} 0$ we set $W_{k}=1$. Each constraint of the form $N\left(x_{i}\right)=s_{i} * W\left(x_{i}\right), i=1 \cdots, m$ becomes a linear constraint in the $2 k+d+1$ unknowns and a solution to this system can now be found by matrix inversion.

Algorithm $2.6\left(\operatorname{Solve}\left(x_{1}, x_{2}, \ldots, x_{m}, s_{1}, s_{2}, \ldots, s_{m}\right)\right)$

NOTA: remember that $2 \mathrm{k}+\mathrm{d}=\mathrm{m}-1$, thus this is a square matrix.

$$
\begin{aligned}
& \text { NOTA: remember that } 2 \mathrm{k}+\mathrm{d}=\mathrm{m}-1 \text {, thus this is a square matrix. } \\
& \left(\begin{array}{cccccc}
1 & x_{1} & \ldots & x_{1}^{k+d} & -s_{1} & \ldots \\
-s_{1} x_{1}^{k-1} \\
1 & x_{2} & \ldots & x_{2}^{k+d} & -s_{2} & \ldots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\
x_{2}^{k-1} \\
1 & x_{i} & \ldots & x_{i}^{k+d} & -s_{i} & \ldots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\
1 & x_{m} & \ldots & x_{m}^{k+d} & -s_{m}^{k-1} & \ldots \\
n_{m} \\
n_{0} \\
n_{1} \\
\vdots \\
\text { NOTA: remember that } \\
\vdots \\
\vdots \\
n_{k+d} \\
w_{0} \\
w_{1} \\
\vdots \\
w_{k-1}
\end{array}\right)\left(\begin{array}{c}
s_{m} x_{m}^{k}
\end{array}\right)=\left(\begin{array}{c}
s_{1} x_{1}^{k} \\
s_{2} x_{2}^{k} \\
\vdots \\
\vdots \\
s_{i} x_{i}^{k} \\
\vdots \\
\vdots \\
s_{m} x_{m}^{k}
\end{array}\right)
\end{aligned}
$$

The Berlekamp-Welch Decoder

It may be noted that the algorithm presented here for finding W and N is not the most efficient known. Berlekamp and Welch [5] present an $O\left(m^{2}\right)$ algorithm for finding N and W, but proving the correctness of the algorithm is harder. The interested reader is referred to [5] for a description of the more efficient algorithm.

