
Computer Science COMP-547A

Cryptography and Data Security

Claude Crépeau

These notes are, largely, transcriptions by Anton Stiglic of class notes
from the former course Cryptography and Data Security (308-647A) that
was given by prof. Claude Crépeau at McGill University during the au-
tumns of 1998 and 1999. These notes are updated and revised each year by
Prof. Claude Crépeau.

Latest update September 5, 2008.

1 Basic Number Theory

1.1 Definitions

Divisibility:
a|b ⇐⇒ ∃k ∈ Z [b = ak]

Congruences:
a ≡ b (mod n) ⇐⇒ n|(a− b)

Modulo operator: (Maple irem, mod)

b mod n = min{a ≥ 0 : a ≡ b (mod n)}

Division operator: (Maple iquo)

b div n = ⌊b/n⌋ =
b− (b mod n)

n

Greatest Common Divider: (Maple igcd, igcdex)

g = gcd(a, b) ⇐⇒ g|a, g|b and [g′|a, g′|b⇒ g′|g]

Euler’s Phi function: (Maple phi)

φ(n) = #{a : 0 < a < n and gcd(a, n) = 1}

Note. φ(p) = p− 1, φ(pq) = (p− 1)(q − 1), where p and q are primes.
If n = pe1

1 pe2

2 . . . pek

k then φ(n) = (p1 − 1)pe1−1
1 (p2 − 1)pe2−1

2 . . . (pk − 1)pek−1
k .

1.2 Efficient basic operations

For the basic operations of +,−,×,mod, div one may use standard “high
school” algorithms reducing the work load by the following rules:

a

+
−
×

b mod n =

(a mod n)

+
−
×

(b mod n)

 mod n

The standard “high school” algorithms are precisely described in Knuth
(Vol 2). For very large numbers, special purpose divide-and-conquer algo-
rithms may be used for better efficiency of ×, mod, div. Consult the algo-
rithmics book of Brassard-Bratley for these.

2

1.3 Fast modular exponentiation

The idea behind this algorithm is to maintain in each iteration the value of
the expression xae mod n while reducing the exponent e by a factor 2.

Algorithm 1.1 (ae mod n)

1: x← 1,

2: WHILE e > 0 DO

3: IF e is odd THEN x← ax mod n,

4: a← a2 mod n, e← e div 2,

5: ENDWHILE

6: RETURN x.
(Maple x&^e mod n)

1.4 GCD calculations and multiplicative inverses

Note. gcd(a, b) = g → ∃x,y ∈ Z such that g = ax + by. The following
recursive definition is based on the property gcd(a, b) = gcd(a, b− a).

gcd(a, b) =

{

a if b = 0
gcd(b, a mod b) otherwise

The idea behind the following iterative algorithm is to maintain in each
iteration the relations g = ax+by and g′ = ax′ +by′ while reducing the value
of g. At the end of the algorithm, the value of g is gcd(a, b). The final value
of x is such that ax ≡ g (mod b). When gcd(a, b) = 1, we find that x is the
multiplicative inverse of a modulo b.

3

Algorithm 1.2 (Euclide gcd(a, b))

1: g ← a, g′ ← b, x← 1, y ← 0, x′ ← 0, y′ ← 1,

2: WHILE g′ > 0 DO

3: k ← g div g′,

4: (ĝ, x̂, ŷ)← (g, x, y) − k(g′, x′, y′),

5: (g, x, y)← (g′, x′, y′),

6: (g′, x′, y′)← (ĝ, x̂, ŷ),

7: ENDWHILE

8: RETURN (g, x, y).

(Maple igcd, igcdex, x^(-1) mod n, 1/x mod n)

1.5 Solving linear congruentials

A linear congruential is an expression of the form

c ≡ ax + b (mod n)

for known a, b, c, n and unknown variable x. Clearly, we can solve for x
whenever gdc(a, n) = 1 since in that case a−1 (mod n) exists and thus

x ≡ (c− b) a−1 (mod n).

However, when gdc(a, n) = g > 1 the situation becomes less trivial. If it
is the case that g|(c− b) as well we can solve the following system instead:

(a/g) x′ ≡ (c− b)/g (mod n/g).

Since gdc(a/g, n/g) = 1, in that case (a/g)−1 (mod n/g) exists we can solve
for x′

x′ ≡ (c− b)/g (a/g)−1 (mod n/g).

Note however that no solution exists if g 6 |(c− b).

4

Finally, we know that a solution x modulo n must satisfy x ≡ x′ (mod n/g).
Thus we can write

x = x′ + kn/g

and consider all such x with 0 ≤ k < g. All these posibilties for x will be
valid solutions to the original system.

1.6 Quadratic Residues

Quadratic residues modulo n are the integers with an integer square root
modulo n (Maple quadres):

QRn = {a : gcd(a, n) = 1, ∃r[a ≡ r2 (mod n)]}
QNRn = {a : gcd(a, n) = 1, ∀r[a 6≡ r2 (mod n)]}

Example:
QR17 = {1, 2, 4, 8, 9, 13, 15, 16}

QNR17 = {3, 5, 6, 7, 10, 11, 12, 14}
since

{12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122, 132, 142, 152, 162} ≡
{1, 2, 4, 8, 9, 13, 15, 16} (mod 17).

Theorem 1.1 Let p be an odd prime number

#QRp = #QNRp = (p− 1)/2.

1.7 Legendre and Jacobi Symbols

For an odd prime number p, we define the Legendre symbol (Maple legendre)
as

(

a

p

)

=

+1 if a ∈ QRp

−1 if a ∈ QNRp

0 if p|a
For any integer n = p1p2...pk, we define the Jacobi symbol (Maple jacobi)

(a generalization of the Legendre symbol) as

(
a

n

)

=

(

a

p1

)(

a

p2

)

...

(

a

pk

)

5

Properties
(

1

n

)

= +1

(

ab

n

)

=
(

a

n

)(

b

n

)

(
a

n

)

=

(

a mod n

n

)

For n odd (−1

n

)

= (−1)(n−1)/2

(
2

n

)

= (−1)(n2−1)/8

For a, n odd and such that gcd(a, n) = 1
(

a

n

)(
n

a

)

= (−1)(n−1)(a−1)/4

Algorithm 1.3 (Jacobi(a, n))

1:if a ≤ 1 then return a
else if a is odd then if a ≡ n ≡ 3 (mod 4)

then return −Jacobi(n mod a, a)
else return +Jacobi(n mod a, a)

else if n ≡ ±1 (mod 8)
then return +Jacobi(a/2, n)
else return −Jacobi(a/2, n)

This algorithm runs in O((lg n)2) bit operations.

1.8 Fermat-Euler

Theorem 1.2 (Fermat) Let p be a prime number and a be an integer not
a multiple of p, then

ap−1 ≡ 1 (mod p).

Theorem 1.3 Let p be a prime number and a be an integer, then

a(p−1)/2 ≡
(

a

p

)

(mod p).

6

Theorem 1.4 (Euler) Let n be an integer and a another integer such that
gcd(a, n) = 1, then

aφ(n) ≡ 1 (mod n).

1.9 Extracting Square Roots modulo p

Theorem 1.5 For prime numbers p ≡ 3 (mod 4) and a ∈ QRp, we have
that r = a(p+1)/4 mod p is a square root of a.

Proof.

(a(p+1)/4))2 ≡ a(p−1)/2 · a (mod p)

≡ a (mod p)(Fermat, sec. 1.2)

For prime numbers p ≡ 1 (mod 4) and a ∈ QRp, there (only) exists an
efficient probabilistic algorithm. We present one found in the algorithmics
book of Brassard-Bratley:

Algorithm 1.4 (rootLV(x, p, VAR y, VAR success))

1: a← uniform(1 . . . p− 1)

2: IF a2 ≡ x mod p {very unlikely}

3: THEN success← true, y ← a

4: ELSE compute c and d such that 0 ≤ c ≤ p− 1, 0 ≤ d ≤ p− 1,

and (a +
√

x)(p−1)/2 ≡ c + d
√

x mod p

5: IF d = 0 THEN success← false

6: ELSE c = 0, success← true,

7: compute y such that 1 ≤ y ≤ p− 1 and d · y ≡ 1 mod p

1.10 Chinese Remainder Theorem

Theorem 1.6 (Chinese Remainder (Maple chrem)) Let m1, m2, ..., mr

be r positive integers such that gcd(mi, mj) = 1 for 1 ≤ i < j ≤ r and let

7

a1, a2, ..., ar be integers. The system of r congruences x ≡ ai (mod mi), for
1 ≤ i ≤ r has a unique solution modulo M = m1m2...mr which is given by

x =
r∑

i=1

aiMiyi mod M

where Mi = M/mi and yi = M−1
i mod mi, for 1 ≤ i ≤ r.

1.11 Application: Extracting Square Roots modulo n

We want to solve x2 ≡ a (mod n) for x knowing n = pq. We first solve
modulo p and q and find solutions to

xp
2 ≡ a (mod p)

xq
2 ≡ a (mod q).

We then consider the simultaneous congruences

x ≡ xp (mod p) ⇐⇒ p|x2 − a

x ≡ xq (mod q) ⇐⇒ q|x2 − a
︸ ︷︷ ︸

⇒ p · q = n|x2 − a

⇒ x2 ≡ a (mod n)

We can now solve x by the chinese remainder theorem.

Definition 1.7 (SQROOT) The square root modulo n problem can be stated
as follows:
given a composite integer n and a ∈ QRn, find a square root of a mod n.

(Maple msqrt)

Theorem 1.8 SQROOT is polynomialy equivalent to FACTORING (see
def. section 12.1).

Proof idea: the above construction shows that if we know the factorization
of n, we can extract square roots modulo each prime factor of n and then
recombine using the Chinese Remainder Theorem.

If we can extract square roots modulo n, we can split n in two factors
n = uv by repeating the following algorithm: Pick a random integer a and
extract the square root of a2 mod n, say a′. If a′ ≡ ±a (mod n) then try
again, else set u = gcd(a + a′, n) and v = gcd(a− a′, n). The probability of
the second case is at least 1/2.

8

1.12 ∗∗∗Extracting Square Roots modulo pe

If we have a solution r to r2 ≡ x (mod p), how do we find a solution s to
s2 ≡ x (mod pe) for e > 1 ?

The chinese remainder theorem does not apply here. We have to figure
things out in a different way.

First, consider the case e = 2. Since r2 ≡ x (mod p), there exists an
integer m = (r2− x)/p such that r2− x = mp. Suppose the solution mod p2

is of the form s = r + kp for some integer k. Let’s expand s2 :

s2 = (r + kp)2 = r2 + 2rkp + (kp)2 = mp + x + 2rkp + (kp)2

and therefore
s2 ≡ x + (m + 2rk) ∗ p (mod p2).

We find a solution s by making m + 2rk a multiple of p so that

(m + 2rk) ∗ p ≡ 0 (mod p2).

The following value of k will acheive our goal

k ≡ −m ∗ (2r)−1 (mod p)

and thus remembering s = r + kp we get

s = r − (m ∗ (2r)−1 mod p) ∗ p

and finally remembering m = (r2 − x)/p we obtain a solution

s = r + (x− r2) ∗ ((2r)−1 mod p).

Second, notice that the same exact reasoning allows to go from the case
pe to the case p2e, meaning that any solution r to r2 ≡ x (mod pe), can be
transformed to a solution s = r + kpe of s2 ≡ x (mod p2e).

Using this argument i times allows to start from a solution r to r2 ≡ x
(mod p), and find a solution s to s2 ≡ x (mod p2i

).
Finally, to solve the general problem where e is not necessarily a power

of 2, let i be the smallest integer such that 2i ≥ e. From a solution r to
r2 ≡ x (mod p), find a solution to s2 ≡ x (mod p2i

) and since pe|p2i

this
same solution s will also work mod pe.

9

1.13 Prime numbers

If we want a random prime (Maple rand, isprime) of a given size, we use
the following theorem to estimate the number of integers we must try before
finding a prime. Let π(n) = #{a : 0 < a ≤ n and a is prime}.

Theorem 1.9 lim
n→∞

π(n) log n

n
= 1

To decide whether a number n is prime or not we rely on Miller-Rabin’s
probabilistic algorithm. This algorithm introduces the notion of “pseudo-
primality” base a. Miller defined this test as an extension of Fermat’s test.
If the Extended Riemann Hypothesis is true than it is sufficient to use the test
with small values of a to decide whether a number n is prime or composite.
However the ERH is not proven and we use the test in a probabilistic fashion
as suggested by Rabin.

Algorithm 1.5 (Pseudo(a, n))

1: IF gcd(a, n) 6= 1 THEN RETURN “composite”,

2: Let t be an odd number and s a positive integer such that n− 1 = t2s

3: x← at mod n, y ← n− 1,

4: FOR i← 0 TO s

5: IF x = 1 AND y = n− 1 THEN RETURN “pseudo”,

6: y ← x, x← x2 mod n,

7: ENDFOR

8: RETURN “composite”.

It is easy to show that if n is prime, then Pseudo(a, n) returns “pseudo”
for all a, 0 < a < n. Rabin showed that if n is composite, then pseudo(a, n)
returns “composite” for at least 3n/4 of the values of a, 0 < a < n.

Theorem 1.10

#{a : Pseudo(a, n) = “pseudo”}
{

= φ(n) = n− 1 if n is prime
≤ φ(n)/4 ≤ (n− 1)/4 if n is composite.

10

To increase the certainty we may repeat the above algorithm as follows.

Algorithm 1.6 (Miller-Rabin prime(n, k))

1: FOR i← 1 TO k

2: Pick a random element a, 0 < a < n,

3: IF pseudo(a, n) = “composite” THEN RETURN “composite”,

4: ENDFOR

5: RETURN “prime”.

We easily deduce that if n is prime, then prime(n, k) always returns
“prime” and that if n is composite, then prime(n, k) returns “composite”
with probability at least 1− (1/4)k. Thus when the algorithm prime returns
“composite”, it is always a correct verdict. However when it returns “prime”
it remains a very small probability that this verdict is wrong.

In August of 2002, Agrawal, Kayal, and Saxena, announced the discovery
of a deterministic primality test running in polynomial time. Unfortunately
this test is too slow in practice... its running time being O(|n|12).

1.14 Quadratic Residuosity problem

Definition 1.11

Jn := {a ∈ Zn |
(

a

n

)

= 1}

Theorem 1.12 Let n be a product of two distinct odd primes p and q. Then
we have that a ∈ QRn iff

(
a
p

)

=
(

a
q

)

= 1.

Definition 1.13 The quadratic residuosity problem (QRP) is the following:
given an odd composite integer n and a ∈ Jn, decide whether or not a is a
quadratic residue modulo n.

Definition 1.14 (pseudosquare) Let n ≥ 3 be an odd integer. An integer a
is said to be a pseudosquare modulo n if a ∈ QNRn

⋂
Jn.

Remark: If n is a prime, then it is easy to decide if a is in QRn, since
a ∈ QRn iff a ∈ Jn, and the Legendre symbol can be efficiently computed by

11

algorithm 1.3.
If n is a product of two distinct odd primes p and q, then it follows from
theorem 1.12 that if a ∈ Jn, then a ∈ QRn iff

(
a
p

)

= 1.
If we can factor n, then we can find out if a ∈ QRn by computing the

Legendre symbol
(

a
p

)

.
If the factorization of n is unknown, then there is no efficient algorithm known
to decide if a ∈ QRn.
This leads to the Goldwasser-Micali probabilistic encryption algorithm:
Init: Alice starts by selecting two large distinct prime numbers p and q.

She then computes n = pq and selects a pseudosquare y. n and y will be
public, p and q private.

Algorithm 1.7 (Goldwasser-Micali probabilistic encryption)

1: Represent message m in binary (m = m1m2 . . . mt).

2: FOR i = 1 TO t DO

3: Pick x ∈R Zn
∗

4: ci ← ymix2 mod n

5: RETURN c = c1c2 . . . ct

Algorithm 1.8 (Goldwasser-Micali decryption)

1: FOR i = 1 TO t DO

2: ei ←
(

ci

p

)

using algo 1.3.

3: IF ei = 1 THEN mi ← 0 ELSE mi ← 1

4: RETURN m = m1m2 . . . mt

12

2 Finite Fields

2.1 Prime Fields

Let p be a prime number. The integers 0, 1, 2, ..., p − 1 with operations
+ mod p et × mod p constitute a field Fp of p elements.

• contains an additive neutral element (0)

• each element e has an additive inverse −e

• contains an multiplicative neutral element (1)

• each non-zero element e has a multiplicative inverse e−1

• associativity

• commutativity

• distributivity

Examples F2 = ({0, 1},⊕,∧). F5 = ({0, 1, 2, 3, 4}, +,×) defined by

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Other kind of finite fields for numbers q not necessarily prime exist (Maple
GF). This is studied in another section. In general we refer to Fq for a finite
field, but you may think of the special case Fp if you do not wish to find out
about the general field construction.

13

2.2 Primitive Elements

In all finite fields Fq (and some groups in general) there exists a primitive
element, that is an element g of the field such that g1, g2, ..., gq−1 enumerate
all of the q − 1 non-zero elements of the field. We use the following theorem
to find a primitive element over Fq.

Theorem 2.1 Let l1, l2, ..., lk be the prime factors of q−1 and mi = (q−1)/li
for 1 ≤ i ≤ k. An element g is primitive over Fq if and only if

• gq−1 = 1

• gmi 6= 1 for 1 ≤ i ≤ k

Algorithm 2.1 (Primitive(q))

1: Let l1, l2, ..., lk be the prime factors of q−1 and mi = q−1
li

for 1 ≤ i ≤ k,

2: REPEAT

3: pick a random non-zero element g of Fq,

4: UNTIL gmi 6= 1 for 1 ≤ i ≤ k,

5: RETURN g.

(Maple primroot, G[PrimitiveElement])
We use the following theorems to estimate the number of field elements

we must try in order to find a random primitive element.

Theorem 2.2 #{g : g is a primitive element of Fq} = φ(q − 1).

Theorem 2.3 lim inf
n→∞

φ(n) log log n

n
= e−γ ≈ 0.5614594836

Example: 2 is a primitive element of F5 since {2, 22, 23, 24} = {2, 4, 3, 1}.

14

Relation to Quadratic residues As an interesting note, if g is a primitive
element of the field Fp, for a prime p, then we have:

QRp = {g2i mod p : 0 ≤ i < (p− 1)/2}
QNRp = {g2i+1 mod p : 0 ≤ i < (p− 1)/2}

in other words, the quadratic residues are the even powers of g while the
quadratic non-residues are the odd powers of g.

Factoring q − 1... In general, it may be difficult to factor q − 1. It will
therefore be only possible to find a primitive element for fields Fq for which
the factorization of q−1 is known. However, if we are after a large field with
a random number of elements Eric Bach has devised an efficient probabilistic
algorithm to generate random integers of a given size with known factoriza-
tion. Recently, Adam Kalai has invented a somewhat slower algorithm that
is much simpler. Suppose we randomly select r with its factorization using
Bach’s or Kalai’s algorithm. We may check whether r + 1 is a prime or a
prime power. In this case a finite field of r + 1 elements is obtained and a
primitive element may be computed.

Algorithm 2.2 (Kalai randfact(n))

1: Generate a sequence n ≥ s1 ≥ s2 ≥ ... ≥ sℓ = 1 by picking

s1 ∈R {1, 2, ..., n} and si+1 ∈R {1, 2, ..., si}, until reaching 1.

2: Let r be the product of the prime si’s.

3: IF r ≤ n THEN with probability r/n RETURN (r, {prime si’s}).

4: Otherwise, RESTART.

Theorem 2.4 Let Mn =
∏

p≤n(1− 1/p).
The probability of producing r at step 2 is Mn/r.

Thus by outputting r with probability r/n in step 3, each possible value
is generated with equal probability Mn

r
r
n

= Mn

n
. The overall probability that

some small enough r is produced and chosen in step 3 is
∑

1≤r≤n
Mn

n
= Mn.

Theorem 2.5 lim
n→∞

Mn log n = e−γ ≈ 0.5614594836

15

2.3 Polynomials over a field

A polynomial over Fp is specified by a finite sequence (an, an−1, ..., a1, a0) of
elements from Fp, with an 6= 0. The number n is the degree of the polynomial.
We have operations +,−,× on polynomials analogous to the similar integer
operations. Addition and subtraction are performed componentwise using
the addition + and subtraction − of the field Fp.

Products are computed by adding all the products of coefficients associ-
ated to pairs of exponents adding to a specific exponent.

Example:

(x4 + x + 1)× (x3 + x2 + x)

= x4 × (x3 + x2 + x) + x× (x3 + x2 + x) + 1× (x3 + x2 + x)

= (x7 + x6 + x5) + (x4 + x3 + x2) + (x3 + x2 + x)

= x7 + x6 + x5 + x4 + (1 + 1)x3 + (1 + 1)x2 + x

= x7 + x6 + x5 + x4 + x

We also have operations g(x) mod h(x) (Maple modpol, quo) and g(x) div h(x)
(Maple rem) defined as the polynomials r(x) and q(x) such that g(x) =
q(x)h(x) + r(x) with deg(r) < deg(h). They are obtained by formal division
of g(x) by h(x) similar to what we do with integers.

Example:

x7 + x6 + x5 + x4 + x = (x2)× (x5 + x2 + 1) + (x6 + x5 + x2 + x)

= (x2 + x)× (x5 + x2 + 1) + (x5 + x3 + x2)

= (x2 + x + 1)× (x5 + x2 + 1) + (x3 + 1)

thus

(x7 + x6 + x5 + x4 + x) mod (x5 + x2 + 1) = x3 + 1

(x7 + x6 + x5 + x4 + x) div (x5 + x2 + 1) = x2 + x + 1

Exponentiations for integer powers modulo a polynomial are computed
using an analogue of algorithm 1.1 (Maple powermod) and gcd (Maple gcd) of
polynomials or multiplicative inverses (Maple gcdex, modpol(1/x,q(x),x,p))
are computed using an analogue of algorithm 1.2.

16

F2

x + 1 x9 + x4 + 1
x2 + x + 1 x10 + x3 + 1
x3 + x + 1 x11 + x2 + 1
x4 + x + 1 x12 + x6 + x4 + x + 1

x5 + x2 + 1 x13 + x4 + x3 + x + 1
x6 + x + 1 x14 + x10 + x6 + x + 1

x7 + x3 + 1 x15 + x + 1
x8 + x4 + x3 + x2 + 1 x16 + x12 + x3 + x + 1

Figure 1: Irreducible polynomials over F2.

F3 F5 F7

x + 1 x + 1 x + 1
x2 + x + 2 x2 + x + 2 x2 + x + 3

x3 + 2x + 1 x3 + 3x + 2 x3 + 3x + 2
x4 + x + 2 x4 + x2 + x + 2

x5 + 2x + 1
x6 + x + 2

Figure 2: Irreducible polynomials over F3,F5,F7.

2.4 Irreducible Polynomials

A polynomial g(x) is irreducible (Maple irreduc) if it is not the product of
two polynomials h(x), k(x) of lower degrees. We use the following theorem
to find irreducible polynomials.

Theorem 2.6 Let l1, l2, ..., lk be the prime factors of n and mi = n/li for
1 ≤ i ≤ k. A polynomial g(x) of degree n is irreducible over Fp iff

• g(x)|xpn − x

• gcd(g(x), xpmi − x) = 1 for 1 ≤ i ≤ k

17

Algorithm 2.3 (Rabin Irr(p, n))

1: let l1, l2, ..., lk be the prime factors of n and mi = n/li for 1 ≤ i ≤ k,

2: REPEAT

3: pick a random polynomial h(x) of degree n− 1 over Fp,

g(x)← xn + h(x),

4: UNTIL xpn

mod g(x) = x and gcd(g(x), xpmi − x) = 1 for 1 ≤ i ≤ k,

5: RETURN g.

We use the following theorem to estimate the number of polynomials we
have to try on average before finding one that is irreducible.

Theorem 2.7 Let m(n) be the number of irreducible polynomials g(x) of
degree n of the form g(x) = xn +h(x) where h(x) is of degree n−1. We have

pn

2n
≤ pn − pn/2 log n

n
≤ m(n) ≤ pn

n
.

2.5 General Fields

Let p be a prime number and n a positive integer. We construct a field with
pn elements (Maple GF) from the basis field Fp with p elements.

• The elements of Fpn are of the form a1a2...an where ai is an element of
Fp.

• The sum of two elements of Fpn is defined by

a1a2...an + b1b2...bn = c1c2...cn

such that ci = ai + bi for 1 ≤ i ≤ n.

• The product of two elements of Fpn is defined by

a1a2...an × b1b2...bn = c1c2...cn

18

such that
(c1x

n−1 + c2x
n−2 + ... + cn) =

(a1x
n−1 + a2x

n−2 + ... + an)× (b1x
n−1 + b2x

n−2 + ... + bn) mod r(x)

where r(x) is an irreducible polynomial of degree n over Fp.

Examples computations over F25

10011 + 01110 = (1 + 0)(0 + 1)(0 + 1)(1 + 1)(1 + 0) = 11101

+ 000 001 010 011 100 101 110 111

000 000 001 010 011 100 101 110 111
001 001 000 011 010 101 100 111 110
010 010 011 000 001 110 111 100 101
011 011 010 001 000 111 110 101 100
100 100 101 110 111 000 001 010 011
101 101 100 111 110 001 000 011 010
110 110 111 100 101 010 011 000 001
111 111 110 101 100 011 010 001 000

10011×01110 = 01001 since (x4+x+1)×(x3+x2+x) mod (x5+x2+1) =
x3 + 1.

× 000 001 010 011 100 101 110 111

000 000 000 000 000 000 000 000 000
001 000 001 010 011 100 101 110 111
010 000 010 100 110 011 001 111 101
011 000 011 110 101 111 100 001 010
100 000 100 011 111 110 010 101 001
101 000 101 001 100 010 111 011 110
110 000 110 111 001 101 011 010 100
111 000 111 101 010 001 110 100 011

Figure 3: operations of F23

19

2.6 Application of finite fields: Secret Sharing

A polynomial over Fq is specified by a finite sequence (an, an−1, ..., a1, a0) of
elements from Fq, with an 6= 0. The number n is the degree of the polynomial.

Theorem 2.8 (Lagrange’s Interpolation) Let x0, x1, ..., xd be distinct el-
ements of a field Fq and y0, y1, ..., yd be any elements of Fq. There exists a
unique polynomial p(x) over Fq with degree ≤ d such that p(xi) = yi for
1 ≤ i ≤ n.

Algorithm 2.4 (Interpolation(x0, x1, ..., xd, y0, y1, ..., yd))

1: return

1 x0 . . . xd
0

1 x1 . . . xd
1

...
...

. . .
...

1 xd . . . xd
d

−1

y0

y1
...
yd

Of course the matrix inversion is to be performed over Fq, which means all
additions, subtractions and multiplications are calculated within the field,
and divisions are performed by multiplying with the multiplicative inverse in
the field.

Suppose Alice wants to distribute a secret S among n people P1, P2, . . . , Pn

in such a way that any k of them can recover the secret from their joint in-
formation, while it remains perfectly secret when any k − 1 or less of them
get together. This is what we call a [n, k]-secret sharing scheme.

Algorithm 2.5 (SSSS(S))

1: a0 ← S,

2: FOR i := 1 TO k − 1 DO ai ← uniform(0..p− 1)

3: FOR j := 1 TO n DO si ← ak−1j
k−1 + . . . + a1j + a0 mod p

4: RETURN s1, s2, . . . , sn.

Let’s be a bit more formal. Let S be Alice’s secret from the finite set
{0, 1, 2, . . . , M} and let p be a prime number greater than M and n, the

20

number of share holders. Shamir’s construction of a [n, k]-secret sharing
scheme is as follows.

Share sj is given to Pj secretly by Alice. In order to find S, k or more
people may construct the matrix from Lagrange’s theorem from the distinct
values xj = j and find the unique (a0, a1, . . . , ak−1) corresponding to their
values yj = sj.

Theorem 2.9 For 0 ≤ m ≤ n, distinct j1, j2, . . . , jm and any sj1, sj2, . . . , sjm

S|[j1, sj1], [j2, sj2], . . . , [jm, sjm
] =

{

C if m ≥ k
U if m < k

where C is the constant random variable with Pr[C = c] = 1 for one single
constant c (meaning that the secret is fully determined), and U is the uniform
distribution (meaning that the secret is completely undetermined).

Algorithm 2.6 (Solve(x1, x2, ..., xm, s1, s2, ..., sm))

1:

1 x1 . . . xk+d
1 −s1 . . . −s1x

k
1

1 x2 . . . xk+d
2 −s2 . . . −s2x

k
2

...
...

. . .
...

...
. . .

...
...

...
. . .

...
...

. . .
...

...
...

. . .
...

...
. . .

...

1 xi . . . xk+d
i −si . . . −six

k
i

...
...

. . .
...

...
. . .

...
...

...
. . .

...
...

. . .
...

1 xm . . . xk+d
m −sm . . . −smxk

m

n0

n1
...

nk+d

w0

1
w2
...

wk

=

0
0
...
...
...
0
...
...
0

21

