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3.2. One-way function.

DEFINITION 3.2 (one-way function). Let f : {0,1}» — {0,1}» be a P-time
function ensemble and let X €y {0,1}t». The success probability of adversary A for
inverting f is

spn(4) = Prf(A(f(X))) = fF(X)].

Then f is an R-secure one-way function if there is no R-breaking adversary for f.
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3.3. Pseudorandom generator.

DEFINITION 3.3 (computationally indistinguishable). Let D : {0,1}* and & :
{0,1}% be probability ensembles. The success probability of adversary A for distin-
guishing D and & is

spa(A) = |Pr{A(X) = 1] - Pr{A(Y) = 1],

where X has distribution D and Y has distribution €. D and € are R-secure compu-
tationally indistinguishable if there is no R-breaking adversary for distinguishing D
and &.
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DEFINITION 3.5 (pseudorandom generator). Let g : {0,1}» — {0,1}¢" be a
P-time function ensemble where £, > t,. Then g is an R-secure pseudorandom
generator if the probability ensembles g(Uy,) and Uy, are R-secure computationally
indistinguishable.
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PROPOSITION 3.6. Suppose g : {0,1}" — {0,1}"+! is a pseudorandom generator
that stretches by one bit. Define gV (z) = g(x), and inductively, for all i > 1,

g @0 (2) 1,...n)), 99 (@) i1, mri -

Let k,, be an integer-valued P-time polynomial parameter. Then g%~ is a pseudoran-
dom generator.
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7. A direct construction. We have shown how to construct a false-entropy
generator from an arbitrary one-way function, a pseudoentropy generator from a
false-entropy generator, and finally a pseudorandom generator from a pseudoentropy
generator. The combinations of these constructions give a pseudorandom generator
from an arbitrary one-way function as stated in Theorem 6.3. By literally composing
the reductions given in the preceding parts of this paper, we construct a pseudorandom
generator with inputs of length n3* from a one-way function with inputs of length n.
This is obviously not a suitable reduction for practical applications. In this subsection,
we use the concepts developed in the rest of this paper, but we provide a more direct
and efficient construction. However, this construction still produces a pseudorandom
generator with inputs of length 'Y, which is clearly still not suitable for practical
applications. (A sharper analysis can reduce this to n®, which is the best we could
find using the ideas developed in this paper.) The result could only be considered
practical if the pseudorandom generator had inputs of length n?, or perhaps even
close to n. (However, in many special cases of one-way functions, the ideas from this
paper are practical; see, e.g., [Luby96].)
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DEFINITION 2.3 (information and entropy). Let D be a distribution on a set
S. For each x € S, define the information of x with respect to D to be Ip(x) =

~log(D(x)).

The following definition characterizes how much entropy is lost by the application
of a function f to the uniform distribution.

DEFINITION 2.7 (degeneracy of f). Let f : {0,1}" — {0,1}* and let X &y
{0,1}™. The degeneracy of f is D,(f) = H(X|f(X)) = H(X) - H(f(X)).

DEFINITION 2.13 (Dy). Let f: {0,1}" — {0,1}*" be a P-time function ensem-
ble. For z € rangey, define the approximate degeneracy of z as

Dy(z) = [log(tpre,(2))] .

Notice that D #(2) is an approximation to within an additive factor of 1 of the
quantity n — Iy(x)(2). Furthermore, E[D;(f(X))] is within an additive factor of 1 of

the degeneracy of f. If f is a oj,-regular function then, for each z € rangey, f)f(z) is
within an additive factor of 1 of log(o,,), which is the degeneracy of f.
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Let p,, be the probability that I < D;(f(X)).

Let

(6.1) f:{0,1}" — {0,1}¢

be a one-way function and let

(6.2) h:{0,1}Pn x {0,1}" — {0, 1} +los(2n)]

be a universal hash function. Similar to Construction 5.1, for x € {0,1}", i €
{0,...,n—1}, and r € {0,1}P, define P-time function ensemble

(6.3) fi(xiyr) = (f(x), he ()1, it Nog(2n)] 30 0 T)-

Let X = (X, I, R) represent the input distribution to f’, and
let ¢, be the length of X and ¢/, the length of f/(X).

Let e, = H(f'(X)).
Let b(z,y) =z O y.
Set k,, = 2000n°.
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Intuitively, we generate pseudorandom bits as follows: let X/ = X*» and Y’ =
Ykn. We first compute f/* (X") and bk~ (X’)Y'). Intuitively, we are entitled to
recapture

kncn — H(f"*" ("), 6" (X', Y"))

bits from X’, because this is the conditional entropy left after we have computed f’ e
and bFn.
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We are entitled to recapture k,p,, bits from the b¥ (X’ Y”) (since we get
a hidden bit out of each copy whenever I < D;(f(X))). Finally, we should be able
to extract e,k, bits from f/**(X’), since e, is the entropy of f/(X). Since b(X,Y) is
almost totally predictable for almost all inputs where I > D (f(X)),

H(f'(X),b(X,Y)) < eq + P — 1/n+1/(2n).

Let Z €1 {0,1}™, and let
D=(Hhy((Xj0Y],... 7X,/€n ® Yk/n>)7]Nk‘"(X/,I/,R/)7 UY'’y,

= (2, " (X', I R),UY).

LEMMA 6.4. H(E) > H(D) + 10n2.

Proof. The entropy of D and £ excluding the first m,, bits is exactly the same.
The additional entropy in the first m,, bits of £ is equal to m,,. An upper bound on
the additional entropy in the first m,, bits of D is the additional entropy in (Xj ®
Y{,..., X}, ©Y ). Foreach j € {1,...,k,} where [} < Df(f(X’)) the amount of
entropy added by X;0Y] is at most 1 On the other hand, under the condition

that I} > Df(f(Xj)), X} ®Y] is determined by (f'(X7, I}, R}),Y]) with probability
at least 1 — 1/2n, and thus the additional entropy under this condition is at most
1/2n. Since I} < Dy(f(X})) with probability p, —1/n, it follows that the additional

entropy added by X} ®Y] is at most p, —1/2n. Therefore, the additional entropy in

the first m,, bits of D is at most k,(p, — 1/2n) = m,, + 2k2/3 —k,/2n < m,, — 10n?
by choice of k. ]
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Thus, if we add up all the output bits, we are entitled

t0 kn(cn+1/(2n)), or ky/(2n) more bits than the input to f/*". However, our methods
of extracting entropy are not perfect, so we need to sacrifice some bits at each stage;
to use Corollary 4.10, we need to sacrifice ani/ 3 at each stage, so we chose k,, to
satisfy ky/(2n) > 6nk,2/>.

COROLLARY 4.10. Let k,, be an integer-valued P-time polynomial parameter.
e Let D : {0,1}" be a probability ensemble, let m, = k,H(D) — 2nk:3,,/3, and
let b : {0,1}P» x {0,1}"*» — {0,1}™" be a universal hash function. Let

X' €prn {0,1}nX" and let Y € {0,1}P». Then
Lo (hy (X'), ¥) U, 47,) < 278

e Let Dy : {0,1}™ and Dy : {0,1}™ be not necessarily independent probabil-
ity ensembles, and let D = (Dy,Ds3). Let m, = k,H(Ds|D;) — 2nk:,2/3.
Let h : {0,1}P» x {0,1}"*» — {0,1}™ be a universal hash function. Let
(X1, X5) €prn {0, 135> and let Y €y {0,1}P». Then

L1(<hY(Xé)a Y, X{>7 <umn+pn7 X{>) < Ql_k"
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let m,, = kn(cn —€n —pPn+1/(2n)) — annz/B,
m), = knpPn — 2nk, /3,

and m; = kpe, — 2nk,2/>.

Let Ry, R2, and Rj3 be indices of hash functions so that
hgr, maps k,c, bits to m,, bits,

hg, maps k, bits to m], bits, and
hr, maps k,c,, bits to m/ bits.

CONSTRUCTION 7.1.

g(X/7 Yllea R27 R3) = <hR1 (X/)7 th (bkn (le Y/))v hRs (f,kn (X/))vyla R17 RQa R3>

THEOREM 7.2. If f is a one-way function and g is as in Construction 7.1, then g
s a mildly nonuniform pseudorandom generator.
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Proof. 1t is easy to check that g outputs more bits than it inputs.

As noted above, the conditional entropy of X given f/(X) and b(X,Y) is at
least ¢, — €, — Py, + (1/2n). Thus, from Corollary 4.10, we have that (hg, (X’), R1)
is statistically indistinguishable from random bits given (f e (X", bk (X', Y"),Y").

Hence, g(X’,Y’, R, Ro, R3) is statistically indistinguishable from
<Z17 th (bkn (le Y/))v hRa (f,kn (X/»v Y/, Ry, Ry, R3>,

where Z7 €4 {0,1}™.
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Now, from Lemmas 6.5 and 6.1, it follows that hg, (b*" (X’,Y"))
is computationally indistinguishable from random bits given (f’ i (X"), Ro,Y"). Thus,
g(X',Y' Ry, Ro, R3) is computationally indistinguishable from

(ZINa e (f'°" (X)), Y, Ry, Ry, Rs),

where Z, ey {0,1}™x.

Finally, from Corollary 4.10, <hR3(f’k”(X’)),R3> is sta-
tistically indistinguishable from (Zs, R3), where Z3 € {0,1}™~». Thus, the output
of g is computationally indistinguishable from a truly random output of the same
length. O
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We still need to use Proposition 4.17 to get rid of the mild nonuniformity. From
the arguments above, it is clear that an approximation of both e, and p, that is
within 1/(8n) of their true values is sufficient. Since 0 < e, < n, and 0 < p,, < 1,
there are at most O(n?) cases of pairs to consider. This means that we get a total of
O(n?) generators, each needing an input of length O(n”). Thus the total input size
to the pseudorandom generator is O(n'?), as claimed.

PROPOSITION 4.17. Let a,, be any value in {0, ..., k,}, where ky, is an integer-
valued P-time polynomial parameter. Let g : {0, 111081 % {0, 1} — {0,1}" be a
P-time function ensemble, where £, > nk,. Let ¥’ € {0,1}f»*" and define P-time
function ensemble ¢'(z') = @f;lg(i, x}). Let g be a mildly nonuniform pseudorandom
generator when the first input is set to a,,. Then ¢’ is a pseudorandom generator.
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