A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 3.2. One-way function. DEFINITION 3.2 (one-way function). Let $f: \{0,1\}^{t_n} \to \{0,1\}^{\ell_n}$ be a **P**-time function ensemble and let $X \in_{\mathcal{U}} \{0,1\}^{t_n}$. The success probability of adversary A for inverting f is $$sp_n(A) = \Pr[f(A(f(X))) = f(X)].$$ Then f is an \mathbf{R} -secure one-way function if there is no \mathbf{R} -breaking adversary for f. ## 3.3. Pseudorandom generator. DEFINITION 3.3 (computationally indistinguishable). Let $\mathcal{D}: \{0,1\}^{\ell_n}$ and $\mathcal{E}: \{0,1\}^{\ell_n}$ be probability ensembles. The success probability of adversary A for distinguishing \mathcal{D} and \mathcal{E} is $$sp_n(A) = |\Pr[A(X) = 1] - \Pr[A(Y) = 1]|,$$ where X has distribution \mathcal{D} and Y has distribution \mathcal{E} . \mathcal{D} and \mathcal{E} are \mathbf{R} -secure computationally indistinguishable if there is no \mathbf{R} -breaking adversary for distinguishing \mathcal{D} and \mathcal{E} . DEFINITION 3.5 (pseudorandom generator). Let $g: \{0,1\}^{t_n} \to \{0,1\}^{\ell_n}$ be a **P**-time function ensemble where $\ell_n > t_n$. Then g is an **R**-secure pseudorandom generator if the probability ensembles $g(\mathcal{U}_{t_n})$ and \mathcal{U}_{ℓ_n} are **R**-secure computationally indistinguishable. PROPOSITION 3.6. Suppose $g: \{0,1\}^n \to \{0,1\}^{n+1}$ is a pseudorandom generator that stretches by one bit. Define $g^{(1)}(x) = g(x)$, and inductively, for all $i \geq 1$, $g^{(i+1)}(x) = \langle g(g^{(i)}(x)_{\{1,\dots,n\}}), g^{(i)}(x)_{\{n+1,\dots,n+i\}} \rangle.$ Let k_n be an integer-valued **P**-time polynomial parameter. Then $g^{(k_n)}$ is a pseudoran- Let k_n be an integer-valued **P**-time polynomial parameter. Then $g^{(k_n)}$ is a pseudorandom generator. 7. A direct construction. We have shown how to construct a false-entropy generator from an arbitrary one-way function, a pseudoentropy generator from a false-entropy generator, and finally a pseudorandom generator from a pseudoentropy generator. The combinations of these constructions give a pseudorandom generator from an arbitrary one-way function as stated in Theorem 6.3. By literally composing the reductions given in the preceding parts of this paper, we construct a pseudorandom generator with inputs of length n^{34} from a one-way function with inputs of length n. This is obviously not a suitable reduction for practical applications. In this subsection, we use the concepts developed in the rest of this paper, but we provide a more direct and efficient construction. However, this construction still produces a pseudorandom generator with inputs of length n^{10} , which is clearly still not suitable for practical applications. (A sharper analysis can reduce this to n^8 , which is the best we could find using the ideas developed in this paper.) The result could only be considered practical if the pseudorandom generator had inputs of length n^2 , or perhaps even close to n. (However, in many special cases of one-way functions, the ideas from this paper are practical; see, e.g., [Luby96].) DEFINITION 2.3 (information and entropy). Let \mathcal{D} be a distribution on a set S. For each $x \in S$, define the information of x with respect to \mathcal{D} to be $\mathbf{I}_{\mathcal{D}}(x) = -\log(\mathcal{D}(x))$. The following definition characterizes how much entropy is lost by the application of a function f to the uniform distribution. DEFINITION 2.7 (degeneracy of f). Let $f: \{0,1\}^n \to \{0,1\}^{\ell_n}$ and let $X \in \mathcal{U}$ $\{0,1\}^n$. The degeneracy of f is $\mathbf{D}_n(f) = \mathbf{H}(X|f(X)) = \mathbf{H}(X) - \mathbf{H}(f(X))$. DEFINITION 2.13 $(\tilde{\mathbf{D}}_f)$. Let $f: \{0,1\}^n \to \{0,1\}^{\ell_n}$ be a **P**-time function ensemble. For $z \in \text{range}_f$, define the approximate degeneracy of z as $$\tilde{\mathbf{D}}_f(z) = \left[\log(\sharp \operatorname{pre}_f(z))\right].$$ Notice that $\tilde{\mathbf{D}}_f(z)$ is an approximation to within an additive factor of 1 of the quantity $n - \mathbf{I}_{f(X)}(z)$. Furthermore, $\mathrm{E}[\tilde{\mathbf{D}}_f(f(X))]$ is within an additive factor of 1 of the degeneracy of f. If f is a σ_n -regular function then, for each $z \in \mathrm{range}_f$, $\tilde{\mathbf{D}}_f(z)$ is within an additive factor of 1 of $\log(\sigma_n)$, which is the degeneracy of f. Let Let \mathbf{p}_n be the probability that $I \leq \tilde{\mathbf{D}}_f(f(X))$. (6.2) $$h: \{0,1\}^{p_n} \times \{0,1\}^n \to \{0,1\}^{n+\lceil \log(2n) \rceil}$$ (6.1) (6.3) be a universal hash function. Similar to Construction 5.1, for $x \in \{0,1\}^n$, $i \in$ be a universal hash function. Similar to Construction 5.1, for $$\{0, \ldots, n-1\}$$, and $r \in \{0, 1\}^{p_n}$, define **P**-time function ensemble $$\in \{0,1\}^{p_n},$$ $f'(x,i,r) = \langle f(x), h_r(x)_{\{1,\dots,i+\lceil \log(2n)\rceil\}}, i,r \rangle.$ Let $\mathcal{X} = \langle X, I, R \rangle$ represent the input distribution to f', and let c_n be the length of \mathcal{X} and c'_n the length of $f'(\mathcal{X})$. $$f'(\mathcal{X})$$ Let $\mathbf{e}_n = \mathbf{H}(f'(\mathcal{X})).$ Let $$b(x, y) = x \odot y$$. Set $k_x = 2000n^6$. Set $k_n = 2000n^6$. JOHAN HÅSTAD, RUSSELL IMPAGLIAZZO, LEONID A. LEVIN, AND MICHAEL LUBY $f: \{0,1\}^n \to \{0,1\}^{\ell_n}$ Intuitively, we generate pseudorandom bits as follows: let $\mathcal{X}' = \mathcal{X}^{k_n}$ and $Y' = Y^{k_n}$. We first compute $f'^{k_n}(\mathcal{X}')$ and $b^{k_n}(\mathcal{X}', Y')$. Intuitively, we are entitled to recapture $$k_n c_n - \mathbf{H} \langle f'^{k_n}(\mathcal{X}'), b^{k_n}(\mathcal{X}', Y') \rangle$$ bits from \mathcal{X}' , because this is the conditional entropy left after we have computed $f^{\prime k_n}$ and b^{k_n} . We are entitled to recapture $k_n \mathbf{p}_n$ bits from the $b^{k_n}(\mathcal{X}', Y')$ (since we get a hidden bit out of each copy whenever $I \leq \tilde{\mathbf{D}}_f(f(X))$). Finally, we should be able to extract $\mathbf{e}_n k_n$ bits from $f'^{k_n}(\mathcal{X}')$, since \mathbf{e}_n is the entropy of $f'(\mathcal{X})$. Since $b(\mathcal{X}, Y)$ is almost totally predictable for almost all inputs where $I \geq \tilde{\mathbf{D}}_f(f(X))$, $$\mathbf{H}\langle f'(\mathcal{X}), b(\mathcal{X}, Y)\rangle \leq \mathbf{e}_n + \mathbf{p}_n - 1/n + 1/(2n).$$ Let $Z \in_{\mathcal{U}} \{0,1\}^{m_n}$, and let $$\mathcal{D} = \langle h'_U(\langle X'_1 \odot Y'_1, \dots, X'_{k_n} \odot Y'_{k_n} \rangle), f'^{k_n}(X', I', R'), U, Y' \rangle,$$ $$\mathcal{E} = \langle Z, f'^{k_n}(X', I', R'), U, Y' \rangle.$$ LEMMA 6.4. $\mathbf{H}(\mathcal{E}) \ge \mathbf{H}(\mathcal{D}) + 10n^2$. Proof. The entropy of \mathcal{D} and \mathcal{E} excluding the first m_n bits is exactly the same. The additional entropy in the first m_n bits of \mathcal{E} is equal to m_n . An upper bound on the additional entropy in the first m_n bits of \mathcal{D} is the additional entropy in $\langle X'_1 \odot Y'_1, \ldots, X'_{k_n} \odot Y'_{k_n} \rangle$. For each $j \in \{1, \ldots, k_n\}$ where $I'_j < \tilde{\mathbf{D}}_f(f(X'_j))$, the amount of entropy added by $X'_j \odot Y'_j$ is at most 1. On the other hand, under the condition that $I'_j \geq \tilde{\mathbf{D}}_f(f(X'_j))$, $X'_j \odot Y'_j$ is determined by $\langle f'(X'_j, I'_j, R'_j), Y'_j \rangle$ with probability at least 1 - 1/2n, and thus the additional entropy under this condition is at most 1/2n. Since $I'_j < \tilde{\mathbf{D}}_f(f(X'_j))$ with probability $\mathbf{p}_n - 1/n$, it follows that the additional entropy added by $X'_j \odot Y'_j$ is at most $\mathbf{p}_n - 1/2n$. Therefore, the additional entropy in the first m_n bits of \mathcal{D} is at most $k_n(\mathbf{p}_n - 1/2n) = m_n + 2k_n^{2/3} - k_n/2n < m_n - 10n^2$ by choice of k_n . \square JOHAN HÅSTAD , RUSSELL IMPAGLIAZZO , LEONID A. LEVIN , AND MICHAEL LUBY Thus, if we add up all the output bits, we are entitled to $k_n(c_n+1/(2n))$, or $k_n/(2n)$ more bits than the input to f'^{k_n} . However, our methods of extracting entropy are not perfect, so we need to sacrifice some bits at each stage; to use Corollary 4.10, we need to sacrifice $2nk_n^{2/3}$ at each stage, so we chose k_n to satisfy $k_n/(2n) > 6nk_n^{2/3}$. COROLLARY 4.10. Let k_n be an integer-valued **P**-time polynomial parameter. • Let $\mathcal{D}: \{0,1\}^n$ be a probability ensemble, let $m_n = k_n \mathbf{H}(\mathcal{D}) - 2nk_n^{2/3}$, and let $h: \{0,1\}^{p_n} \times \{0,1\}^{nk_n} \to \{0,1\}^{m_n}$ be a universal hash function. Let $X' \in_{\mathcal{D}^{k_n}} \{0,1\}^{k_n \times n}$ and let $Y \in_{\mathcal{U}} \{0,1\}^{p_n}$. Then $$\mathbf{L}_{1}(\langle h_{Y}(X'), Y \rangle, \mathcal{U}_{m_{n}+p_{n}}) \leq 2^{1-k_{n}^{1/3}}.$$ • Let $\mathcal{D}_1: \{0,1\}^n$ and $\mathcal{D}_2: \{0,1\}^n$ be not necessarily independent probability ensembles, and let $\mathcal{D} = \langle \mathcal{D}_1, \mathcal{D}_2 \rangle$. Let $m_n = k_n \mathbf{H}(\mathcal{D}_2|\mathcal{D}_1) - 2nk_n^{2/3}$. Let $h: \{0,1\}^{p_n} \times \{0,1\}^{nk_n} \to \{0,1\}^{m_n}$ be a universal hash function. Let $\langle X'_1, X'_2 \rangle \in_{\mathcal{D}^{k_n}} \{0,1\}^{k_n \times 2n}$ and let $Y \in_{\mathcal{U}} \{0,1\}^{p_n}$. Then $$\mathbf{L}_{1}(\langle h_{Y}(X'_{2}), Y, X'_{1} \rangle, \langle \mathcal{U}_{m_{n}+p_{n}}, X'_{1} \rangle) \leq 2^{1-k_{n}^{1/3}}.$$ let $m_n = k_n(c_n - \mathbf{e}_n - \mathbf{p}_n + 1/(2n)) - 2nk_n^{2/3}$, $m'_n = k_n \mathbf{p}_n - 2nk_n^{2/3}$, and $m''_n = k_n \mathbf{e}_n - 2nk_n^{2/3}$. Let R_1 , R_2 , and R_3 be indices of hash functions so that h_{R_1} maps $k_n c_n$ bits to m_n bits, h_{R_2} maps k_n bits to m'_n bits, and h_{R_3} maps $k_n c'_n$ bits to m''_n bits. Construction 7.1. $$g(\mathcal{X}', Y', R_1, R_2, R_3) = \langle h_{R_1}(\mathcal{X}'), h_{R_2}(b^{k_n}(\mathcal{X}', Y')), h_{R_3}(f'^{k_n}(\mathcal{X}')), Y', R_1, R_2, R_3 \rangle.$$ Theorem 7.2. If f is a one-way function and g is as in Construction 7.1, then g is a mildly nonuniform pseudorandom generator. *Proof.* It is easy to check that g outputs more bits than it inputs. As noted above, the conditional entropy of \mathcal{X} given $f'(\mathcal{X})$ and $b(\mathcal{X}, Y)$ is at least $c_n - \mathbf{e}_n - \mathbf{p}_n + (1/2n)$. Thus, from Corollary 4.10, we have that $\langle h_{R_1}(\mathcal{X}'), R_1 \rangle$ is statistically indistinguishable from random bits given $\langle f'^{k_n}(\mathcal{X}'), b^{k_n}(\mathcal{X}', Y'), Y' \rangle$. Hence, $g(\mathcal{X}', Y', R_1, R_2, R_3)$ is statistically indistinguishable from $$\langle Z_1, h_{B_0}(b^{k_n}(\mathcal{X}', Y')), h_{B_0}(f'^{k_n}(\mathcal{X}')), Y', R_1, R_2, R_3 \rangle$$ where $Z_1 \in_{\mathcal{U}} \{0,1\}^{m_n}$. Now, from Lemmas 6.5 and 6.1, it follows that $h_{R_2}(b^{k_n}(\mathcal{X}', Y'))$ is computationally indistinguishable from random bits given $\langle f'^{k_n}(\mathcal{X}'), R_2, Y' \rangle$. Thus, $g(\mathcal{X}', Y', R_1, R_2, R_3)$ is computationally indistinguishable from $$\langle Z_1, Z_2, h_{R_2}(f'^{k_n}(\mathcal{X}')), Y', R_1, R_2, R_3 \rangle$$ where $Z_2 \in_{\mathcal{U}} \{0,1\}^{m'_n}$. Finally, from Corollary 4.10, $\langle h_{R_3}(f'^{k_n}(\mathcal{X}')), R_3 \rangle$ is statistically indistinguishable from $\langle Z_3, R_3 \rangle$, where $Z_3 \in_{\mathcal{U}} \{0,1\}^{m''_n}$. Thus, the output of g is computationally indistinguishable from a truly random output of the same length. \square We still need to use Proposition 4.17 to get rid of the mild nonuniformity. From the arguments above, it is clear that an approximation of both \mathbf{e}_n and \mathbf{p}_n that is within 1/(8n) of their true values is sufficient. Since $0 \le \mathbf{e}_n \le n$, and $0 \le \mathbf{p}_n < 1$, there are at most $\mathcal{O}(n^3)$ cases of pairs to consider. This means that we get a total of $\mathcal{O}(n^3)$ generators, each needing an input of length $\mathcal{O}(n^7)$. Thus the total input size to the pseudorandom generator is $\mathcal{O}(n^{10})$, as claimed. PROPOSITION 4.17. Let \mathbf{a}_n be any value in $\{0,\ldots,k_n\}$, where k_n is an integervalued \mathbf{P} -time polynomial parameter. Let $g: \{0,1\}^{\lceil \log(k_n) \rceil} \times \{0,1\}^n \to \{0,1\}^{\ell_n}$ be a \mathbf{P} -time function ensemble, where $\ell_n > nk_n$. Let $x' \in \{0,1\}^{k_n \times n}$ and define \mathbf{P} -time function ensemble $g'(x') = \bigoplus_{i=1}^{k_n} g(i,x'_i)$. Let g be a mildly nonuniform pseudorandom generator when the first input is set to \mathbf{a}_n . Then g' is a pseudorandom generator. ## A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION