

## A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION

3.2. One-way function.

DEFINITION 3.2 (one-way function). Let  $f: \{0,1\}^{t_n} \to \{0,1\}^{\ell_n}$  be a **P**-time function ensemble and let  $X \in_{\mathcal{U}} \{0,1\}^{t_n}$ . The success probability of adversary A for inverting f is

$$sp_n(A) = \Pr[f(A(f(X))) = f(X)].$$

Then f is an  $\mathbf{R}$ -secure one-way function if there is no  $\mathbf{R}$ -breaking adversary for f.

## 3.3. Pseudorandom generator.

DEFINITION 3.3 (computationally indistinguishable). Let  $\mathcal{D}: \{0,1\}^{\ell_n}$  and  $\mathcal{E}: \{0,1\}^{\ell_n}$  be probability ensembles. The success probability of adversary A for distinguishing  $\mathcal{D}$  and  $\mathcal{E}$  is

$$sp_n(A) = |\Pr[A(X) = 1] - \Pr[A(Y) = 1]|,$$

where X has distribution  $\mathcal{D}$  and Y has distribution  $\mathcal{E}$ .  $\mathcal{D}$  and  $\mathcal{E}$  are  $\mathbf{R}$ -secure computationally indistinguishable if there is no  $\mathbf{R}$ -breaking adversary for distinguishing  $\mathcal{D}$  and  $\mathcal{E}$ .

DEFINITION 3.5 (pseudorandom generator). Let  $g: \{0,1\}^{t_n} \to \{0,1\}^{\ell_n}$  be a **P**-time function ensemble where  $\ell_n > t_n$ . Then g is an **R**-secure pseudorandom generator if the probability ensembles  $g(\mathcal{U}_{t_n})$  and  $\mathcal{U}_{\ell_n}$  are **R**-secure computationally indistinguishable.

PROPOSITION 3.6. Suppose  $g: \{0,1\}^n \to \{0,1\}^{n+1}$  is a pseudorandom generator that stretches by one bit. Define  $g^{(1)}(x) = g(x)$ , and inductively, for all  $i \geq 1$ ,

 $g^{(i+1)}(x) = \langle g(g^{(i)}(x)_{\{1,\dots,n\}}), g^{(i)}(x)_{\{n+1,\dots,n+i\}} \rangle.$  Let  $k_n$  be an integer-valued **P**-time polynomial parameter. Then  $g^{(k_n)}$  is a pseudoran-

Let  $k_n$  be an integer-valued **P**-time polynomial parameter. Then  $g^{(k_n)}$  is a pseudorandom generator.

7. A direct construction. We have shown how to construct a false-entropy generator from an arbitrary one-way function, a pseudoentropy generator from a false-entropy generator, and finally a pseudorandom generator from a pseudoentropy generator. The combinations of these constructions give a pseudorandom generator from an arbitrary one-way function as stated in Theorem 6.3. By literally composing the reductions given in the preceding parts of this paper, we construct a pseudorandom generator with inputs of length  $n^{34}$  from a one-way function with inputs of length n. This is obviously not a suitable reduction for practical applications. In this subsection, we use the concepts developed in the rest of this paper, but we provide a more direct and efficient construction. However, this construction still produces a pseudorandom generator with inputs of length  $n^{10}$ , which is clearly still not suitable for practical applications. (A sharper analysis can reduce this to  $n^8$ , which is the best we could find using the ideas developed in this paper.) The result could only be considered practical if the pseudorandom generator had inputs of length  $n^2$ , or perhaps even close to n. (However, in many special cases of one-way functions, the ideas from this paper are practical; see, e.g., [Luby96].)

DEFINITION 2.3 (information and entropy). Let  $\mathcal{D}$  be a distribution on a set S. For each  $x \in S$ , define the information of x with respect to  $\mathcal{D}$  to be  $\mathbf{I}_{\mathcal{D}}(x) = -\log(\mathcal{D}(x))$ .

The following definition characterizes how much entropy is lost by the application of a function f to the uniform distribution.

DEFINITION 2.7 (degeneracy of f). Let  $f: \{0,1\}^n \to \{0,1\}^{\ell_n}$  and let  $X \in \mathcal{U}$   $\{0,1\}^n$ . The degeneracy of f is  $\mathbf{D}_n(f) = \mathbf{H}(X|f(X)) = \mathbf{H}(X) - \mathbf{H}(f(X))$ .

DEFINITION 2.13  $(\tilde{\mathbf{D}}_f)$ . Let  $f: \{0,1\}^n \to \{0,1\}^{\ell_n}$  be a **P**-time function ensemble. For  $z \in \text{range}_f$ , define the approximate degeneracy of z as

$$\tilde{\mathbf{D}}_f(z) = \left[\log(\sharp \operatorname{pre}_f(z))\right].$$

Notice that  $\tilde{\mathbf{D}}_f(z)$  is an approximation to within an additive factor of 1 of the quantity  $n - \mathbf{I}_{f(X)}(z)$ . Furthermore,  $\mathrm{E}[\tilde{\mathbf{D}}_f(f(X))]$  is within an additive factor of 1 of the degeneracy of f. If f is a  $\sigma_n$ -regular function then, for each  $z \in \mathrm{range}_f$ ,  $\tilde{\mathbf{D}}_f(z)$  is within an additive factor of 1 of  $\log(\sigma_n)$ , which is the degeneracy of f.

Let

Let  $\mathbf{p}_n$  be the probability that  $I \leq \tilde{\mathbf{D}}_f(f(X))$ .

(6.2) 
$$h: \{0,1\}^{p_n} \times \{0,1\}^n \to \{0,1\}^{n+\lceil \log(2n) \rceil}$$

(6.1)

(6.3)

be a universal hash function. Similar to Construction 5.1, for  $x \in \{0,1\}^n$ ,  $i \in$ 

be a universal hash function. Similar to Construction 5.1, for 
$$\{0, \ldots, n-1\}$$
, and  $r \in \{0, 1\}^{p_n}$ , define **P**-time function ensemble

$$\in \{0,1\}^{p_n},$$

 $f'(x,i,r) = \langle f(x), h_r(x)_{\{1,\dots,i+\lceil \log(2n)\rceil\}}, i,r \rangle.$ 

Let  $\mathcal{X} = \langle X, I, R \rangle$  represent the input distribution to f', and let  $c_n$  be the length of  $\mathcal{X}$  and  $c'_n$  the length of  $f'(\mathcal{X})$ .

$$f'(\mathcal{X})$$

Let  $\mathbf{e}_n = \mathbf{H}(f'(\mathcal{X})).$ 

Let 
$$b(x, y) = x \odot y$$
.  
Set  $k_x = 2000n^6$ .

Set  $k_n = 2000n^6$ .

JOHAN HÅSTAD, RUSSELL IMPAGLIAZZO, LEONID A. LEVIN, AND MICHAEL LUBY

 $f: \{0,1\}^n \to \{0,1\}^{\ell_n}$ 

Intuitively, we generate pseudorandom bits as follows: let  $\mathcal{X}' = \mathcal{X}^{k_n}$  and  $Y' = Y^{k_n}$ . We first compute  $f'^{k_n}(\mathcal{X}')$  and  $b^{k_n}(\mathcal{X}', Y')$ . Intuitively, we are entitled to recapture

$$k_n c_n - \mathbf{H} \langle f'^{k_n}(\mathcal{X}'), b^{k_n}(\mathcal{X}', Y') \rangle$$

bits from  $\mathcal{X}'$ , because this is the conditional entropy left after we have computed  $f^{\prime k_n}$  and  $b^{k_n}$ .

We are entitled to recapture  $k_n \mathbf{p}_n$  bits from the  $b^{k_n}(\mathcal{X}', Y')$  (since we get a hidden bit out of each copy whenever  $I \leq \tilde{\mathbf{D}}_f(f(X))$ ). Finally, we should be able to extract  $\mathbf{e}_n k_n$  bits from  $f'^{k_n}(\mathcal{X}')$ , since  $\mathbf{e}_n$  is the entropy of  $f'(\mathcal{X})$ . Since  $b(\mathcal{X}, Y)$  is almost totally predictable for almost all inputs where  $I \geq \tilde{\mathbf{D}}_f(f(X))$ ,

$$\mathbf{H}\langle f'(\mathcal{X}), b(\mathcal{X}, Y)\rangle \leq \mathbf{e}_n + \mathbf{p}_n - 1/n + 1/(2n).$$

Let  $Z \in_{\mathcal{U}} \{0,1\}^{m_n}$ , and let

$$\mathcal{D} = \langle h'_U(\langle X'_1 \odot Y'_1, \dots, X'_{k_n} \odot Y'_{k_n} \rangle), f'^{k_n}(X', I', R'), U, Y' \rangle,$$

$$\mathcal{E} = \langle Z, f'^{k_n}(X', I', R'), U, Y' \rangle.$$

LEMMA 6.4.  $\mathbf{H}(\mathcal{E}) \ge \mathbf{H}(\mathcal{D}) + 10n^2$ .

Proof. The entropy of  $\mathcal{D}$  and  $\mathcal{E}$  excluding the first  $m_n$  bits is exactly the same. The additional entropy in the first  $m_n$  bits of  $\mathcal{E}$  is equal to  $m_n$ . An upper bound on the additional entropy in the first  $m_n$  bits of  $\mathcal{D}$  is the additional entropy in  $\langle X'_1 \odot Y'_1, \ldots, X'_{k_n} \odot Y'_{k_n} \rangle$ . For each  $j \in \{1, \ldots, k_n\}$  where  $I'_j < \tilde{\mathbf{D}}_f(f(X'_j))$ , the amount of entropy added by  $X'_j \odot Y'_j$  is at most 1. On the other hand, under the condition that  $I'_j \geq \tilde{\mathbf{D}}_f(f(X'_j))$ ,  $X'_j \odot Y'_j$  is determined by  $\langle f'(X'_j, I'_j, R'_j), Y'_j \rangle$  with probability at least 1 - 1/2n, and thus the additional entropy under this condition is at most 1/2n. Since  $I'_j < \tilde{\mathbf{D}}_f(f(X'_j))$  with probability  $\mathbf{p}_n - 1/n$ , it follows that the additional entropy added by  $X'_j \odot Y'_j$  is at most  $\mathbf{p}_n - 1/2n$ . Therefore, the additional entropy in the first  $m_n$  bits of  $\mathcal{D}$  is at most  $k_n(\mathbf{p}_n - 1/2n) = m_n + 2k_n^{2/3} - k_n/2n < m_n - 10n^2$  by choice of  $k_n$ .  $\square$ 

JOHAN HÅSTAD , RUSSELL IMPAGLIAZZO , LEONID A. LEVIN , AND MICHAEL LUBY

Thus, if we add up all the output bits, we are entitled to  $k_n(c_n+1/(2n))$ , or  $k_n/(2n)$  more bits than the input to  $f'^{k_n}$ . However, our methods of extracting entropy are not perfect, so we need to sacrifice some bits at each stage; to use Corollary 4.10, we need to sacrifice  $2nk_n^{2/3}$  at each stage, so we chose  $k_n$  to satisfy  $k_n/(2n) > 6nk_n^{2/3}$ .

COROLLARY 4.10. Let  $k_n$  be an integer-valued **P**-time polynomial parameter.

• Let  $\mathcal{D}: \{0,1\}^n$  be a probability ensemble, let  $m_n = k_n \mathbf{H}(\mathcal{D}) - 2nk_n^{2/3}$ , and let  $h: \{0,1\}^{p_n} \times \{0,1\}^{nk_n} \to \{0,1\}^{m_n}$  be a universal hash function. Let  $X' \in_{\mathcal{D}^{k_n}} \{0,1\}^{k_n \times n}$  and let  $Y \in_{\mathcal{U}} \{0,1\}^{p_n}$ . Then

$$\mathbf{L}_{1}(\langle h_{Y}(X'), Y \rangle, \mathcal{U}_{m_{n}+p_{n}}) \leq 2^{1-k_{n}^{1/3}}.$$

• Let  $\mathcal{D}_1: \{0,1\}^n$  and  $\mathcal{D}_2: \{0,1\}^n$  be not necessarily independent probability ensembles, and let  $\mathcal{D} = \langle \mathcal{D}_1, \mathcal{D}_2 \rangle$ . Let  $m_n = k_n \mathbf{H}(\mathcal{D}_2|\mathcal{D}_1) - 2nk_n^{2/3}$ . Let  $h: \{0,1\}^{p_n} \times \{0,1\}^{nk_n} \to \{0,1\}^{m_n}$  be a universal hash function. Let  $\langle X'_1, X'_2 \rangle \in_{\mathcal{D}^{k_n}} \{0,1\}^{k_n \times 2n}$  and let  $Y \in_{\mathcal{U}} \{0,1\}^{p_n}$ . Then

$$\mathbf{L}_{1}(\langle h_{Y}(X'_{2}), Y, X'_{1} \rangle, \langle \mathcal{U}_{m_{n}+p_{n}}, X'_{1} \rangle) \leq 2^{1-k_{n}^{1/3}}.$$

let  $m_n = k_n(c_n - \mathbf{e}_n - \mathbf{p}_n + 1/(2n)) - 2nk_n^{2/3}$ ,  $m'_n = k_n \mathbf{p}_n - 2nk_n^{2/3}$ , and  $m''_n = k_n \mathbf{e}_n - 2nk_n^{2/3}$ .

Let  $R_1$ ,  $R_2$ , and  $R_3$  be indices of hash functions so that  $h_{R_1}$  maps  $k_n c_n$  bits to  $m_n$  bits,  $h_{R_2}$  maps  $k_n$  bits to  $m'_n$  bits, and  $h_{R_3}$  maps  $k_n c'_n$  bits to  $m''_n$  bits.

Construction 7.1.

$$g(\mathcal{X}', Y', R_1, R_2, R_3) = \langle h_{R_1}(\mathcal{X}'), h_{R_2}(b^{k_n}(\mathcal{X}', Y')), h_{R_3}(f'^{k_n}(\mathcal{X}')), Y', R_1, R_2, R_3 \rangle.$$

Theorem 7.2. If f is a one-way function and g is as in Construction 7.1, then g is a mildly nonuniform pseudorandom generator.

*Proof.* It is easy to check that g outputs more bits than it inputs.

As noted above, the conditional entropy of  $\mathcal{X}$  given  $f'(\mathcal{X})$  and  $b(\mathcal{X}, Y)$  is at least  $c_n - \mathbf{e}_n - \mathbf{p}_n + (1/2n)$ . Thus, from Corollary 4.10, we have that  $\langle h_{R_1}(\mathcal{X}'), R_1 \rangle$  is statistically indistinguishable from random bits given  $\langle f'^{k_n}(\mathcal{X}'), b^{k_n}(\mathcal{X}', Y'), Y' \rangle$ .

Hence,  $g(\mathcal{X}', Y', R_1, R_2, R_3)$  is statistically indistinguishable from

$$\langle Z_1, h_{B_0}(b^{k_n}(\mathcal{X}', Y')), h_{B_0}(f'^{k_n}(\mathcal{X}')), Y', R_1, R_2, R_3 \rangle$$

where  $Z_1 \in_{\mathcal{U}} \{0,1\}^{m_n}$ .

Now, from Lemmas 6.5 and 6.1, it follows that  $h_{R_2}(b^{k_n}(\mathcal{X}', Y'))$  is computationally indistinguishable from random bits given  $\langle f'^{k_n}(\mathcal{X}'), R_2, Y' \rangle$ . Thus,  $g(\mathcal{X}', Y', R_1, R_2, R_3)$  is computationally indistinguishable from

$$\langle Z_1, Z_2, h_{R_2}(f'^{k_n}(\mathcal{X}')), Y', R_1, R_2, R_3 \rangle$$

where  $Z_2 \in_{\mathcal{U}} \{0,1\}^{m'_n}$ .

Finally, from Corollary 4.10,  $\langle h_{R_3}(f'^{k_n}(\mathcal{X}')), R_3 \rangle$  is statistically indistinguishable from  $\langle Z_3, R_3 \rangle$ , where  $Z_3 \in_{\mathcal{U}} \{0,1\}^{m''_n}$ . Thus, the output of g is computationally indistinguishable from a truly random output of the same length.  $\square$ 

We still need to use Proposition 4.17 to get rid of the mild nonuniformity. From the arguments above, it is clear that an approximation of both  $\mathbf{e}_n$  and  $\mathbf{p}_n$  that is within 1/(8n) of their true values is sufficient. Since  $0 \le \mathbf{e}_n \le n$ , and  $0 \le \mathbf{p}_n < 1$ , there are at most  $\mathcal{O}(n^3)$  cases of pairs to consider. This means that we get a total of  $\mathcal{O}(n^3)$  generators, each needing an input of length  $\mathcal{O}(n^7)$ . Thus the total input size to the pseudorandom generator is  $\mathcal{O}(n^{10})$ , as claimed.

PROPOSITION 4.17. Let  $\mathbf{a}_n$  be any value in  $\{0,\ldots,k_n\}$ , where  $k_n$  is an integervalued  $\mathbf{P}$ -time polynomial parameter. Let  $g: \{0,1\}^{\lceil \log(k_n) \rceil} \times \{0,1\}^n \to \{0,1\}^{\ell_n}$  be a  $\mathbf{P}$ -time function ensemble, where  $\ell_n > nk_n$ . Let  $x' \in \{0,1\}^{k_n \times n}$  and define  $\mathbf{P}$ -time function ensemble  $g'(x') = \bigoplus_{i=1}^{k_n} g(i,x'_i)$ . Let g be a mildly nonuniform pseudorandom generator when the first input is set to  $\mathbf{a}_n$ . Then g' is a pseudorandom generator.



## A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION

