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The Graph Isomorphism problem
Consider the following problem (not known to be in BQP).

The Graph Isomorphism Problem
Input: Two (simple and undirected) graphs G0 and G1.
Yes: G0 and G1 are isomorphic (G0

∼= G1).
No: G0 and G1 are not isomorphic (G0 !∼= G1).
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Isomorphism:
1 → 3, 2 → 2, 3 → 7, 4 → 5, 5 → 1, 6 → 6, 7 → 4.
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Zero-knowledge proof for graph isomorphism?

Consider the following scenario:

• There are two parties: a prover P and a (polynomial-time) verifier V .
• Both parties receive a pair of graphs (G0,G1).
• Under the assumption that G0

∼= G1, the prover P knows a
permutation σ ∈ Sn satisfying σ(G1) = G0.

• The prover P wants to convince the verifier V that G0
∼= G1 (even if

this is not the case).
• The prover P does not want to reveal the permutation σ (or any other
“knowledge” about G0 and G1).

A protocol (or interactive proof system) that achieves the final condition is
said to be zero-knowledge.
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Three required properties

A prover/verifier pair (P,V) constitutes a valid zero-knowledge interactive
proof system for the graph isomorphism problem if the following three
properties are satisfied:

1. Completeness. If G0
∼= G1, the prover P successfully convinces the

verifier V that G0
∼= G1 (with high probability).

2. Soundness. If G0 !∼= G1, then no prover P ′ can successfully convince
V that G0

∼= G1 (except with small probability).

3. Zero-knowledge property. If G0
∼= G1, then no verifier V ′ can extract

any knowledge∗ through an interaction with P.

∗ Definition required!
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A zero-knowledge proof system for Graph Isomorphism

The following protocol (described for honest parties) is a zero-knowledge
protocol for Graph Isomorphism [GOLDREICH, MICALI & WIDGERSON, 1991].

The GMW Graph Isomorphism Protocol
Assume the input is a pair (G0,G1) of simple, undirected graphs each
having vertex set {1, . . . ,n}. Let σ ∈ Sn be a permutation satisfying
σ(G1) = G0 if G0

∼= G1, and let σ be arbitrary otherwise.
Prover’s step 1: Choose π ∈ Sn uniformly at random and send
H = π(G0) to the verifier.
Verifier’s step 1: Choose a ∈ {0, 1} randomly and send a to the prover.
(Implicit: challenge prover to show H ∼= Ga.)
Prover’s step 2: Let τ = πσa and send τ to the verifier.
Verifier’s step 2: Accept if τ(Ga) = H, reject otherwise.

Sequential repetition reduces soundness error. . .
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A zero-knowledge proof system for Graph Isomorphism

The completeness and soundness properties are straightforward:

• If G0
∼= G1, then the verifier will accept every time.

• If G0 !∼= G1, then H cannot be isomorphic to both G0 and G1; so the
verifier must reject with probability at least 1/2 (regardless of any
cheating prover’s strategy).

If the protocol is repeated sequentially m times (with independent random
choices for each repetition) then the prover can succeed every time if
G0

∼= G1. If G0 !∼= G1, however, the maximum probability with which any
prover could succeed in each repetition drops to 2−m.

It remains to consider the zero-knowledge property. . .
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Definition of zero-knowledge
Let (V ′(z),P)(x) denote the random variable describing the output of
verifier V ′ given auxiliary input z after interacting with P on input x.

Definition of Zero-knowledge (classical)
An interactive proof system (P,V) for a given problem A = (Ayes,Ano) is
zero-knowledge if, for every polynomial-time verifier V ′ there exists a
polynomial-time simulator S such that, for every x ∈ Ayes,

(V ′(z),P)(x) and S(x, z)

are indistinguishable∗. [GOLDWASSER, MICALI & RACKOFF, 1989].

This auxiliary input definition captures the idea that zero-knowledge
proofs should not increase knowledge.

∗ Different notions of indistinguishability give rise to different variants of zero-knowledge,
such as statistical and computational zero-knowledge.
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Definition of zero-knowledge

In other words, these two processes should be indistinguishable provided
x is a “yes” input to the problem being considered:

z x

PV ′

(V ′(z),P)(x)

z x

S

S(x, z)

The zero-knowledge property requires nothing in case x is a “no” input. . .
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Zero-knowledge property for the GMW protocol

How might a (classical) cheating verifier V ′ act?

Interaction between P and a cheating verifier V ′

Prover’s step 1: Choose π ∈ Sn uniformly at random and send
H = π(G0) to the verifier.
Verifier’s step 1: Perform some arbitrary polynomial-time computation on
(G0,G1), auxiliary input z, and H to obtain a ∈ {0, 1}. Send a to P.
Prover’s step 2: Let τ = πσa and send τ to the verifier.
Verifier’s step 2: Perform some arbitrary polynomial-time computation on
(G0,G1), z, H, and τ to produce output.
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Zero-knowledge property for the GMW protocol

We can simulate any such classical verifier as follows:

Simulator for V ′

1. Choose b ∈ {0, 1} and τ ∈ Sn uniformly, and let H = τ(Gb).
2. Simulate whatever V ′ does given prover message H. Let a denote
the resulting message back to the prover.

3. If a != b then rewind: go back to step 1 and try again.
4. Output whatever V ′ would after receiving τ.

Note: this gives an expected polynomial-time simulator: output agrees
exactly with the distribution representing the view of V ′. . . can be
converted to a worst case polynomial-time simulator whose output agrees
almost exactly with the view of V ′.
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Quantum version of the definition

Suppose that some verifier V ′ tries to use quantum information to extract
knowledge from P. (Note that the prover P is still classical, so the input x
and any information exchanged between V ′ and P must be classical.)

The interaction between V ′ and P on input x induces some admissible
mapping on the auxiliary input:

ρ x

PV ′

Φx(ρ)
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Quantum version of the definition

If P is zero-knowledge even against a verifier V ′ that uses quantum
information, then there should exist a simulator S that, given any “yes”
input x, performs an admissible mapping Ψx on the auxiliary input that is
indistinguishable from Φx:

ρ x

PV ′

Φx(ρ)

ρ x

S

Ψx(ρ)
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Problem with the quantum definition?
These definitions are fairly straightforward. . . but have been considered
problematic for several years.

The problem: No nontrivial protocols were previously shown to be
zero-knowledge with respect to these definitions, even protocols already
proved zero-knowledge in the classical setting.

The problem was first identified by Jeroen van de Graaf in his 1997 PhD
thesis:

“Rewinding by reversing the unitary transformation induced by
[the verifier], or taking snapshots is impossible.

But. . . showing that rewinding by reversing or by taking
snapshots is impossible does not show that no other ways to
rewind in polynomial time exist.”

[VAN DE GRAAF, 1997]
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Problem with the quantum definition?

Consider a deviant quantum verifier V ′ for the Graph Isomorphism
protocol that acts as follows:

Verifier V ′

1. Begin the protocol with auxiliary quantum registerW (possibly
provided by a third party, and possibly entangled with some other
register).

2. Receive graph H from P.
3. MeasureW with respect to some binary-valued projective
measurement {ΠH

0 ,ΠH
1 } that depends on H. Let a be the outcome,

and send a to P.
4. After receiving τ from P, output (H,a, τ) along with the registerW.

How can we simulate such a verifier?
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Problem with the quantum definition?

Two principles are working against us:

• The no cloning theorem prevents making a copy of the auxiliary
input register’s state.

• Measurements are irreversible.

Suppose that we randomly choose b and τ, and let H = τ(Gb) as for our
simulator before. . .

. . . if the measurement {ΠH
0 ,ΠH

1 } gives outcome b, the simulation works.
But if the measurement outcome is not b, then the state ofW is
irreparably harmed, and we cannot recover the original state.

Note: one can imagine potential attacks based on this issue. It seems
plausible that a verifier V ′ could transfer knowledge to a third party that
an interaction with P really took place.
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New results

In the remainder of this talk I will argue that the GMW Graph Isomorphism
protocol is indeed zero-knowledge against quantum verifiers:

• For any quantum verifier V ′, there exists a simulator S that induces
precisely the same admissible mapping as the interaction between V ′

and P (on a “yes” input to the problem).
• The method gives a way to “rewind” the simulator, but it requires more
than just reversing the verifier’s actions. (The entire simulation will be
quantum, even though the prover is classical.)

• The method generalizes to several other protocols (but I will only
discuss the Graph Isomorphism example in this talk for simplicity).
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Assumptions on V ′

Assume V ′ uses three registers:

W: stores the auxiliary input.
V: represents workspace of arbitrary size.
A: single qubit representing the message sent by V ′.

Register W starts in the auxiliary state, and registers V and A are
initialized to all zeroes.

Assume V ′ operates as follows:

• For each graph H on n vertices, V ′ has a corresponding unitary
transformation VH that acts on (W,V,A).

• Upon receiving H from P, the V ′ applies VH to (W,V,A), measures A
in the standard basis, and sends the result a to P.

• After P responds with some permutation τ, V ′ simply outputs
(W,V,A) along with the prover messages H and τ.
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Simulator construction
The simulator will use registersW, V, and A along with:

Y: stores the provers first message.
B: stores the simulator’s guess for a.
Z: stores the prover’s second message.
R: stores “randomness” used to generate transcripts.

Define a unitary operator V on (W,V,A,Y) that represents a unitary
realization of V ′:

V =
∑

H

VH ⊗ |H〉 〈H| .

Define T to be a unitary operation on registers (Y,B,Z,R) for which

T : |00 · · · 0〉 '→
1√
2n!

∑

b,τ

|τ(Gb)〉 |b〉 |τ〉 |b, τ〉 .

The operation T produces a superposition over transcripts.
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Simulator construction

Now define the simulator as follows:

Simulator
1. Perform T , followed by V .
2. Perform a measurement {Π0,Π1} whose outcome corresponds to the
XOR of A and B (in the computational basis).

3. If the measurement outcome is 1, we need to rewind and try again:

• Perform V∗ followed by T∗.

• Perform a phase flip in case any of the qubits in any of the
registers (V,A,Y,B,Z,R) is set to 1 (i.e., perform 2∆ − I,
where ∆ = IW ⊗ |00 · · · 0〉 〈00 · · · 0|.)

• Perform T followed by V .

4. Output registers (W,V,A,Y,Z). (Registers B and R are traced out.)
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Analysis of simulator
Assume that the auxiliary input is |ψ〉, and x = (G0,G1) for G0

∼= G1. Let

|ϕ〉 = |ψ〉 |00 · · · 0〉

be the state of all registers given this input.

The simulator performs T , then V , then measures w.r.t. {Π0,Π1}.
Assuming G0

∼= G1, the outcome will always be uniformly distributed.

First, suppose that the measurement {Π0,Π1} gives outcome 0. The
resulting state of all registers is

|σ0〉 =
√

2Π0VT |ϕ〉 .

This is the target state: it represents a successful simulation because

trB,R |σ0〉 〈σ0| = Φ(|ψ〉 〈ψ|).

(Nothing is surprising here. . . the simulator has been lucky and didn’t need
to rewind.)
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Analysis of simulator

Suppose on the other hand that the measurement outcome was 1. The
resulting state is

|σ1〉 =
√

2Π1VT |ϕ〉 .

Time to rewind and try again. . .

Performing the “rewind and try again” procedure results in the state

VT(2∆ − I)T∗V∗ |σ1〉 .

Claim

VT(2∆ − I)T∗V∗ |σ1〉 = |σ0〉 (the target state).

Note: this would not happen for arbitrary choices of |ϕ〉, V , T , Π0, Π1,
etc. . . the claim relies on the fact that the measurement {Π0,Π1} gives
outcome 0 and 1 with equal probability for all choices of |ψ〉.
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Proof of claim
The fact that the measurement {Π0,Π1} gives outcomes 0 and 1 with equal
probability for all choice of |ψ〉 implies

∆T∗V∗Π0VT∆ = ∆T∗V∗Π1VT∆ =
1

2
∆.

Therefore

〈σ0|VT(2∆ − I)T∗V∗|σ1〉
=2 〈ϕ|T∗V∗Π0VT(2∆ − I)T∗V∗Π1VT |ϕ〉
=4 〈ϕ|T∗V∗Π0VT∆T∗V∗Π1VT |ϕ〉

− 2 〈ϕ|T∗V∗Π0VTT∗V∗Π1VT |ϕ〉
=4 〈ϕ|∆T∗V∗Π0VT∆T∗V∗Π1VT∆|ϕ〉
= 〈ϕ|∆|ϕ〉
=1,

so VT(2∆ − I)T∗V∗ |σ1〉 = |σ0〉.
John Watrous (University of Calgary) Zero-Knowledge Against Quantum Attacks CIAR meeting 22 / 25



Analysis of simulator

This establishes that the admissible map Ψ agrees with the map Φ

corresponding to the actual interaction on all pure state auxiliary inputs:

Ψ(|ψ〉 〈ψ|) = Φ(|ψ〉 〈ψ|)

for all |ψ〉.

Admissible maps are completely determined by their actions on pure
state inputs, however, so

Ψ = Φ;

the simulator agrees precisely with the actual interaction on every
possible state of the auxiliary input register (including the possibility it is
entangled with another register).
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Other protocols

The simulation method just described can be adapted to prove several
other protocols are zero-knowledge against quantum attacks, including:

• Quantum protocols for any problem having an honest verifier
quantum statistical zero-knowledge proof system:

QSZK = QSZKHV.

• The Goldreich-Micali-Wigderson Graph 3-Coloring protocol
assuming unconditionally binding and quantum computationally
concealing bit commitments. (See [ADCOCK & CLEVE, 2002].)

• Presumably several other proof systems. . .

Adapting the simulator to other protocols may require iterating the “rewind
and try again” process.
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Future work/open questions

1. Find further applications and generalizations of the method.

2. Identify limitations of the method.

3. Identify good candidates for quantum one-way functions.
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