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ABSTRACT
This paper proves that several interactive proof systems are zero-
knowledge against general quantum attacks. This includes the well-
known Goldreich-Micali-Wigderson classical zero-knowledge pro-
tocols for Graph Isomorphism and Graph 3-Coloring (assuming
the existence of quantum computationally concealing commitment
schemes in the second case). Also included is a quantum interactive
protocol for a complete problem for the complexity class of prob-
lems having “honest verifier” quantum statistical zero-knowledge
proofs, which therefore establishes that honest verifier and general
quantum statistical zero-knowledge are equal: QSZK = QSZKHV.
Previously no non-trivial proof systems were known to be zero-
knowledge against quantum attacks, except in restricted settings
such as the honest-verifier and common reference string models.
This paper therefore establishes for the first time that true zero-
knowledge is indeed possible in the presence of quantum informa-
tion and computation.

Categories and Subject Descriptors
F.1 [Computation by Abstract Devices]: Complexity Measures
and Classes, Modes of Computation

General Terms
Theory
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1. INTRODUCTION
It is clearly to the benefit of honest users of a given cryptographic

system that the system is proved secure against as wide a range of
malicious attacks as possible. At the same time it is desirable that
honest users of the system are subjected to as few resource require-
ments as possible. The purpose of this paper is to investigate the
security of zero-knowledge proof systems against adversaries that
use quantum computers to attack these systems. Although quantum
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interactive proof systems are considered in this paper, the primary
focus will be on the case of greatest practical interest, which is the
case where honest parties are not required to use quantum comput-
ers to implement the proof systems.
The notion of zero-knowledge was first introduced in 1985 by

Goldwasser, Micali and Rackoff [14]. Informally speaking, an in-
teractive proof system has the property of being zero-knowledge
if verifiers that interact with the honest prover of the system learn
nothing from the interaction beyond the validity of the statement
being proved. At first consideration this notion may seem to be
paradoxical, but indeed several interesting computational problems
that are not known to be polynomial-time computable admit zero-
knowledge interactive proof systems in the classical setting. Ex-
amples include the Graph Isomorphism [11] and Quadratic Resid-
uosity [14] problems, various lattice problems [10], and the Sta-
tistical Difference [26] and Entropy Difference [13] problems that
concern outputs of boolean circuits with random inputs. (The fact
that the last three examples have interactive proof systems that are
zero-knowledge relies on a fundamental result of Goldreich, Sahai
and Vadhan [12] equating zero-knowledge with “honest verifier”
zero-knowledge in some settings.) Under certain intractability as-
sumptions, every language in NP has a zero-knowledge interactive
proof system [11].
A related notion is that of an interactive argument, wherein com-

putational restrictions on the prover allow for zero-knowledge pro-
tocols having somewhat different characteristics than protocols in
the usual interactive proof system setting [3].
There are multiple classical variants of zero-knowledge that dif-

fer in the specific way that the notion that the verifier “learns noth-
ing” is formalized. In each variant, it is viewed that a particular
verifier learns nothing if there exists a polynomial-time simulator
whose output is indistinguishable from the output of the verifier
when the prover and verifier interact on any positive instance of the
problem. The different variants concern the strength of this indis-
tinguishability. In particular, perfect and statistical zero-knowledge
refer to the situation where the simulator’s output and the verifier’s
output are indistinguishable in an information-theoretic sense and
computational zero-knowledge refers to the weaker restriction that
the simulator’s output and the verifier’s output cannot be distin-
guished by any computationally efficient procedure.
Within the context of quantum information and computation it

is natural to consider the implications of the quantum model to
the notion of zero-knowledge. Despite the fact that this has in-
deed been a topic of investigation for several years, however, rel-
atively little progress has been made. It is straightforward to for-
mulate fairly direct and natural quantum analogues of the defini-
tions of the classical variants of zero-knowledge mentioned above.
Known proofs that specific proof systems are zero-knowledge with



respect to these classical definitions, on the other hand, do not trans-
late directly to the quantum setting, even when the prover behaves
classically. As a result, no nontrivial interactive proof systems
had been proved to be zero-knowledge against general quantum at-
tacks previous to this paper. This has left open several possibilities,
including the possibility that any “correct” definition of quantum
zero-knowledge would necessarily be qualitatively different from
the usual classical definitions, as well as the possibility that zero-
knowledge is simply impossible in a quantum world.
The main task that needs to be performed to prove that a given

proof system is zero-knowledge is the construction of a simulator
for every possible deviant polynomial-time verifier. The most typi-
cal method involves the simulator treating a given verifier as a black
box: the simulator randomly generates transcripts, or parts of tran-
scripts, of possible interactions between a prover and verifier, and
feeds parts of these transcripts to the given verifier. If the verifier
produces a message that is not consistent with the other parts of the
transcript that were generated the simulator “rewinds”, or backs up
and tries again to randomly generate parts of the transcript. By stor-
ing intermediate results, and repeating different parts of this process
until the given verifier’s output is consistent with a randomly gen-
erated transcript, the simulation is eventually successful.
The reason why this technique cannot generally be applied di-

rectly to quantum verifiers is based on the facts that (i) quantum in-
formation cannot be copied, and (ii) measurements are irreversible
processes: their effects cannot in general be undone. If a simulator
runs a given verifier as a black box and the simulation is unsuc-
cessful, it is not clear how to rewind the process and try again—
intermediate states of the system cannot be copied, and running
the verifier may have involved an irreversible measurement. More
significantly, the determination of whether the simulation was suc-
cessful will itself represent an irreversible measurement in gen-
eral. This difficulty was apparently first discussed by van de Graaf
[15]. Other methods of constructing simulators for quantum veri-
fiers have also not been successful in the general setting. Further
discussions of this issue can be found in [15] and [6].
There are weaker notions of zero-knowledge that are of inter-

est, both in the quantum and classical cases. Of particular inter-
est with respect to previous work on quantum zero-knowledge is
the common reference string model, wherein it is assumed that an
honest third party samples a string from some specified distribu-
tion and provides both the prover and verifier with this string at the
start of the interaction. Damgård, Fehr, and Salvail [6] proved sev-
eral interesting results concerning quantum zero-knowledge proto-
cols in this context. Their results are centered on what they call
the no quantum rewinding paradigm, which partially circumvents
the problematic issue concerning simulator constructions discussed
above by making use of common reference strings as well as cer-
tain unproved quantum complexity-theoretic assumptions. Their
results are mostly concerned with interactive arguments, as compu-
tational restrictions on the prover are required to establish sound-
ness. Another weaker notion of zero-knowledge is honest veri-
fier zero-knowledge, which only requires a simulator that outputs
the verifier’s view of the interaction between the honest parties
V and P . A quantum variant of honest verifier statistical zero-
knowledge was considered in [28], wherein it was proved that the
resulting complexity class shares many of the basic properties of its
classical counterpart [26]. A non-interactive variant of this notion
was studied by Kobayashi [21]. The problematic issue regarding
simulator constructions does not occur in honest verifier settings.
The present paper resolves, at least to a significant extent, the

main difficulties previously associated with quantum analogues of
zero-knowledge. This is done by establishing that the most natural

quantum analogues of the classical definitions of zero-knowledge
indeed can be applied to a large class of proof systems. This in-
cludes some well-known classical proof systems as well as quan-
tum proof systems for several problems, in particular the class of
all problems admitting quantum proof systems that are statistical
zero-knowledge against honest verifiers. It is therefore proved un-
conditionally that zero-knowledge indeed is possible in the pres-
ence of quantum information and computation, and moreover that
the notion of quantum zero-knowledge is correctly captured by the
most natural and direct quantum analogues of the classical defini-
tions. The main technique used to do this is algorithmic in nature:
it is shown how to construct efficient quantum simulators for arbi-
trary quantum polynomial-time deviant verifiers for several proof
systems. These simulators rely on a general amplification lemma
that establishes simple conditions under which the success proba-
bilities of certain processes with quantum inputs and outputs can be
amplified. This process of amplification is similar to one that was
previously used to reduce errors in QMA proof systems without
increasing witness sizes [22].

2. PRELIMINARIES
This paper assumes the reader is familiar with the notions of in-

teractive proof systems and quantum computation. The results of
this paper are most naturally expressed in terms of promise prob-
lems [7], with which familiarity is also assumed. Notions of zero-
knowledge will be discussed briefly, mostly in order to establish
notation and to explain the context in which the main results of the
paper are relevant. Further information on interactive proof systems
and zero-knowledge can be found, for instance, in [8, 9], and stan-
dard references for quantum computation and information include
[25, 19]. Quantum computational variants of interactive proof sys-
tems were studied in [29, 20].

Interactive proof systems
Interactive proof systems will be specified by pairs (V, P ) repre-
senting honest verifier and honest prover strategies. The soundness
property of such an interactive proof system concerns interactions
between pairs (V, P ′) and the zero-knowledge property concerns
interactions between pairs (V ′, P ), where P ′ and V ′ deviate ar-
bitrarily from P and V , respectively. It may be the case that a
given pair of interacting strategies is such that both are classical,
both are quantum, or one is classical and the other is quantum.
When either or both of the strategies is classical, all communica-
tion between them is (naturally) assumed to be classical—only two
quantum strategies are permitted to transmit quantum information
to one another. It will always be assumed that verifier strategies are
represented by polynomial-time (quantum or classical) computa-
tions. Depending on the setting of interest, the honest prover strat-
egy P may either be computationally unrestricted or may be rep-
resented by a polynomial-time (quantum or classical) computation
augmented by specific information about the input string, such as
a witness for an NP problem. Deviant prover strategies P ′ will al-
ways be assumed to be computationally unrestricted. (Although the
results of this paper are applicable to interactive arguments, none
are specific to them, and so for simplicity they are not considered.)
For a given promise problem A = (Ayes, Ano), we say that a

pair (V, P ) is an interactive proof system for A having complete-
ness error εc and soundness error εs if (i) for every input x ∈ Ayes,
the interaction between P and V causes V to accept with proba-
bility at least 1 − εc, and (ii) for every input x ∈ Ano and every
prover strategy P ′, the interaction between P ′ and V causes V to
accept with probability at most εs. It may be the case that εc and
εs are constant or are functions of the length of the input string x.



When they are functions, it is assumed that they can be computed
deterministically in polynomial time. It is generally desired that εc

and εs be exponentially small. As sequential repetition followed by
majority vote, or unanimous vote in case εc = 0, reduces these er-
rors exponentially quickly, it is usually sufficient that 1−εc −εs is
lower-bounded by the reciprocal of a polynomial. (A similar state-
ment holds for parallel repetition, but the zero-knowledge property
to be discussed shortly will generally be lost in this case.)

Zero-knowledge against classical verifiers
There are different notions of what it means for a proof system
(V, P ) for a promise problem A to be zero-knowledge. Let us first
discuss the completely classical case, meaning that only classical
strategies are considered for the honest verifier V and any deviant
verifiers V ′. An arbitrary verifier V ′ takes two strings as input:
a string x representing the common input to both the verifier and
prover, as well as a string w called an auxiliary input, which is
not known to the prover and which may influence the verifier’s be-
havior during the interaction. Based on the interaction with P , the
verifier V ′ produces a string as output. Let n, m : {0, 1}∗ → N
be polynomially-bounded functions representing the length of the
auxiliary input string and output string: assuming the common in-
put string is x, the auxiliary input is a string of length n(x) and the
output is a string of length m(x). Because there may be random-
ness used by either or both of the strategies P and V ′, the verifier’s
output will in general be random. The random variable representing
the verifier’s output will be written (V ′(w), P )(x). For the honest
verifier V , we may view that n = 0 andm = 1, because there is no
auxiliary input and the output is a single bit that indicates whether
the verifier accepts or rejects.
By a (classical) simulator we mean a polynomial-time random-

ized algorithm S that takes strings w and x, with |w| = n(x), as
input and produces some output string of lengthm(x). Such a sim-
ulator’s output is a random variable denoted S(w, x). Now, for a
given promise problem A, we say that a proof system (V, P ) for
A is zero-knowledge if, for every verifier V ′ there exists a simula-
tor S such that (V ′(w), P )(x) and S(w, x) are indistinguishable
for every choice of strings x ∈ Ayes and w ∈ {0, 1}n(x). The
specific formalization of the word “indistinguishable” gives rise to
different variants of zero-knowledge. Statistical zero-knowledge
refers to the situation in which (V (w), P )(x) and S(w, x) have
negligible statistical difference, and computational zero-knowledge
refers to the situation in which no boolean circuit with size poly-
nomial in |x| can distinguish (V ′(w), P )(x) and S(w, x) with a
non-negligible advantage over randomly guessing. (Perfect zero-
knowledge is slightly stronger than statistical zero-knowledge in
that it essentially requires a zero-error simulation: the simulator
may report failure with some small probability, but conditioned on
the simulator not reporting failure the output S(w, x) of the simu-
lator is distributed identically to (V ′(w), P )(x).)
Two points concerning the definitions just discussed should be

mentioned. The first point concerns the auxiliary input, which ac-
tually was not included in the definitions given in the very first
papers on zero-knowledge (but which already appeared in the 1989
journal version of [14]). The inclusion of an auxiliary input in the
definition is needed to prove that zero-knowledge proof systems
are closed under sequential composition. Perhaps more important
is that the inclusion of auxiliary inputs in the definition captures the
notion that a given zero-knowledge proof system cannot be used to
increase knowledge. The second point concerns the order of quan-
tification between V ′ and S. Specifically, the definition states that
a zero-knowledge proof system is one such that for all V ′ there ex-
ists a simulator S that satisfies the requisite properties. There is a

good argument to be made for reversing these quantifiers by requir-
ing that for a given proof system (V, P ) there should exist a single
simulator S that interfaces in some uniform way with any given V ′

to produce an output that is indistinguishable from that verifier’s
output. Typical simulator constructions, as well as the ones that
will be discussed in this paper in the quantum setting, do indeed
satisfy this stronger requirement.

Zero-knowledge against quantum verifiers
Next let us discuss the case where a given deviant verifier strategy
V ′ may be quantum. This includes the possibility that the honest
verifier V is classical or quantum, and likewise for P . Similar to
the completely classical case, a verifier V ′ will take, in addition
to the input string x, an auxiliary input, and produce some out-
put. The most general situation allowed by quantum information
theory is that both the auxiliary input and the output are quantum
states. Moreover, it may be the case that the auxiliary input state
qubits are entangled with some other qubits that are not accessible
to the verifier or simulator, but are available to any procedure that
attempts to distinguish between the verifier and simulator outputs.
It is intended that this is a strong assumption, but it can easily be
argued that no sensible definition would forbid this possibility; one
can imagine natural situations in which potential attacks could be
based on entangled states in the sense described.
Similar to the classical case, it will be assumed that for every

verifier strategy V ′ there exist polynomially bounded functions n
and m that specify the number of auxiliary input qubits and output
qubits of V ′. The interaction of V ′ with P on input x is a physical
process, and therefore induces some admissible mapping Φx from
n(x) qubits tom(x) qubits. This means that Φx : L(W) → L(Z)
is a completely positive and trace preserving linear map, whereW
and Z are Hilbert spaces corresponding to the n(x) auxiliary input
qubits and them(x) output qubits, and L(W) and L(Z) denote the
spaces of linear operators (including the density operators) acting
onW and Z, respectively. Likewise, a simulator S given by some
polynomial-time quantum computation that takes as input the string
x along with n(x) auxiliary input qubits and outputs m(x) qubits
will give rise to some admissible mapping Ψx : L(W) → L(Z).
We may now define variants of zero-knowledge based on dif-

ferent notions of indistinguishability of these mappings Φx and
Ψx. The correct quantum analogue of statistical zero-knowledge
requires that ‖Φx − Ψx‖# is negligible, where ‖ · ‖# denotes Ki-
taev’s “diamond” norm [18, 19, 2]. Informally this implies that no
physical process can distinguish Φx and Ψx given a single “black-
box” access to one of the two mappings, including the possibility
that the mapping is applied to just one part of a larger, possibly
entangled state. Under the assumption that ‖Φx − Ψx‖# is negli-
gible, no polynomial number of black-box accesses to Φx or Ψx

can suffice to distinguish the two with non-negligible probability.
Computational zero-knowledge is formulated similarly, except that
the distinguishing procedure must be specified by a polynomial-
size quantum circuit. A more precise definition of quantum com-
putational zero-knowledge will be postponed until Section 6.
As in the classical case, a sequential composition of quantum

zero-knowledge protocols results in a zero-knowledge protocol, due
to the fact that the definitions allow for an arbitrary auxiliary input.

3. THE AMPLIFICATION LEMMA
The polynomial-time quantum simulator constructions for the

various protocols considered in this paper rely on a single ampli-
fication lemma, stated as Lemma 1 below. The purpose of this
section is to explain and prove this lemma.
Suppose that a unitary quantum circuitQ acting on n + k qubits



is given. The first n qubits are assumed to initially store a quantum
state |ψ〉 and the remaining k qubits represent ancillary qubits used
by the circuit. If the circuit is applied and the first qubit is measured
with respect to the standard basis, the remaining n + k − 1 qubits
will be left in one of two possible states that will be denoted |φ0〉
and |φ1〉, respective to the measurement outcome. This situation
is illustrated in Figure 1. Because the states |φ0〉 and |φ1〉, as well

|ψ〉
(quantum
input)

|0k〉
(ancilla)

success/failure
qubit (measured)

|φ0〉 or |φ1〉
(quantum output)

Q

Figure 1: Given circuitQ for amplification lemma

as the probability p to obtain the measurement outcome 0, depend
on the choice of |ψ〉, we will write p(ψ) for p, |φ0(ψ)〉 for |φ0〉,
and |φ1(ψ)〉 for |φ1〉 when it is helpful to indicate this dependence
explicitly. More concisely, we will write

Q |ψ〉 |0k〉 =
p

p(ψ) |0〉 |φ0(ψ)〉 +
p

1 − p(ψ) |1〉 |φ1(ψ)〉 ,

for each possible state |ψ〉 of the first n qubits.
Let us imagine that it is our goal to construct from Q a proce-

dure that will produce a copy of the state |φ0(ψ)〉 from an arbitrary
state |ψ〉 with as high a success probability as possible (assuming
p(ψ) &= 0 so |φ0(ψ)〉 is well defined). This task is of course per-
formed with probability p(ψ) by the circuit Q itself, and without
any additional assumptions on Q there may be no way to increase
the probability of success in the worst case.
On the other hand, there are some assumptions on Q that do al-

low for an increase in the probability to obtain |φ0(ψ)〉 given |ψ〉.
The specific assumption that will be required for our amplification
lemma is a natural one: that the measurement result gives no in-
formation about |ψ〉. In this case, the probability of successfully
obtaining |φ0(ψ)〉 given |ψ〉 can be made arbitrarily close to 1 by
an efficient procedure.

LEMMA 1 (AMPLIFICATION LEMMA). Let Q be a quantum
circuit of the form described above, and assume that the proba-
bility p = p(ψ) associated with the measurement outcome 0 is
constant over all choices of |ψ〉 and satisfies 0 < p ≤ 1/2. Then
for every ε > 0 there exists a quantum circuit R with size(R) =
O ((1/p) log(1/ε) size(Q)) such that for every input state |ψ〉, R
outputs |φ0(ψ)〉 with probability at least 1 − ε.

In order to prove Lemma 1, we will make use of a lemma that
states a fact first proved in [22], where it was used to analyze an
error reduction method for the class QMA.

LEMMA 2. Let U, Π0, Π1, ∆0, ∆1 be linear operators acting
on some Hilbert space such that U is unitary and Π0, Π1, ∆0,
and ∆1 are orthogonal projections satisfying ∆0 = I − ∆1 and
Π0 = I − Π1. Suppose further that |γ0〉 is a unit eigenvector of
∆0U∗Π0U∆0 with corresponding eigenvalue λ ∈ (0, 1). Define

|δ0〉 =
Π0U |γ0〉√

λ
, |δ1〉 =

Π1U |γ0〉√
1 − λ

, and |γ1〉 =
∆1U

∗ |δ0〉√
1 − λ

.

Then 〈γ0|γ1〉 = 〈δ0|δ1〉 = 0 and

U |γ0〉 =
√
λ |δ0〉 +

√
1 − λ |δ1〉 ,

U |γ1〉 =
√

1 − λ |δ0〉 −
√
λ |δ1〉 .

(1)

PROOF. First let us note that because |γ0〉 is an eigenvector of
∆0U

∗Π0U∆0 and the corresponding eigenvalue λ is nonzero, it
holds that∆0 |γ0〉 = |γ0〉. By the definitions of |γ1〉, |δ0〉, and |δ1〉
it also holds that ∆1 |γ1〉 = |γ1〉, Π0 |δ0〉 = |δ0〉, and Π1 |δ1〉 =
|δ1〉. Consequently 〈γ0|γ1〉 = 〈δ0|δ1〉 = 0.
The equation U |γ0〉 =

√
λ |δ0〉 +

√
1 − λ |δ1〉 is immediate

from the definitions of |δ0〉 and |δ1〉, along with the fact that Π0 =
I − Π1. Because

∆0U
∗ |δ0〉√
λ

=
∆0U

∗Π0U∆0 |γ0〉
λ

= |γ0〉 ,

it also holds that U∗ |δ0〉 =
√
λ |γ0〉 +

√
1 − λ |γ1〉, and thus

U |γ1〉 =
√

1 − λ |δ0〉 −
√
λ |δ1〉.

It will be helpful when applying this lemma to note that for U
unitary and λ real, the equations (1) are equivalent to

U∗ |δ0〉 =
√
λ |γ0〉 +

√
1 − λ |γ1〉

U∗ |δ1〉 =
√

1 − λ |γ0〉 −
√
λ |γ1〉 .

PROOF OF LEMMA 1. For a given circuit Q and error bound ε,
let R be a quantum circuit implementing the following algorithm:

Input and initial conditions:
The registerW contains an n-qubit quantum input |ψ〉.
The register X is initialized to the state |0k〉.

Main procedure:
Set t = 0.
Apply the circuitQ to the pair (W,X) obtaining (B,Y)
(where B denotes the first qubit and Y denotes a register
containing the remaining n + k − 1 qubits).
Repeat:

Measure B with respect to the computational basis.
If the outcome of the measurement is 1:

Apply Q∗ to (B,Y), obtaining (W,X).
Perform a phase flip in case any of the qubits of X is
set to 1. Equivalently, apply the unitary transformation
2 |0k〉 〈0k| − I to X.
Apply Q to the pair (W,X) obtaining (B,Y).

Set t = t + 1.
Until the measurement outcome is 0 or t = *(1/p) log(1/ε)+.
Output register Y.

In order to analyze this procedure, and in particular to apply
Lemma 2, let us define four projections, each acting on n+k qubits:

Π0 = |0〉 〈0| ⊗ I, ∆0 = I ⊗ |0k〉 〈0k| ,
Π1 = |1〉 〈1| ⊗ I, ∆1 = I − ∆0.

The measurement of the qubit B that is performed in the procedure
may be viewed as a measurement with respect to the projections
{Π0, Π1}, while the phase flip performed in case the measurement
result is 1 may be written 2∆0 − I . These projections obviously
satisfy the conditions ∆0 = I − ∆1 and Π0 = I − Π1.
Define |γ0〉 = |ψ〉 |0k〉, where |ψ〉 is an arbitrary quantum input.

It will now be shown that |γ0〉 is an eigenvector of the operator
∆0Q

∗Π0Q∆0, and that the corresponding eigenvalue is p. (This
will be so regardless of the choice of |ψ〉.) Define

M = (I ⊗ 〈0k|)Q∗Π0Q(I ⊗ |0k〉).



The operator M may be viewed as a measurement operator on n
qubits—the pair {M, I − M} describes the POVM-type measure-
ment that is effectively performed on the quantum input |ψ〉 when
the circuit Q is applied and the success/failure qubit is measured.
The assumptions of the lemma imply that for every choice of the
state |ψ〉 we have 〈ψ|M |ψ〉 = ‖Π0Q(|ψ〉 |0k〉)‖2 = p. There is
only one possibility for the operator M given this fact: it must be
that M = pI . This is because M , like any other linear operator, is
uniquely determined by the function |ψ〉 -→ 〈ψ|M |ψ〉 defined on
the unit sphere. Consequently,

∆0QΠ0Q∆0 = (I ⊗ |0k〉)M(I ⊗ 〈0k|) = pI ⊗ |0k〉 〈0k| .

Clearly |γ0〉 = |ψ〉 |0k〉 is an eigenvector of this operator with cor-
responding eigenvalue p.
Define

|δ0〉 =
1
√

p
Π0Q |γ0〉 = |0〉 |φ0〉 ,

|δ1〉 =
1√

1 − p
Π1Q |γ0〉 = |1〉 |φ1〉 ,

|γ1〉 =
1√

1 − p
∆1Q

∗ |δ0〉 .

The procedure begins by applying Q to the pair (W,X), which is
initially in the state |ψ〉 |0k〉 = |δ0〉. The result is

√
p |0〉 |φ0〉 +

p
1 − p |1〉 |φ1〉 =

√
p |δ0〉 +

p
1 − p |δ1〉 .

If the measurement of B results in outcome 0, the state of the pair
(B,Y) becomes |0〉 |φ0〉. The loop is terminated, which results in Y
being output in state |φ0〉 as required. If the measurement outcome
is 1, the state of (B,Y) becomes |δ1〉.
Consider the effect of the operations performed in case the mea-

surement outcome is 1, assuming the state of (B,Y) is |δ1〉. By
Lemma 2,Q∗ maps this state to

√
1 − p |γ0〉−

√
p |γ1〉, the phase-

flip is applied yielding
√

1 − p |γ0〉 +
√

p |γ1〉, and finally Q is
applied resulting in the state 2

p
p(1 − p) |δ0〉 + (1 − 2p) |δ1〉.

Now a measurement of B results outcome 0 and corresponding
state |δ0〉 = |0〉 |φ0〉 with probability 4p(1 − p) and outcome 1
and corresponding state |δ1〉 = |1〉 |φ1〉with probability (1−2p)2.
For each subsequent iteration of the loop, which is only performed
in case the measurement outcome was 1, the pattern is identical.
Consequently, whenever the measurement outcome is 0, the output
of the procedure is |φ0〉, and the probability that the measurement
outcome is 0 within t iterations is 1− (1−p)(1−2p)2t. The prob-
ability that |φ0〉 is output by the procedure is therefore greater than
1 − ε if *(1/p) log(1/ε)+ iterations of the loop are permitted.

Remark on the connection to Grover’s algorithm
The amplification procedure described in the proof of Lemma 1 has
some connections with Grover’s Algorithm [16] and the more gen-
eral process known as amplitude amplification [4]. Specifically, if
the measurement of B was replaced with a phase-flip 2Π0 − I , and
the loop was terminated after some number of iterations depending
on p, then we would essentially be performing amplitude amplifica-
tion with a quantum state input. This approach can be made to give
some reduction in the number of iterations required: essentially re-
placing p with √p. The dependence on ε, on the other hand, does
not improve [5].
Although it may be an interesting question to explore the pro-

cess of amplitude amplification with a quantum state input in other
contexts, the author views that it is not helpful in the present case.
The main reason is that both the procedure and the analysis gen-
erally become more complicated if one wishes to allow ε to be

exponentially small, which will be the typical case in the context
of zero-knowledge. Because the purpose of a simulator for a zero-
knowledge protocols is to establish the security of the protocol, as
opposed to being an algorithm that performs a task that is useful in
its own right, it seems that it is not worth sacrificing simplicity for
performance.

An Amplification Lemma with negligible perturbations
The assumptions of Lemma 1 require that p is independent of |ψ〉.
Here we note that this assumption may be relaxed slightly if one is
willing to accept a small perturbation in the output of the procedure.
Suppose that for some circuit Q we have that p(ψ) ∈ (0, 1) for

all |ψ〉, and for some choice of δ > 0 and q ∈ (0, 1) it holds that
|p(ψ) − q | < δ for all |ψ〉. Then there necessarily exists a unitary
operator U that essentially represents an idealized version of Q:

U |ψ〉 |0k〉 =
√

q |0〉 |φ0(ψ)〉 +
p

1 − q |1〉 |φ1(ψ)〉

for all |ψ〉. Moreover, this unitary operator may be chosen so that
‖Q−U‖ <

√
2δ. To prove the existence of such an operatorU , one

may define a linear operator that acts as required on an orthonormal
collection of eigenvectors of (I ⊗ 〈0k|)Q∗Π0Q(I ⊗ |0k〉), and
establish that it is unitary and satisfies the required properties for
all choices of |ψ〉.
Now, if the amplification procedure from the proof of Lemma 1

is applied to the circuit Q, the output of the procedure will have
trace distance at most 2

√
2δ(2*(1/q) log(1/ε)+ + 1) from what

the output would be using the idealized operator U in place of Q.
In the situation that δ is exponentially small and (1/q) log(1/ε) is
polynomially bounded in some input parameter, we have that the
output of the procedure for the circuit Q has negligible trace dis-
tance from the output of the procedure for the idealized operator U .
It will be convenient to use this fact later when quantum statistical
and computational zero-knowledge are discussed.

4. GRAPH ISOMORPHISM
The Goldreich-Micali-Wigderson Graph Isomorphism protocol

[11] is a simple and well-known example of an interactive proof
system that is perfect zero-knowledge against classical polynomial-
time verifiers. In this section it is proved that this protocol is zero-
knowledge against polynomial-time quantum verifiers as well. The
protocol is as follows:

Zero-Knowledge Protocol for Graph Isomorphism

The input is a pair (G0, G1) of simple, undirected n-vertex graphs.
It is assumed that the prover knows a permutation σ ∈ Sn that
satisfies σ(G1) = G0 if G0 and G1 are isomorphic.

Prover’s step 1: Choose π ∈ Sn uniformly at random and send
H = π(G0) to the verifier.

Verifier’s step 1: Choose a ∈ {0, 1} uniformly at random and send
a to the prover. (Implicitly, the verifier is challenging the prover to
exhibit an isomorphism between Ga andH .)

Prover’s step 2: Set τ = πσa and send τ to the verifier. (If
σ(G1) = G0, then τ (Ga) = H .)

Verifier’s step 2: Accept if τ (Ga) = H , reject otherwise.

This proof system has perfect completeness and soundness error
1/2; ifG0

∼= G1, then V will accept with probability 1 when inter-
acting with the honest prover P , while if G0 &∼= G1 then no prover



P ′ can convince V to accept with probability greater than 1/2 (es-
sentially becauseH cannot be isomorphic to bothG0 andG1 when
G0 &∼= G1).
For an arbitrary choice of σ ∈ Sn satisfying the required prop-

erty σ(G1) = G0 forG0
∼= G1, the proof system (V, P ) is perfect

zero-knowledge with respect to any classical polynomial-time ver-
ifier V ′. Sequential repetition followed by a unanimous vote can
be used to decrease the soundness error to an exponentially small
quantity while preserving the perfect completeness and classical
zero-knowledge properties.
We wish to show that this protocol is zero-knowledge with re-

spect to polynomial-time quantum verifiers. It will be sufficient to
consider a restricted type of verifier as follows:

• In addition to (G0, G1), the verifier takes a quantum registerW
as input, representing the auxiliary quantum input. The verifier
will use two additional quantum registers that function as work
space: V, which is an arbitrary (polynomial-size) register, and
A, which is a single qubit register. The registers V and A are
initialized to their all-zero states before the protocol begins.

• In the first message, the prover P sends an n-vertex graph H
to the verifier. For each graph H there corresponds a unitary
operator V ′

H that the verifier applies to the registers (W,V,A).
After applying the appropriate transformation V ′

H , the verifier
measures the register A with respect to the standard basis, and
sends the resulting bit a to the prover.

• After the prover responds with some permutation τ ∈ Sn, the
verifier outputs the registers (W,V,A), along with the classical
messages H and τ sent by the prover during the protocol.

An arbitrary verifier can be modeled as a verifier of this restricted
form followed by some polynomial-time post-processing of this
verifier’s output. The same post-processing can be applied to the
output of the simulator that will be constructed for the given re-
stricted verifier. Note that a verifier of this form is completely de-
termined by the collection {V ′

H}.
Now let us consider the admissible transformation induced by an

interaction of a verifier of the above type with the prover P in the
case thatG0

∼= G1. Although the messages sent from the prover to
the verifier are classical messages, it will simplify matters to view
them as being stored in quantum registers denoted P1 and P2, re-
spectively. (Later, when we consider simulations of the interaction,
we will need quantum registers to store these messages anyway,
and it is helpful to have the registers used in the actual protocol
and in the simulation share the same names.) With each register we
associate a Hilbert space, and use the same letter in sans serif and
calligraphic fonts for matching registers and spaces. For example,
W is the space associated with registerW. Let |0V⊗A〉 ∈ V ⊗ A
denote the initial all-zero state of the registers (V,A). Let us also
write Gn to denote the set of all simple, undirected graphs having
vertex set {1, . . . , n}.
For each H ∈ Gn and each a ∈ {0, 1}, define a linear mapping

MH,a = (IW⊗V ⊗ 〈a|) V ′
H(IW ⊗ |0V⊗A〉)

from W to W ⊗ V . If the initial state of the register W is a pure
state |ψ〉 ∈ W , then the state of the registers (W,V,A) after the
verifier applies V ′

H is

(MH,0 |ψ〉) |0〉 + (MH,1 |ψ〉) |1〉 ,

and therefore the state of the registers (W,V,A) after the verifier
applies V ′

H and measures A in the standard basis is
X

a∈{0,1}

MH,a |ψ〉 〈ψ|M∗
H,a ⊗ |a〉 〈a| .

The admissible map that results from the interaction is now eas-
ily described by incorporating the description of P . It is given by

Φ(X) =
1
n!

X

π∈Sn

X

a∈{0,1}

Mπ(G0),aXM∗
π(G0),a ⊗ |a〉 〈a|

⊗ |π(G0)〉 〈π(G0)| ⊗ |πσa〉 〈πσa|
(2)

for allX ∈ L(W).
In order to define a simulator for a given quantum verifier V ′,

it is helpful to consider the classical case. A classical simulation
for a classical verifier V ′ in the above protocol may be obtained
as follows. The simulator randomly chooses a permutation π and
a bit b, and feeds π(Gb) to V ′. This verifier chooses a bit a for
its message back to the prover. If a = b, the simulator can easily
complete the simulation, otherwise it “rewinds” and tries a new
choice of π and b. With very high probability, the simulator will
succeed after no more than a polynomial number of steps, and in
the case of success the output of the simulator and the verifier V ′

will be identically distributed.
Now we consider the quantum case. Our procedure for simulat-

ing the verifier described by a collection {V ′
H : H ∈ Gn} will

require two registers B and R in addition to W, V, A, P1, and P2.
The register R may be viewed as a quantum register whose ba-
sis states correspond to the possible random choices that a typical
classical simulator would use. In the present case this means a ran-
dom permutation together with a random bit. The register B will
represent the simulator’s “guess” for the verifier’s message. For
convenience, let us define X = V ⊗A⊗Y⊗B⊗Z⊗R, which is
the Hilbert space corresponding to all registers aside fromW, and
let |0X 〉 denote the all-zero state of these registers.
The procedure will involve a composition of a few operations

that we now describe. First, let T be any unitary operator acting on
registers (P1,B,P2,R) that maps the initial all-zero state of these
four registers to the state

1√
2n!

X

b∈{0,1}

X

π∈Sn

|π(Gb)〉 |b〉 |π〉 |π, b〉 .

If the register R is traced out, the state of registers (P1,B,P2) cor-
responds to a probability distribution over triples (π(Gb), b, π) for
b and π chosen uniformly. In essence, T produces a purification of
a uniform distribution of possible transcripts of an interaction be-
tween a prover and verifier. Next, define a unitary operator V ′ act-
ing on registers (W,V,A,P1) that effectively simulates (unitarily)
the verifier V ′. Specifically, V ′ uses P1 as a control register, and
applies V ′

H to registers (W,V,A) for each possible graph H ∈ Gn

representing a standard basis state of P1. More compactly,

V ′ =
X

H∈Gn

V ′
H ⊗ |H〉 〈H | .

The operators T and V ′ are each tensored with the identity on the
remaining spaces when we wish to view them both as operators on
W ⊗X .
Consider the quantum circuit Q acting on all of the above reg-

isters obtained by first applying T , then applying V ′, and finally
performing a controlled-NOT operation on the pair (A,B) with A
acting as the control. Suppose that Q is applied to |ψ〉 |0X 〉, and
the register B is then measured with respect to the standard basis.
The probability that the outcome is 0 is necessarily equal to 1/2,
independent of the behavior of the verifier V ′ and of the auxiliary
input |ψ〉. This follows from similar reasoning to the classical case:
there can be no correlation between the verifier’s choice of a and
the simulator’s guess b for a. If we condition on the measurement
outcome being 0, and trace out the register R, we obtain precisely



the admissible mapping Φ given in (2) describing the actual in-
teraction between V ′ and P . In other words, conditioned on the
measurement outcome being 0, the circuit Q correctly simulates
the interaction between V ′ and P given auxiliary input |ψ〉. Given
that the measurement outcome is 0 with probability 1/2, which is
independent of |ψ〉, we may apply Lemma 1 in order to obtain a
circuit R representing the final simulation procedure.
We note that in the special case p = 1/2, the simulation proce-

dure in fact works perfectly after either zero or one iteration of the
loop in the amplification procedure. This establishes that the out-
come of the simulation procedure is precisely Φ(|ψ〉 〈ψ|) in case
the initial state ofW was |ψ〉.
Because the set {|ψ〉 〈ψ| : |ψ〉 ∈ W, ‖|ψ〉‖ = 1} spans all

of L(W), and the map induced by the simulation procedure is nec-
essarily admissible (and therefore linear), it holds that this map is
precisely Φ. In other words, because admissible maps are uniquely
determined by their action on pure states, the map induced by the
simulation procedure must be Φ; the simulation procedure imple-
ments exactly the same admissible map as the actual interaction
between V and P .
Each of the operations constituting the circuit Q can be per-

formed by polynomial-size circuits, and therefore the simulator has
polynomial size (in the worst case).

5. QUANTUM SZK
The method that was used to prove the security of the Goldreich-

Micali-Wigderson Graph Isomorphism protocol against quantum
attacks can easily be adapted to some other protocols having a sim-
ilar form, meaning (i) P sends a message to V , (ii) V flips a fair
coin and sends the result to P , and (iii) P responds with a sec-
ond message. The important aspects of such protocols that may
allow the same proof to go through with very little change is that
in each case there exists a simulator whose success probability is
independent (or nearly independent) of the auxiliary input state of
any cheating quantum verifier.
In the quantum setting, protocols of this simple form are uni-

versal for honest-verifier quantum statistical zero-knowledge [28],
meaning that every problem having a quantum interactive proof
system that is statistical zero-knowledge with respect to an hon-
est verifier also has a proof system of the above form. Although
such proof systems require the prover to send quantum information
to the verifier, and the verifier performs a quantum computation at
the end of the protocol, the verifier’s single-bit message is classi-
cal. (The honest prover can easily enforce this constraint just by
measuring the verifier’s message before responding to it.) This al-
lows the proof from Section 4 to be easily adapted to this setting as
well, provided we use the approximate version of the amplification
lemma mentioned in Section 3.
Let QSZKHV denote the class of problems having honest-verifier

quantum statistical zero-knowledge protocols and QSZK the class
of problems that are quantum statistical zero-knowledge with re-
spect to the definitions we have discussed in Section 2. The follow-
ing theorem then results.

THEOREM 3. QSZK = QSZKHV.

Although the statement of this theorem is analogous to the fact
SZK = SZKHV of Goldreich, Sahai, and Vadhan [12], we hasten
to add that the facts are only really similar on the surface—there is
no similarity in the proofs. The quantum case is greatly simplified
by the fact that every problem in QSZKHV has the very simple type
of protocol discussed above.
Because SZK ⊆ QSZKHV, all problems in SZK have quantum

interactive proof systems that are statistical zero-knowledge against

quantum verifiers. The question of whether every problem in SZK
has a classical proof system that is zero-knowledge against quan-
tum attacks is not answered in this paper.

6. QUANTUM COMPUTATIONAL ZERO-
KNOWLEDGE AND 3-COLORING

The final proof system that will be discussed is the Goldreich-
Micali-Wigderson Graph 3-Coloring proof system [11]. This proof
system is computational zero-knowledge against classical verifiers,
assuming the existence of unconditionally binding and computa-
tionally concealing commitment schemes (which follow from the
existence of one-way functions [24, 17]). In this section it is ar-
gued that this protocol is computational zero-knowledge against
quantum verifiers, albeit with somewhat stronger intractability as-
sumptions than are required in the classical case. Specifically, the
protocol will require commitment schemes that are unconditionally
binding and quantum computationally concealing, therefore rul-
ing out schemes based on the computational hardness of factoring,
discrete logarithm computations, or any other problem solvable in
polynomial time on a quantum computer.
A zero-knowledge proof system for Graph 3-Coloring yields a

zero-knowledge proof for any problem in NP, as a protocol for an
arbitrary NP problem can begin with both parties computing a re-
duction to 3-Coloring. The fact that the zero-knowledge property
is preserved under such a reduction is discussed in [11], and the
quantum and classical settings do not differ in this respect.
We will begin by discussing quantum computational indistin-

guishability and definitions of both quantum computational zero-
knowledge and of quantum computationally concealing commit-
ment schemes. After this, the security of the Goldreich-Micali-
Wigderson 3-Coloring proof system against quantum verifiers will
be argued. Due to space limitations, this section is not as detailed
as a proper discussion of its subject requires, and should therefore
be viewed as a preliminary sketch that will be expanded in the final
version of this paper.
It will be helpful for the discussions that follow that some con-

ventions and notations regarding quantum circuits are mentioned at
this point. We will allow quantum circuits to include two simple,
non-unitary gates: ancillary gates, which take no input and output
a single qubit in state |0〉, and trace-out gates that take one input
qubit and give no output, effectively throwing the qubit in the trash.
In addition to these two gates, quantum circuits may include Tof-
foli gates, Hadamard gates, and imaginary-phase-shift gates (which
induce the transformation |0〉 -→ |0〉 and |1〉 -→ i |1〉). By taking
these five gates as a basis, we have a universal collection, by which
it is meant that an arbitrary admissible quantum operation can be
approximated to any desired accuracy by some quantum circuit.
Obviously, a quantum circuit may therefore have a different num-
ber of input and output qubits; we will say that a circuit is of type
(n, m) if it has n input qubits andm output qubits. More generally,
an arbitrary admissible map from n qubits tom qubits will be said
to be of type (n, m). The size of a type (n, m) quantum circuit is
defined to be the number of gates in the circuit plus n (to disallow
the possibility that a tiny circuit acts on a large number of qubits).
When Q is such a circuit, we identify Q with the admissible map
from n qubits tom qubits induced by running Q.

Quantum computational indistinguishability
A quantum analogue of computational zero-knowledge requires a
formal notion of quantum computational indistinguishability. The
definition that follows represents the notion that will be considered
in the remainder of this section.



DEFINITION 4. Assume that S ⊆ {0, 1}∗ is an infinite set of
strings,m : {0, 1}∗ → N is a polynomially bounded function, and
ρx and ξx are mixed states on m(x) qubits for each x ∈ S. The
ensembles {ρx : x ∈ S} and {ξx : x ∈ S} are polynomially
quantum indistinguishable if, for every choice of

1. polynomials p and q,
2. a polynomially-bounded function k : {0, 1}∗ → N,
3. a collection {σx : x ∈ S}, where σx is a mixed state on k(x)
qubits, and

4. a quantum circuit Q of type (m(x) + k(x), 1) and size at most
p(|x|),

it holds that

|〈1|Q(ρx ⊗ σx)|1〉 − 〈1|Q(ξx ⊗ σx)|1〉| <
1

q(|x|)
for all but finitely many x ∈ S.

If {ρn : n ∈ N} and {ξn : n ∈ N} are ensembles in-
dexed by the natural numbers, we identify S with 1∗, interpret-
ing each n with its unary representation. Let us also note that the
above definition applies to the situation where {ρx : x ∈ S} and
{ξx : x ∈ S} represent classical probability distributions, which
are special cases of mixed states.
Notice that the above definition gives a fairly strong quantum

analogue to the typical non-uniform notion of classical polyno-
mial indistinguishability. It is strong because the non-uniformity
includes an arbitrary quantum state σx that may aid some circuit
Q in the task of distinguishing ρx from ξx. The inclusion of the ar-
bitrary state σx is important in situations, such as those we will con-
sider in the context of zero-knowledge, where indistinguishability
of two ensembles must hold in the presence of auxiliary quantum
information.
Next let us extend this definition to admissible mappings. This

is done by simply considering ensembles that result from applying
the mappings to arbitrary polynomial-size states.

DEFINITION 5. Assume that S ⊆ {0, 1}∗ is an infinite set of
strings, n, m : {0, 1}∗ → N are polynomially bounded functions,
and Φx and Ψx are admissible mappings of type (n(x), m(x)) for
each x ∈ S. The ensembles {Φx : x ∈ S} and {Ψx : x ∈ S} are
polynomially quantum indistinguishable if, for every choice of

1. polynomials p and q,
2. a polynomially bounded function k : {0, 1}∗ → N,
3. a collection of mixed states {σx : x ∈ S}, where σx is a state
on n(x) + k(x) qubits, and

4. a quantum circuit Q of type (m(x) + k(x), 1) and size at most
p(|x|),

it holds that

|〈1|Q((Φx ⊗ I)(σx))|1〉 − 〈1|Q((Ψx ⊗ I)(σx))|1〉| <
1

q(|x|)
for all but finitely many x ∈ S.

Note that a slight simplification is incorporated into this definition:
the input state σx to the admissible mappings may include a part
that aids a given circuitQ in distinguishing the outputs.
Now we are prepared to state a definition for quantum computa-

tional zero-knowledge. Let (V, P ) be a proof system (quantum or
classical) for a promise problem A = (Ayes, Ano). This proof sys-
tem will be said to be a quantum computational zero-knowledge for

A if, for every polynomial-time quantum verifier V ′ there exists a
polynomial-time quantum algorithm SV ′ that satisfies the follow-
ing requirements. Assume that on input x, the verifier V ′ takes
n(x) auxiliary input qubits and outputs m(x) qubits, and let Φx

denote the admissible mapping of type (n(x), m(x)) that results
from the interaction of V ′ with P . Then the simulator SV ′ must
also take n(x) qubits as input and output m(x) qubits, thereby im-
plementing a mapping Ψx of type (n(x),m(x)). Moreover, the
ensembles {Φx : x ∈ Ayes} and {Ψx : x ∈ Ayes} must be poly-
nomially quantum indistinguishable.

Quantum computationally concealing commitments
Next, we consider commitment schemes that are secure against
quantum attacks. It is well-known that there cannot exist uncon-
ditionally binding and concealing commitments based on quan-
tum information alone [23], and therefore one must consider com-
mitments for which either or both of the binding and concealing
properties is based on a computational assumption. In the inter-
active proof system setting, where one requires soundness against
arbitrary provers, the binding property of the commitments must
be unconditional, and therefore the concealing property must be
computationally-based.
Naturally, to be secure against quantum attacks, the commitment

scheme that is used must in fact be quantum computationally con-
cealing. The existence of such schemes has not been proved, and
does not follow from the existence of classical computationally
concealing commitment schemes. For example, good candidates
for classically secure schemes based on the computational difficulty
of factoring or computing discrete logarithms become insecure in
the quantum setting because of Shor’s algorithm [27]. Classical
commitments can, however, be based on arbitrary one-way func-
tions [24, 17], and there are candidates for such functions that may
be difficult to invert even with efficient quantum algorithms. Func-
tions based on lattice problems, error-correcting codes, and non-
abelian group-theoretic problems represent candidates.

DEFINITION 6. Assume that Γ is a finite set with |Γ| ≥ 2.
An unconditionally binding, quantum computationally concealing
Γ-commitment scheme consists of a deterministic polynomial-time
computable function f with the following properties.

1. (Uniform length.) For some polynomial p we have |f(a, x)| =
p(|x|) for every a ∈ Γ and x ∈ {0, 1}∗. (This requirement is
not really essential, and is only made for convenience.)

2. (Binding property.) For every choice of a &= b ∈ Γ and x, y ∈
{0, 1}∗, we have f(a, x) &= f(b, y).

3. (Concealing property.) Let FN (a) be the distribution obtained
by evaluating f(a, x) for x ∈ {0, 1}N chosen uniformly at
random. Then we have that the ensembles {FN (a) : N ∈ N}
and {FN (b) : N ∈ N} are polynomially quantum indistin-
guishable for any choice of a, b ∈ Γ.

When such a scheme is used, it is assumed that some security pa-
rameterN is chosen. When one party (the prover in the 3-Coloring
protocol) wishes to commit to a value a ∈ Γ, a string x ∈ {0, 1}N

is chosen uniformly at random and the string f(a, x) is sent to the
other party (the verifier in the 3-Coloring protocol). To reveal the
commitment, the first party simply sends the string x along with
the value a to the second party, who checks the validity of the de-
commitment by computing f(a, x) and checking equality with the
committer’s first message.
A quantum computationally concealing commitment scheme

based on the existence of quantum one-way permutations was de-
scribed by Adcock and Cleve [1]. Although the definitions in their



paper differ somewhat from ours, in particular in that they do not
consider the stronger form of non-uniformity allowing an auxiliary
quantum state that we require, the result can be translated to our
setting. This naturally requires a stronger notion of a permutation
being one-way that forbids the possibility that a quantum circuit
can invert a one-way permutation using an auxiliary input.

The 3-Coloring protocol
Now we are ready to consider the zero-knowledge properties of
the Goldreich-Micali-Wigderson Graph 3-Coloring protocol with
respect to quantum verifiers. The protocol is as follows:

Computational Zero-Knowledge Protocol for 3-Coloring

Assume the input is a graph G with n vertices and m edges. Let
φ : {1, . . . , n} → {1, 2, 3} be any function that constitutes a valid
3-coloring of G if one exists. Also assume a (quantum) computa-
tionally concealing {1, 2, 3}-commitment scheme is given that is
described by the function f . Repeat the following steps (sequen-
tially)m2 times:

Prover’s step 1: Choose a permutation π ∈ S3 of the colors
{1, 2, 3} and strings r1, . . . , rn ∈ {0, 1}N uniformly at random.
Compute su = f(π(φ(u)), ru) for each u = 1, . . . , n, and send
s1, . . . , sn to V . (Informally: commit to the coloring π ◦ φ of G
for a random π ∈ S3.)
Verifier’s step 1: Uniformly choose an edge {u, v} of G and send
this edge to P . (It is assumed that any dishonest verifier’s message
sent in this step decodes to a valid edge in G.)
Prover’s step 2: Send the values a = π(φ(u)) and b = π(φ(v))
to V , along with the strings ru and rv . (Informally: reveal the
committed colors for u and v.)
Verifier’s step 2: Check that f(a, ru) = su, f(b, rv) = sv , and
a &= b, rejecting if not. (Informally: chack the validity of the com-
mitments and that the committed colors a and b for u and v are
different.)

If the verifier has not rejected in any of them2 iterations, it accepts.

In the above protocol, there must be a specified choice for the
security parameter N . It is sufficient to set N to be equal to the
number of vertices n of the input graph for the purposes of estab-
lishing that the protocol is computational zero-knowledge.
A simulation procedure for this protocol for an arbitrary quantum

or classical polynomial-time verifier V ′ can be constructed by sim-
ulating each iteration of the loop individually. The zero-knowledge
property of the entire protocol then follows by composition.
Consider the following classical simulation for a single itera-

tion of the protocol. The simulator uniformly chooses an edge
{u, v}, and then selects a function µ : {1, . . . , n} → {1, 2, 3}
uniformly, subject to the constraint that µ(u) &= µ(v). The sim-
ulator then computes commitments of the values µ(1), . . . , µ(n).
Although µ almost certainly does not constitute a valid coloring of
the graphG, the commitments of µ(1), . . . , µ(n) are computation-
ally indistinguishable from commitments of π(φ(1)), . . . , π(φ(n))
for a valid coloring φ when one exists. Given the commitments of
µ(1), . . . , µ(n), along with whatever auxiliary input it may have
been given, the verifier V ′ will choose some edge {u′, v′}. In the
idealized setting where one views the commitments as being per-
fectly concealing, the choice of {u′, v′} must agree with {u, v}
with probability 1/m, independent of the actions of V ′. This will

not necessarily be the case when the commitments are only compu-
tationally concealing, which causes some technical complications.
In case {u, v} = {u′, v′}, the commitments of µ(u) and µ(v) are
revealed, and the simulation of the current iteration is successful.
As for an actual interaction, the revealed colors are uniformly dis-
tributed over the six possible distinct pairs of colors. Otherwise,
the simulator “rewinds” and the entire process is repeated. By re-
peating the process O(m2) times, say, the simulator is very likely
to obtain an iteration in which {u, v} = {u′, v′}, representing a
successful simulation.
Based on such a classical simulation, we may define a quantum

simulator in a manner similar to the one in Section 4. We assume
the verifier V ′ has a similar set of registers to before, except that
now A and B store edges of G rather than just a single bit. The
circuit Q is defined as before, except for the obvious changes. The
unitary operator T will now represent a unitary implementation of
the first part of the classical simulation just described, with the reg-
ister R corresponding to all of the random bits that are needed for
the simulation. This will include the random choices used for the
commitments. The controlled-NOT from A to B may be taken bit-
wise, and the simulation is viewed as successful when all of the
bits of B are set to zero (or equivalently that the classical states of
A and B agree before the controlled-NOT is performed). Finally,
the approximate version of the amplification lemma is applied toQ
to give the final simulator for V ′.
There are complications that arises in analyzing this simulator

that roughly correspond to those in the classical case [11]. The two
main tasks are (i) establishing that there is a negligible variation
in the probability p ≈ 1/m that the measured output of the cir-
cuit Q indicates that a “successful” simulation has occurred, and
(ii) proving that the output of Q in case of “success” is compu-
tationally indistinguishable from the output of V ′ when interact-
ing with P . These tasks can be dealt with similarly, relying on
the fact that the commitments are computationally concealing. A
fairly straightforward hybrid argument establishes that a significant
deviation in probability from 1/m in a “successful” simulation can
be turned into an efficient procedure for breaking the concealing
property of at least one of the commitments. Likewise, an efficient
non-uniform procedure that distinguishes the admissible maps cor-
responding to an actual interaction and the simulator defined for
a given verifier can be converted to a non-uniform procedure that
violates the concealing property of the commitment scheme.

7. CONCLUSION
This paper has described a method by which some interactive

proof systems can be proved to be zero-knowledge against quan-
tum polynomial-time verifiers. A natural direction for further re-
search is to better understand the applicability and limitations of
this method. A specific question along these lines is whether the
statistical zero-knowledge protocol that Goldreich, Sahai, and Vad-
han [12] construct for any given honest verifier statistical zero-
knowledge proof system is zero-knowledge against quantum at-
tacks.
Another interesting topic related to this paper is the existence of

quantum computationally concealing commitment schemes, which
were needed for the protocol of the previous section. Such schemes
follow from the existence of quantum one-way permutations [1].
The existence of quantum one-way permutations and more gener-
ally quantum one-way functions that can be efficiently computed
in the forward direction by classical computers has the potential
to become one of the most important questions facing theoretical
cryptography if quantum computers are constructed. What are the
best candidates for such functions?
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