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Abstract

The promise of quantum computation and its consequences for complexity-theoretic cryptography
motivates an immediate search for cryptosystems which can be implemented with current technology,
but which remain secure even in the presence of quantum computers. Inspired by recent negative results
pertaining to the nonabelian hidden subgroup problem, we present here a classical algebraic function
fV (M) of a matrix M which we believe is a one-way function secure against quantum attacks. Specifi-
cally, inverting fV reduces naturally to solving a hidden subgroup problem over the general linear group
(which is at least as hard as the hidden subgroup problem over the symmetric group). We also demon-
strate a reduction from Graph Isomorphism to the problem of inverting fV ; unlike Graph Isomorphism,
however, the function fV is random self-reducible and therefore uniformly hard.

These results suggest that, unlike Shor’s algorithm for the discrete logarithm—which is, so far, the
only successful quantum attack on a classical one-way function—quantum attacks based on the hidden
subgroup problem are unlikely to work. We also show that reconstructing any entry of M , or the trace
of M , with nonnegligible advantage is essentially as hard as inverting fV . Finally, fV can be efficiently
computed and the number of output bits is less than 1 + ε times the number of input bits for any ε > 0.
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1 Introduction
When a quantum computer is finally built, perhaps its most important practical impact will be on modern
cryptography, thanks to Shor’s celebrated quantum algorithms for factoring and discrete logs [Sho97]
(and a sequence of followup results). Quantum cryptography provides a partial recourse, though its
scope is limited by “no-go” theorems such as the impossibility of quantum bit commitment, as well
as extravagant physical infrastructure requirements. A plausible route to a more acceptable antidote
was suggested in a result contemppraneous with Shor’s paper, showing that quantum computers require
exponential time to invert a random permutation in a black box model [BBBV97]. Since a random
permutation is a standard abstraction for a one-way function, this result suggested the possibility of
creating classical cryptography that is resistant to quantum cryptanalysis. The practical challenge is to
design a function f : Σn → Σm that can be computed very efficiently by a classical computer, while
providing credible evidence that inversion is difficult even with a quantum computer. It is also desirable
that f be nonexpansive, i.e., that m not be much larger than n. This is the goal of this paper.

Our task is facilitated by new insights obtained over the last few years into the limits of quantum
algorithms for the non-abelian hidden subgroup problem (HSP). A series of negative results [HRTS00,
GSVV01, MRS05] culminating in Hallgren, et al. [HMR+06] shows that for sufficiently non-abelian
groups the HSP is hard for quantum computers in the following sense: any quantum algorithm using
the coset state framework requires exponential time unless it makes highly entangled measurements of
Ω(log |G|) registers. Very few algorithmic models for highly-entangled measurements are known; one
of the few proposals for carrying out such measurements efficiently is a “quantum sieve,” developed by
Kuperberg [K05] for the HSP on the dihedral group. However, a recent result of Moore, Russell, and
Śniady [MRS06] shows that no such approach yields an efficient algorithm over the symmetric groups.
In fact, for the cases relevant to Graph Isomorphism, algorithms of this form cannot even do much
better than the best known classical algorithms. This forms the basis of our main assumption about the
limitations of quantum algorithms.

Our function, which we denote fV , is parametrized by a list of vectors V = v1, v2, . . . , vm; we will
choose each vi uniformly at random from Fn

q , where q is some small prime. Then given M ∈ GLn(Fq),
that is, an invertible n × n matrix over Fq , we define fV (M) as the collection

MV = {Mv | v ∈ V } .

However, fV returns this collection as an unordered set (say, sorted in lexicographic order). In other
words, we know that each w ∈ fV (M) is Mv for some v ∈ V , but we do not know with what permuta-
tion the vs and ws correspond.

In Section 2, we show that fV is one-to-one with high probability in V whenever m is slightly larger
than n, say m = n + O(ln2 n). Also, clearly fV can be computed very efficiently, in time M(n), the
time to multiply two n × n matrices. As a function of the input length k = n2, the time is essentially
√

M(k).
In Section 3, we point out that the natural reduction of inverting fV to a hidden subgroup (or hidden

shift) problem results in hidden subgroup problems on the general linear group GLn. This group contains
the symmetric group Sn as a subgroup, and its HSP appears resistant to all known quantum techniques.
Moreover, we reduce the Graph Isomorphism problem to the problem of inverting fV . This implies that
no quantum attack analogous to Shor’s algorithm for the discrete logarithm can succeed, unless there is
an efficient quantum algorithm for Graph Isomorphism.

We stress that, unlike Graph Isomorphism for which there is no known way to generate hard random
instances, inverting fV is uniformly hard because of the following simple observation: for any matrix
A, we have fV (AM) = AfV (M). By choosing A randomly, this allows us to map a fixed instance
fV (M) to a random one with the same V . It follows that, for any fixed V , if fV can be inverted on even
a 1/poly(n) fraction of matrices M , then there is a probabilistic algorithm that inverts it on arbitrary
inputs M . A similar though more complicated assertion can be made about uniform hardness with
respect to choice of V (see refsec:hard-core).
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Moreover, we show in Section 4 that reconstructing partial information about f−1
V (x) is almost as

hard as inverting fV . Specifically, assuming that fV is a one-way function, we show that any entry ofM
is hard to recover in any basis, though this requires a quasipolynomial hardness assumption on fV . We
observe, also, that trM , the trace of M , is hard to recover even under typical super-polynomial hardness
assumptions.

It remains an open question whether we can embed a trapdoor in fV or a suitable modification.
We should point out that there are some classical cryptosystems that are not known to be breakable
by a quantum computer—lattice-based cryptosystems such as the Ajtai-Dwork [AD97] cryptosystem
and their subsequent improvements due to Regev [Reg04a], and the McEliece cryptosystem [McE78].
Indeed, Regev’s improvement in the efficiency of lattice-based cryptosystems is based on a quantum
reduction—thus the increased efficiency is predicated on resistance of the cryptosystem to quantum
attacks! Evidence of quantum intractibility for this cryptosystem comes from the relationship between
finding short vectors and the dihedral hidden subgroup problem [Reg04b]. In particular, even though sin-
gle register Fourier sampling is information-theoretically sufficient to reconstruct the hidden subgroup,
the classical reconstruction problem is as hard as Subset Sum. On the other hand, quantum reconstruc-
tion is not ruled out, and Kuperberg’s quantum sieve [K05] provides what may be thought of as a mildly
subexponential quantum reconstruction algorithm.

The evidence for quantum intractibility for the one-way function proposed here is stronger: single
register Fourier sampling is provably insufficient, highly-entangled measurements on polynomially many
registers is necessary, and no Kuperberg-like approach can yield an efficient algorithm. The design
of efficient cryptographic primitives resistant to quantum attack is a pressing practical problem whose
solution can have an enormous impact on the practice of cryptography long before a quantum computer
is physically realized. A program to create such primitives must necessarily rely on insights into the
limits of quantum algorithms, and this paper explores consequences of the strongest such insights we
have about the limits of quantum algorithms.

Notation. As above, we let F = Fq denote the finite field with q elements, q a fixed prime. We let
GLn(Fq) (abbreviated GLn when the context is clear) denote the collection of invertible n× n matrices
over Fq. Similarly Endn = Endn(Fq) denotes the set of all n×n matrices. If M ∈ Endn and V ⊂ Fn

q ,
we let MV denote the collection {Mv | v ∈ V }.

2 The function is one-to-one
Our first theorem shows that when m is slightly larger than n, then fV is a one-to-one function with high
probability. We have made only desultory attempts to optimize the rate at which δ = m − n must grow
for the theorem to hold.

Theorem 1. There is a constant A such that if m = n + δ where δ ≥ A ln2 n, then fV is one-to-one
with high probability in V .

Proof. If there are two matrices M, M ′ such that MV = M ′V , then KV = V where K = M−1M ′.
In other words, there is a permutation π ∈ Sm such that Kvi = vπ(i) for all i. We will show that with
high probability K = is the only matrix with this property, and therefore that M = M ′.

Let us call a particular permutation π ∈ Sm consistent if there is a K such that Kvi = vπ(i) for all
i, and let Consπ be this event. We will show that

Pr





∨

π #=1

Consπ



 = o(1) .

i.e., with high probability the only consistent permutation is the identity π = 1.
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Given a fixed π, we determine an order on V as follows. First, we sort the cycles of π in order of
increasing length, starting with the fixed points. We break ties by assigning each cycle an index equal to
the smallest i such that vi appears in it and putting cycles with the smallest index first. Then, we rotate
each cycle so that the vi with smallest i in that cycle comes first. The details here are irrelevant; all that
matters is that each π determines an order on V with the properties that the vectors corresponding to
fixed points come first, and that groups of vectors corresponding to cycles of π are contiguous.

Now fix a constant C, and let Lπ consist of the first n + δ − C lnn vectors in V according to this
order. Let Spansπ be the event that Lπ spans the entire space Fn

q . Then the union bound gives

Pr





∨

π #=1

Consπ



 ≤
∑

π #=1

Pr [Consπ |Spansπ] + Pr

[

∨

π

Spansπ

]

To bound the conditional probability Pr[Consπ |Spansπ], note that if Lπ spans the entire space, then
K is determined by the images of the vectors in Lπ. Therefore, if all the vectors in Lπ are fixed by K ,
then K = and π = 1. On the other hand, we have sorted V so that the fixed vectors come first, so if
π (= 1 none of the the C lnn vectors outside Lπ can be fixed. We expose these vectors in sorted order.
For each vi /∈ Lπ which is not the first in its cycle, the probability that vi is the image under K of its
predecessor vπ−1(i) is q−n since vi is uniformly random. These events are independent and each of these
cycles is of length at least 2, so the probability that Kvi = vπ(i) for all vi /∈ L is at most q−(C/2)n ln n.
Summing over all (n + δ)! permutations π and assuming for simplicity that δ ≤ n (a condition which
we can easily remove), the conditional probability that any π (= 1 is consistent is at most

(2n)! q−(C/2)n ln n = nO(1)(2/e)2nn(2−(C/2) ln q)n

which is o(1) if
C ≥ 4/ ln q . (1)

Now we bound the probability that Spansπ fails to hold for any π by proving that with high proba-
bility V contains no subsets L of size n + δ − C ln n which do not span the entire space. By Markov’s
inequality, the probability that a given such L does not span the space is at most the expected number of
nonzero vectors u which are perpendicular to all v ∈ L. Since the v ∈ V are uniformly random, for any
fixed u the inner product u · v is zero with probability 1/q. Thus this expectation is

(qn − 1)/qn+δ−C lnn < q−δ+C ln n = nO(1)n−(A ln q) ln n

where we used δ = A ln2 n. The number of subsets of size n + δ − C lnn is
(

n + δ

C lnn

)

< (2n)C lnn = nO(1)nC ln n

where we again assume for simplicity that δ ≤ n. So, by the union bound, the probability that a non-
spanning subset of size n + δ − C lnn is at most nO(1)n(C−A ln q) ln n which is o(1) if

A > C/ ln q . (2)

In order to satisfy (1) and (2), we set, say, C = 4/ ln q and A = 5/ ln2 q. Then with high probability,
the identity permutation 1 is the only consistent one. Finally, note that V spans the entire space with
overwhelming probability; and in this case, if Kv = v for all v in V , then K must be the identity.

3



3 Evidence for immunity against hidden subgroup attacks
In this section we relate the hardness of our function to several fundamental problems in the area of
quantum computation. Our principal hardness result, suggesting that fV can resist the quantum attacks
which Shor applied so dramatically to factoring and discrete log, shows that Graph Isomorphism can be
reduced to the problem of inverting fV . Our current belief, based on a series of negative results, is that
Graph Isomorphism, and more generally the HSP on groups like Sn and GLn which have exponentially
high-dimensional representations, is hard for quantum computers. If this belief is correct, then fV cannot
be efficiently inverted by such methods. We observe, also, that inverting fV can be reduced to natural
hidden shift and hidden subgroup problems on the group GLn.

We begin by reducing the problem of inverting fV to the Hidden Shift Problem on the group GLn.
Given a group G, an instance of a Hidden Shift problem consists of two functions f1, f2 : G → S, with
the promise that f2(g) = f1(gs) for some shift s ∈ G. Now, given V and fV (M) = MV , we can define
two functions f1, f2 : GLn → S where S is the set of unordered lists of vectors in Fn

q . Namely, we
define

f1(N) = NV and f2(N) = NfV (M) = NMV .

Then f1(N) = fV (N) and f2(N) = fV (NM) = f1(NM), and M is the hidden shift.
Now, given a Hidden Shift Problem on a group G where the functions f1, f2 are one-to-one, we can

reduce it to a Hidden Subgroup Problem on a larger group, namely the wreath product G )Z2. This group
is the semidirect product (G×G)!Z2, where we extend G×G with an involution which exchanges the
two copies of G. We denote its elements (g1, g2, z), where those with z = 0 form the normal subgroup
which fixes the two copies of G, and those with z = 1 form its nontrivial coset which exchanges them.

Recall that an instance of the Hidden Subgroup Problem consists of a function f : G → S with the
promise that, for some subgroup H , f(x) = f(y) if and only if x = yh for some h ∈ H . Given a
Hidden Shift Problem with functions f1, f2 : G → S, define the following function f : G ) Z2 → S2:

f(g1, g2, 0) = (f1(g1), f2(g2))

f(g1, g2, 1) = (f2(g2), f1(g1))

Now suppose that f2(g) = f1(gs) and let α be the involution (s−1, s, 1). If multiplication in G ) Z2

is defined so that (g1, g2, 0) · α = (g2s, g1s−1, 1), then f ’s hidden subgroup is the order-2 subgroup
H = {1, α}. (Indeed, the canonical reduction of Graph Isomorphism to the Hidden Subgroup Problem
over Sn ) Z2 is exactly of this type, where α = (π−1, π, 1) exchanges the two graphs and π is the
isomorphism between them.) Finally, we point out that GL2n contains a copy of GLn ) Z2: namely, the
subgroup consisting of matrices of the form

(

g1 0
0 g2

)

or
(

0 g1

g2 0

)

where g1, g2 ∈ GLn. Thus the problem of inverting fV reduces to the Hidden Shift and Hidden Subgroup
Problems in GLn and GL2n respectively.

Now, we give a reduction from Graph Isomorphism to the problem of inverting fV . Specifically,
we reduce the decision problem of telling whether two graphs G1, G2 are isomorphic to the decision
problem of telling, given V and W , whether there is a matrix M such that MV = W , and hence
whether W is in the image of fV . The same construction reduces the promise problem of finding the
isomorphism between two isomorphic graphs to the problem of finding M = f−1

V (W ).
The reduction is quite simple. Given a graph G1 with n vertices and m edges, V will consist of

n + m vectors in Fn
q . We identify each vertex u with a basis vector, which we include in V , and for each

edge (u, v) we include the vector u + v. We construct W from G2 similarly.
Clearly G1

∼= G2 if and only if MV = W for some permutation matrix M . First we show that, if
q ≥ 3, any M such that MV = W is necessarily a permutation matrix. To see this, note that since each
vertex of G1 gets mapped to a vertex or an edge of G2, each column of M is zero except for one or two
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1s. But in Fn
q with q ≥ 3, the sum of two such vectors has at least two nonzero components, so no edge

of G1 can be mapped to a vertex of G2. It follows that every vertex of G1 is mapped to a vertex of G2,
so M is a permutation matrix.

In the case q = 2, it is possible that M is not a permutation matrix, and that some vertices get mapped
to edges and vice versa. However, M ’s existence still implies that G1 and G2 are isomorphic, and allows
us to easily determine the isomorphism π between them. Let us call a vertex of G1 “green” or “red” if
it is mapped to a vertex or an edge respectively, and consider a vertex w of G2. Since M−1w is either
a vertex or an edge, either there is a green vertex u such that Mu = w, or there is a red vertex u with
a unique green neighbor v such that Mu = w + Mv and so M(u + v) = w. In either case, define
π(u) = w; since π is one-to-one, it follows that every red vertex has a unique green neighbor.

It remains to check that π is an isomorphism. Denote the set of edges of G1 and G2 as E1 and E2

respectively, and suppose that (u, v) ∈ E1. If u and v are green, then M(u + v) = π(u) + π(v). If u is
red and v is its unique green neighbor, then Mu = π(u) + π(v). Finally, if u and v are both red, they
must have the same green neighbor t since otherwise M(u + v) would be the sum of four basis vectors;
then M(u + v) = π(u) + π(v) + 2π(t) = π(u) + π(v). In each case, since π(u) + π(v) ∈ W we have
(π(u), π(v)) ∈ E2, and this completes the proof.

4 Uniformity of hardness, amplification, and hard-core predicates
Self-reducibility and uniform hardness. As we pointed out in the Introduction, our function has
a simple symmetry which causes it to be self-reducible from the worst case to the random case: for any
fixed V , we have fV (AM) = AfV (M). It follows by standard amplification that, for any fixed V , if
fV can be inverted on even a 1/poly(n) fraction of matrices M then it can be inverted with probability
1 − e−poly(n) on any particular M .

We can define uniform hardness with respect to V using another obvious symmetry,

fBV (M) = fV (MB) .

Let us say that V ∼ V ′ if there is a B ∈ GLn such that V ′ = BV . This is clearly an equivalence
relation; we will call the equivalence class containing V its orbit, and denote it [V ]. Then a similar
argument shows that inverting fV is uniformly hard within each orbit: namely, if fV can be inverted on
even a 1/poly(n) fraction of matrices M and vectors V ′ ∈ [V ] then it can be inverted with probability
1 − e−poly(n) on any particular M and V ′ ∈ [V ].

A priori, even if it is hard to invert fV , one might hope to recover partial information about M from
its image fV (M), such as its trace or a single entry in some basis. In this section, we show that this is
essentially as hard as recovering all of M . Therefore, under reasonable hardness assumptions regarding
fV , these goals are also impossible for quantum computers to carry out efficiently.

Hard-core predicates. A hard-core predicate is an efficient description of a bit of information that
is concealed by a given one-way function. Specifically, if {fn : Dn → Rn} is a family of one-way
functions, then an s(n)-hard-core predicate is a polynomial time computable family of functions {bn :
Dn → {0, 1}} so that for any algorithm A running in time s(n), for sufficiently large n,

∣

∣

∣

∣

Pr
fn,w

[A(fn(w)) = bn(w)] −
1

2

∣

∣

∣

∣

≤
1

s(n)
.

Our goal here is to show that every individual entry of M is a hard-core bit in any basis; in particular,
recovering any entry of M is as hard as inverting fV . We also point out that recovering the trace of M
is as hard as inverting fV .

We begin by formalizing the notions of hardness we require for the function fV .
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Assumption 1 (t(n)-hardness). For each n ≥ 1, let m = m(n) = (1 + ε)n for some constant ε > 0,
let M be a uniformly random element of GLn(F), and let V be a collection of m independently and
uniformly selected elements of Fn. Then for all quantum algorithms A running in time t(n),

Pr
V,M

[A(M(V ), V ) = M ] =
1

t(n)
.

We devote the remainder of this section to showing the following two theorems.

Theorem 2. If fV is quasipolynomially hard (that is, t(n)-hard for every t(n) = 2logO(1) n) then every
entry of M (in any basis) is a quasipolynomially hard-core predicate.

Theorem 3. If fV is polynomially hard (that is, t(n)-hard for every t(n) = nO(1)) then the trace
tr : GLn(F) → F is a polynomially hard-core predicate.

4.1 The bilinear predicate: every matrix entry is hard
Given two basis vectors a and b, the corresponding matrix element can be written as an inner product
〈a, Mb〉. We will show that if fV is quasipolynomially hard, then this function is a hard-core predicate
for fV for any fixed nonzero a,b ∈ Fn. Specifically, given an algorithm P running in time 2logO(1) n for
which

Pr
V,M

[

P (fV (M), V ) = 〈a, Mb〉
]

≥ 1/2 + ε with ε = 2− logO(1) n ,

we show how to invert fV on a 2− logO(1) n fraction of its inputs M , which would contradicting the
assumption that fV is quasipolynomially hard.

To simplify the exposition, we will fix q to be 2 in this section, and write F = F2. We rely on
the Goldreich-Levin theorem [GL89]; for larger prime q, we rely on its generalization to arbitrary finite
fields by Goldreich, Rubinfeld, and Sudan [GRS95].

Initially, we wish to focus attention on certain “good” choices of V , where the algorithm P is a good
predictor for 〈a, Mb〉. Recall that [V ] denotes the orbit of V under multiplication by elements of GLn.
Define an element V to be “good” if

Pr
V ′∈[V ],M

[

P (fV ′(M), V ′) = 〈a, Mb〉
]

≥
1

2
+

ε

2
. (3)

It is easy to show that at least an ε/2 fraction of V must be good in this sense; we fix a specific such V
for the remainder of the proof, and show how to invert the function fV in this case.

We first show how to use P to implement an algorithm for any fixed M , which takes as input x, y ∈
Fn (and (fV (M), V )) and outputs 〈x, My〉 correctly on 1/2 + ε/2 fraction of x, y. First note that for
two matrices A, B ∈ GLn, the pair (fBV (AMB−1), BV ) = (AMV, BV ) can be computed efficiently
from (fV (M), V ) = (MV, V ) by left-multiplying MV and V by A and B respectively. Defining
T (A, B) = P (fBV (AMB−1), BV ), we may then rewrite (3) in terms of T (·, ·):

Pr
A,B∈GLn(F)

[T (A, B) = 〈a, AMB−1b〉] ≥
1

2
+

ε

2
. (4)

Finally, for a pair of vectors x,y ∈ Fn, define t(x,y) = T (A, B), where A and B are random elements
of GLn(F) for which Ata = x and B−1b = y, so that 〈a, AMB−1b〉 = 〈x, My〉. Rewriting (4), we
conclude:

Pr
x,y∈Fn

[t(x,y) = 〈x, My〉] ≥
1

2
+

ε

2
. (5)

Let us call a vector x ∈ Fn %-good if Pry∈Fn [t(x,y) = 〈x, My〉] ≥ 1/2 + ε/4. If follows that a
uniformly selected x is %-good with probability at least ε/4. Note, furthermore, that if x is a fixed %-good
element of Fn, then the Goldreich-Levin construction [GL89] can be used to determine 〈x, My〉 for
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all y ∈ Fn (in time polynomial in n and ε−1). In particular, this determines an entire row of M when
expressed in a basis containing x.

We consider now a family G, consisting of 2 logm vectors selected independently and uniformly in
Fn. We say that G is %-good if this is true of each of its elements, a favorable event that occurs with
probability at least (ε/4)log 2m. Furthermore, the probability that G contains a linearly dependent set of
vectors is no more than 2 log(m) · 2−n+2 log m = 2−Ω(n). (This can be seen by selecting the elements of
G in order and bounding the unlikely event that an element falls into the span of the previously chosen
vectors.) Thus

Pr[G is %-good ∧ G is independent] ≥ (ε/4)2 log m + e−Ω(n) .

Now, for each g ∈ G, application of the Goldreich-Levin construction to each component of g (recon-
structing 〈g, My〉 for all y) determines 〈g, Mv〉 for each v ∈ V and g ∈ G. Therefore, in this case we
can reconstruct 2 logm “generalized rows” of M .

Observe that if the elements of V (and hence W = M(V )) are considered to be selected indepen-
dently and uniformly at random, and independently of G, then the probability that two elements w and
w′ of W have the property that 〈g,w〉 = 〈g,w′〉 for all g ∈ G is 2−2 log m. Let ΠG : Fn → F2 log m

denote the projection onto the space spanned by the vectors in G. In particular, this information would
appear to determine the bijection bM : V → W effected by the action of M on V . This intuitive argu-
ment is misleading, as written, since the notion of %-good depends on V (and so on W ) via the arbitrary
predicting algorithm P . Instead, our goal below will be to show that the total number of permutations of
the set W under which ΠG is invariant is small enough that we can exhaustively search them to uncover
the bijection bM and hence the linear operator M .

Consider random (and independent) selection of G, V , and M (so that W = M(V ) is also deter-
mined) with no extra conditioning except that G be linearly independent. Let IG denote the collection
of permutations φ : M → M with the property that ΠGw = ΠGφ(w), for all w ∈ W . We will show
below that EV,M,G[|IG|] = O(

√
m). Then Markov’s inequality will allow us to bound the probability

that |IG| exceeds εO(log n). To round out the proof we will show that the chance that V is good and that
G is l-good is much higher than this failure probability, thereby concluding that there is a significant
chance that V is good, G is l-good and that |IG| = εO(log n).

As the elements of w are selected independently (and uniformly) in Fn, eachΠGw is an independent,
uniform element of F|G|. Fixing a permutation φ, let λ1, λ2, . . . be the lengths of its cycles, arranged in
nonincreasing order. The probability that the elements of M in each of these cycles are mapped to the
same element under ΠG is no more than

∏

i(2
−|G|)λi−1 =

∏

i(m
−2)τ (φ), where τ(φ) =

∑

i(λi − 1)
is also the minimum number of transpositions required to write φ.

This quantity is bounded by the lemma below. Its proof uses the machinery of exponential generating
functions, and is relegated to Appendix A.

Lemma 4. Let 0 < z < 1/k; then

qk(z) =
∑

π∈Sk

zt(π) = O(
√

k)
e−k

(1 − zk)1/z
. (6)

In light of this bound, the expectation of |IG|, the number of φ under which πG is invariant, is no
more than

∑

φ∈Sm

(

1

m2

)τ(φ)

= O(
√

m)
e−m

(1 − 1/m)m2 .

As − ln(1 − x) = x + x2/2 + x3/3 + . . ., we have

e−m · (1 − 1/m)−m2

= exp(−m + m2[1/m + (1/m)2/2 + O(1/m3)]) = O(1) .

Thus E[|IG|] = O(
√

m).
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Putting the pieces together, with M , V , and G selected as above,

Pr
V,M,G

[(V is good) ∧ (G is both %-good and linearly independent)] ≥
ε

2
·
( ε

4

)2 log m
≥

( ε

4

)1+2 log m
.

As EV,M,G[|IG|] = O(
√

m), by Markov’s inequality there is a constant c so that

Pr
V,M,G

[

|IG| ≥ c
√

m(4/ε)2 log m
]

≤
1

2
·
[

( ε

4

)1+2 log m
]

.

Thus, with probability at least (1/2)(ε/4)(1+2 log m), V is good, G is %-good, and there are (4/ε)O(log n)

permutations of W that fix ΠG. These permutations determine a set of no more than (4/ε)O(log n)

mappings between V and W consistent with M ; these can be exhaustively searched in time poly(n) ·
(ε/4)O(log n), which is quasipolynomial when ε−1 is.

We conclude this section with a proof that, even if ε−1 is only polynomial in n, hardness with
respect to quasipolynomial time is the most we can hope for in the case of the bilinear predicate (in
absence of further information about the preimage). First, choose a subspace S of Fn with dimension
dimS = log2 n. Now consider an oracle P (a, b) defined as follows. If either a or b is orthogonal to S,
then P (a, b) = 〈a, Mb〉, but if neither of them is orthogonal to S, then P (a, b) is uniform in F. Since
a uniform vector in Fn is orthogonal to S with probability 1/n, it follows that P (a, b) is correct with
probability 1/2 + ε where ε > 1/n.

Now choose a basis for Fn, and let S be the subspace generated by the first dimS basis vectors. It is
clear that this oracle gives us no information whatever regarding the matrix elements in the dimS×dimS
minor at the upper left-hand corner of M . Therefore, we are forced to try all possible values for the
elements of this minor by exhaustive search, and this takes 2(dim S)2 = 2log2 n time.

4.2 The trace predicate
The proof that the trace predicate is hard is a direct consequence of the Goldreich-Levin theorem [GL89]
and its generalization to arbitrary finite fields by Goldreich, Rubinfeld, and Sudan [GRS95]. Specifically,
consider the trace tr : GLn(F) → F. Suppose now that there is a polynomial-time quantum algorithm
P so that for M selected uniformly at random in GLn and V a collection of m independent and uniform
vectors of Fn,

Pr
V,M

[

P (fV (M), V ) = tr(M)
]

≥
1

2
+ ε ,

where ε = n−O(1). It follows that for at least an ε/2 fraction of the V , when selected as above, we have

Pr
M

[

P (fV (M), V ) = tr(M)
]

≥
1

2
+

ε

2
.

We show how to invert fV for such “good” V ; as these occur with probability ε/2, this would contradict
the assumption that fV is polynomially hard. For the remainder of the proof we fix a specific V satisfying
the the equation above.

Again note that for any matrix N ∈ GLn, the collection fV (NM) = NMV can be computed
in polynomial time from fV (M), simply by left-multiplying the collection fV (M) = MV by N . In
particular, given fV (M), the function T : GLn(F) → F given by T (N) = P (fV (NM), V ) can be
computed in polynomial time and has the property that

Pr
N

[

T (N) = tr(NM)
]

≥
1

2
+ ε . (7)

Now, for a fixed matrix C, the function %C : M /→ tr(CM) is a linear function and, moreover, all linear
combinations of the entries of M can be written in this way. In light of this, note that if the guarantee (7)
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could be arranged with the matrix C being selected uniformly at random from the collection of all
matrices (rather than the invertible ones), we could immediately apply the Goldreich-Levin [GL89]
construction at this point to recover M . This “oracle” T can, however, be extended to an oracle T̃
defined on the family of all matrices C by simply assigning random values to the singular matrices
C (∈ GLn, in which case with constant probability (over the selection of random values for this oracle),

Pr
N

[

T (N) = tr(NM)
]

≥
1

2
+ αp(n)ε , (8)

where

αp(n) =
n−1
∏

i=0

(

1 −
1

pn−i

)

≥
∞
∏

i=0

(

1 −
1

2i

)

≈ .2711

is the probability that a random n × n matrix over Fp is invertible. In this case, when p = 2 the
Goldreich-Levin theorem can be applied directly:

Theorem 5 ([GL89]). Let g : Fn
2 → F2 be a function so that for some h ∈ Fn

2 , Prx∈Fn
2

[g(x) = 〈x, h〉] ≥
1
2 + ε and let c ≥ 0. Then there is a randomized algorithm running in time poly(n, ε−1) (and making no
more than poly(n, ε−1) black-box queries to g) that determines h with probability 1 − 1/nc.

When q > 2, one has to apply the generalization of [GL89] to arbitrary finite fields by Goldreich,
Rubinfeld, and Sudan [GRS95].
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Figure 1: Two of the authors hard at work chalking up the proof of Lemma 4 on an asphalt driveway.

A Proof of Lemma 4
Recall that Lemma 4 asserts that if 0 < z < 1/k; then

qk(z) =
∑

π∈Sk

zt(π) = O(
√

k)
e−k

(1 − zk)1/z
. (9)

Proof of Lemma 4. Consider the exponential generating function

g(y, z) =
∞
∑

m=0

ym

m!
qm(z) .

Using the techniques of [Wil94, Chapter 3], we can write this as a product over all k of contributions
from the (k−1)! possible k-cycles, including fixed points. Since each such cycle contributes k to m and
k − 1 to t(π), and since there are (k − 1)! k-cycles on a given set of k objects, it follows (cf. Figure A)
that

g(y, z) =
∞
∏

k=1

exp

(

ykzk−1

k

)

= exp

(

∞
∑

k=1

ykzk−1

k

)

= exp

(

−
1

z
ln(1 − yz)

)

=
1

(1 − yz)1/z
.

Now note that e−kg(k, z) is the expectation of qm(z), where m is Poisson-distributed with mean k. Since
qm(z) > 0, this expectation is at least qk(z) times the probability that m = k, which is e−kkk/k! =
(1 − o(1))/

√
2πk. Thus we have

qk(z) ≤ (1 + o(1))
√

2πk · e−kg(k, z)

which concludes the proof.
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