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Abstract

In this paper we introduce quantum interactive proof systems, which are interactive proof
systems in which the prover and verifier may perform quantum computations and exchange
quantum messages. It is proved that every language in PSPACE has a quantum interactive
proof system that requires a total of only three messages to be sent between the prover and
verifier and has exponentially small (one-sided) probability of error. It follows that quantum
interactive proof systems are strictly more powerful than classical interactive proof systems in
the constant-round case unless the polynomial time hierarchy collapses to the second level.

1 Introduction

Several recent papers have provided compelling evidence, and proof in some cases, that certain
computational, cryptographic, and information-theoretic tasks can be performed more efficiently
by models based on quantum physics than those based on classical physics. For example, Shor [30]
has shown that integers can be factored in expected polynomial time by quantum computers, a
quantum key distribution protocol of Bennett and Brassard [10] that does not rely on intractability
assumptions has been proven to be secure [12, 25, 31], and Raz [27] has shown an exponential
separation between quantum and classical two-party communication complexity models. In this
paper we introduce the quantum analogue of another concept—interactive proof systems—and
provide strong evidence that additional power is gained by interactive proof systems in the quantum
setting.

Interactive proof systems were first introduced by Babai [4] and Goldwasser, Micali, and Rackoff
[21]. An interactive proof system consists of an interaction between a computationally unbounded
prover and a computationally bounded probabilistic verifier. The prover attempts to convince the
verifier that a given input string satisfies some property, while the verifier tries to determine the
validity of this “proof”. A language L is said to have an interactive proof system if there exists a
polynomial-time verifier V such that (i) there exists a prover P (called an honest prover) that can
always convince V to accept when the given input is in L, and (ii) no prover P ′ can convince V to
accept with non-negligible probability when the input is not in L. The class of languages having
interactive proof systems is denoted IP.
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Based on the work of Lund, Fortnow, Karloff, and Nisan [24], Shamir [28] proved that the
quantified boolean formula (QBF) problem, and therefore every language in PSPACE, has an
interactive proof system. Since any language having an interactive proof system is in PSPACE
[19], this implies IP = PSPACE. All known protocols for PSPACE require a nonconstant number
of rounds of communication between the prover and verifier, and cannot be parallelized to require
only a constant number of rounds under the assumption that the polynomial time hierarchy is
proper. This follows from the fact that the class of languages having constant-round interactive
proof systems is equivalent to AM [4, 22], and hence is contained in Πp

2.
The main result we prove in this paper is as follows.

Theorem 1 Every language in PSPACE has a three-message quantum interactive proof system
with exponentially small one-sided error.

This result contrasts with the facts mentioned above regarding classical interactive proof systems,
as it shows there are languages having constant-round quantum interactive proof systems that do
not have constant-round classical interactive proof systems unless AM = PSPACE.

Subsequent to the publication of the preliminary version of the present paper, Kitaev and
Watrous [23] have proved a stronger result than Theorem 1, which is that any polynomial-round
quantum interactive proof system can be parallelized to just three messages. The reader interested
in the more general result should therefore refer to that paper. However, the techniques used
by Kitaev and Watrous and in the present paper differ considerably, and we believe that both
techniques will potentially find other applications.

We now summarize informally our technique for proving Theorem 1, which is essentially to
show that we may parallelize a classical interactive proof system for the QBF problem by allowing
the prover and verifier to send and process quantum information.

Consider the following unsuccessful method for trying to reduce the number of rounds required
by a nonconstant-round protocol for PSPACE to a single round: define the verifier so that it first
generates all of its random numbers, sends them all to the prover in one message, receives all the
responses from the prover, and checks the validity of the interaction. This will clearly not work,
since the prover may cheat by “looking ahead” and basing its responses on random numbers that
would have been sent in later rounds in the nonconstant-round case—the fact that the prover
must commit to certain answers before seeing the verifier’s subsequent messages is essential for the
soundness of existing protocols. However, using interactive proofs based on quantum physics, this
technique can be made to work, as the abovementioned behavior on the part of the prover can be
detected by a quantum verifier. We now sketch the method for doing this—a formal description of
the protocol appears in Section 3.

Suppose Vc is a classical verifier and Pc is a classical prover for QBF. It is assumed that Vc

is nonadaptive in the sense that each of its messages is simply a sequence of coin-flips that is
independent of the prover’s messages. We will let V and P denote the quantum verifier and
prover in the resulting three-message quantum protocol. The quantum prover P first generates a
superposition over all possible conversations between Vc and Pc. The prover P sends this state to
the verifier V , but for technical reasons the prover will keep a copy of the messages corresponding
to Vc for himself. At this point V and P share an entangled quantum state between them. It will
be shown that P cannot cheat by preparing a state that is biased towards certain random choices
for Vc, since the verifier V will be able to later check that the state was close to uniform. The
verifier V checks that the conversations sent by P are valid according to the classical protocol for
QBF by performing a suitable measurement. Naturally V rejects in case it sees a conversation that
is not valid.
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The verifier V now needs to check that the quantum state sent by P really corresponded to
some classical prover Pc. Such a prover Pc would necessarily fix its response to each message of Vc

before seeing messages that would be sent in later rounds. The verifier V does this by randomly
choosing some round in the classical protocol and challenging the prover P to demonstrate that
there is no correlation between the verifier-messages after the chosen round and the prover-messages
before and including the chosen round. Let us say that the prover- and verifier-messages before
and including the chosen round have low-index, and the remaining messages in the conversation
have high-index. Thus, the low-index prover-messages should not have any correlation with the
high-index verifier-messages. The challenge is as follows: V sends back to P all of the high-index
prover-messages but keeps the low-index prover-messages and all of the verifier-messages, allows
P to reverse its computation of the high-index prover-messages, and also allows P to send back
its copy of all of the verifier-messages. The verifier now checks that the superposition of high-
index verifier-messages is uniform by performing an appropriately defined measurement. If there is
significant correlation between the low-index prover responses and the high-index verifier-messages,
the uniformity test will fail with high probability and V will reject.

By performing the above process in parallel a polynomial number of times, the probability a
cheating prover escapes detection is made exponentially small, while the protocol still requires only
three messages to be communicated. We prove that the prover cannot cheat by entangling parallel
executions of the protocol.

It is interesting to note that whereas any constant-message interactive proof system can be
parallelized to just two messages in the classical case, it is apparently not straightforward to apply
similar techniques in the quantum case—we have not been able to reduce our three-message quan-
tum protocol to require only two messages, and it is an interesting open question whether this is
possible in general.

The remainder of the paper is organized as follows. In Section 2 we give a formal definition
of quantum interactive proof systems based on the quantum circuit model. In Section 3 we prove
Theorem 1 by presenting a three-message quantum interactive proof system for the quantified
boolean formula problem and proving its correctness. We conclude with Section 4, which mentions
some open problems.

2 Definitions

We now give a formal definition of quantum interactive proof systems. We restrict our attention
to constant-round quantum interactive proof systems, although the definition is easily extended to
a nonconstant number of rounds. See Kitaev and Watrous [23] for further details. The model for
quantum computation that provides a basis for our definition is the quantum circuit model. We
will not define quantum circuits or discuss them in detail, as this has been done elsewhere (see Yao
[33], Berthiaume [11], and Nielsen and Chuang [26] for example).

An m-message verifier V is a polynomial-time computable mapping V : Σ∗×{1, . . . , k} → Σ∗ for
k = bm/2+1c, where each V (x, j) is an encoding of a quantum circuit composed of quantum gates
from some appropriately chosen universal set of gates. Universal sets of gates/transformations have
been investigated in several papers [1, 7, 8, 15, 16]; for the purposes of this paper, we will assume
only that this set includes the Hadamard gate and any gate or collection of gates universal for
reversible computation, such as the Fredkin gate or Toffoli gate. Each encoding V (x, j) is identified
with the quantum circuit it encodes. It is assumed that this encoding is such that the size of a
circuit is polynomial in the length of its encoding, so that each circuit V (x, j) is polynomial in size.
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Figure 1: Quantum circuit for a 4-message quantum interactive proof system

The qubits upon which each V (x, j) acts are divided into two groups: message qubits and ancilla
qubits. The message qubits represent the communication channel between the prover and verifier,
while the ancilla qubits represent qubits that are private to the verifier. One of the verifier’s ancilla
qubits is specified as the output qubit.

An m-message prover P is a mapping from Σ∗ × {1, . . . , k′} to the set of all quantum circuits,
where k′ = bm/2+1/2c. No restrictions are placed on the size of each P (x, j) or on the gates from
which these circuits are composed. Similar to the case of the verifier, the qubits of the prover are
divided into message qubits and ancilla qubits. Note that although the prover is all-powerful in a
computational sense, since there is no bound on the complexity of the mapping P or on the size
of each P (x, j), we of course require that the prover obeys the laws of physics! This is enforced by
requiring that the prover’s actions correspond to valid quantum circuits.

Given a prover/verifier pair (P, V ), consider a quantum circuit composed as shown in Figure 1
(the case m = 4 is shown). The probability that a pair (P, V ) accepts a given input x is defined
to be the probability that an observation of the output qubit in the {|0〉, |1〉} basis yields |1〉 when
the circuits V (x, 1), P (x, 1), V (x, 2), . . ., P (x, k′), V (x, k) in case m is even, or P (x, 1), V (x, 1),
. . ., P (x, k′), V (x, k) in case m is odd, are applied in sequence as illustrated, assuming all qubits
are initially in the |0〉 state.

Now, we say that a language L has an m-message quantum interactive proof system with error
probability ε if there exists an m-message verifier V such that

1. There exists an m-message prover P such that if x ∈ L then (P, V ) accepts x with probability 1.

2. For all m-message provers P ′, if x 6∈ L then (P ′, V ) accepts x with probability at most ε.

A few notes regarding the above definition are in order. First, we note that there are other ways
in which we could have defined quantum interactive proof systems, such as a definition based on
quantum Turing machines or a definition requiring that each circuit as above be given by V (|x|, i)
or P (|x|, i), with x supplied as input to each circuit. We have chosen the above definition because of
its simplicity. Given the apparent robustness of the class of polynomial-time computable quantum
transformations, we suspect these definitions to be equivalent, although we have not investigated
this question in detail. Second, we assume that each circuit corresponds to a unitary operator
(e.g., no “measurement gates” are used). The action of any general quantum gate (i.e., a gate
corresponding to a trace-preserving, completely positive linear map on mixed states of qubits) can
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always be simulated by some unitary gate, possibly adding more ancilla qubits [2]. As this will
not increase the size of a verifier’s circuit by more than a polynomial factor, and will not affect the
complexity of the mapping V significantly, our definition is equivalent to a definition allowing more
general quantum gates.

3 Three-message quantum interactive proof systems for QBF

Recall that a quantified boolean formula is a formula of the form Q1x1 · · ·Qnxnψ(x1, . . . , xn), where
each Qi is an existential or universal quantifier (∃ or ∀) and ψ(x1, . . . , xn) is a boolean formula
without quantifiers in the variables x1, . . . , xn. The quantified boolean formula (QBF) problem is
to determine if a given quantified boolean formula is true.

To prove Theorem 1, it is sufficient to prove that there exists a three-message quantum in-
teractive proof system with exponentially small error for the QBF problem. This is because the
verifier may first compute a polynomial-time reduction from a given problem in PSPACE to the
QBF problem, then execute the protocol for QBF, adjusting various parameters in the protocol to
reduce error as necessary.

3.1 Classical QBF protocol

Our three-message quantum interactive proof system for the QBF problem is based on a variant
of the Lund–Fortnow–Karloff–Nisan protocol due to Shen [29], to which the reader is referred for
a detailed description. In this section we review some facts regarding this protocol that will later
be helpful.

Let φ = Q1x1 · · ·Qnxnψ(x1, . . . , xn) be a fixed input formula. Also let F be a finite field, whose
size will be chosen later, and let N =

(
n+1

2

)
+ n. The protocol is as follows. For j = 1, . . . , N − 1,

the prover sends the verifier a polynomial pj over F of degree at most d (which is determined by
the protocol and may be taken to be polynomial in n), and the verifier chooses rj ∈ F and sends
rj to the prover. The prover then sends a polynomial pN to the verifier in the final round, and
the verifier chooses rN ∈ F. The verifier then evaluates a particular polynomial-time predicate
E(φ, r1, . . . , rN , p1, . . . , pN ) and accepts if and only if the predicate evaluates to true.

A formal description of E may be derived from the paper of Shen. Since the details of the
predicate are not necessary for our discussion, we will only state certain properties of E. First,
for any sequence of random field elements r1, . . . , rN ∈ F there exist polynomials q1, . . . , qN , where
each polynomial qj depends only on r1, . . . , rj−1, that correspond to the answers that should be
given by an honest prover. These polynomials, which are well-defined regardless of the boolean
value of φ, satisfy the following properties:

1. If φ is true, then E(φ, r1, . . . , rN , q1, . . . , qN ) is true.

2. If φ is false, then for all r1, . . . , rN and p2, . . . , pN , E(φ, r1, . . . , rN , q1, p2, . . . , pN ) is false.

3. If φ is false, then for all k ≤ N − 1, r1, . . . , rk−1, and p1, . . . , pk, the following holds in case
pk 6= qk: there are at most d values of rk for which there exist rk+1, . . . , rN and pk+2, . . . , pN

such that E(φ, r1, . . . , rN , p1, . . . , pk, qk+1, pk+2, . . . , pN ) is true.

4. If φ is false, then for any r1, . . . , rN−1 and polynomials p1, . . . , pN such that pN 6= qN , there are
at most d values of rN for which E(φ, r1, . . . , rN , p1, . . . , pN ) is true.

For given r1, . . . , rk−1, we call the polynomial qk the correct polynomial corresponding to
r1, . . . , rk−1.
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Clearly, if φ evaluates to true, an honest prover can always convince the verifier to accept
by sending the correct polynomials q1, . . . , qN corresponding to the verifiers random numbers
r1, . . . , rN−1.

Now suppose that φ evaluates to false. By item 2, a cheating prover cannot send the correct
polynomial q1 on the first round, for the prover rejects with certainty in this case. Hence the prover
must send p1 6= q1 if the verifier is to accept. Now suppose for 1 ≤ k ≤ N − 1 and r1, . . . , rk−1

the prover has sent polynomials p1 6= q1, . . . , pk 6= qk during rounds 1, . . . , k. Unless the verifier
randomly chooses one of d particular values for rk, the prover may not send qk+1 on the next round
without causing the verifier to reject. Hence, if the prover sends an incorrect polynomial on round
k, then with probability at least 1 − d/|F| it must send an incorrect polynomial on round k + 1.
Finally, if the prover does not send the correct polynomial qN during the last round, the verifier
accepts with probability at most d/|F|. Hence, the total probability that the verifier accepts may
not exceed (dN)/|F|.

Since the error probability of the protocol depends on the size of F, F may be chosen sufficiently
large at the start of the protocol. It will be convenient for us to take F to be the field with 2k

elements for k polynomial in n, which yields an exponentially small probability of error. For any
chosen k, the verifier and prover may use a deterministic procedure to implement arithmetic in F
in the following common way: an irreducible polynomial g of degree k over GF (2) is computed
in deterministic polynomial time [32], elements of F are identified with polynomials over GF (2) of
degree at most k− 1, and arithmetic is taken to be the usual arithmetic on polynomials modulo g.
This yields a natural correspondence between k bit strings and elements of F.

3.2 Quantum verifier’s protocol and proof of completeness

We now describe the three-message quantum verifier’s protocol for QBF along with the protocol
for the honest prover. It will be straightforward to demonstrate that this gives a complete proof
system—the soundness of the proof system is proved in the next subsection.

We use the following conventions when describing the protocol. Collections of qubits upon
which various transformations are performed are referred to as registers, and are labeled by capital
letters in boldface. The registers required by the protocol are Ri,j , Si,j , and Pi,j for 1 ≤ i ≤ m
and 1 ≤ j ≤ N , where N is as in the classical protocol described in Section 3.1 and m is some
polynomial in the input size, chosen depending on the desired error bound as described later. Each
register Ri,j and Si,j consists of k qubits, where 2k is to be the size of the field F. We view the
classical states of these registers as elements in F, and identify these registers with the random
field elements chosen by the verifier in the classical protocol. As for m we will later choose k to be
some polynomial in order to obtain our desired error bound. Each Pi,j consists of d+ 1 collections
of k qubits, for d as in the classical protocol, and we view the classical states of these registers
as polynomials of degree at most d with coefficients in F. These registers are identified with the
polynomials sent by the prover to the verifier in the classical protocol.

The verifier may also use any polynomial number of additional ancilla qubits in order to perform
the transformations described, and will also store various auxiliary variables, such as the random
vector u described below, needed for the protocol. As there will be no need for the verifier to
perform quantum operations on these values, we consider them as being stored classically. There
is no difference in the behavior of the protocol if they are thought of as being stored in quantum
registers, however.

It will be convenient to refer to certain collections of the quantum registers mentioned above;
for a given vector u ∈ {1, . . . , N}m we let Ru be the collection of registers Ri,1, . . . ,Ri,ui−1 for
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Figure 2: Example division of R and P for N = 8, m = 5, and u = (6,4,7,2,5).

i = 1, . . . ,m, and we let Pu be the collection of registers Pi,1, . . . ,Pi,ui for i = 1, . . . ,m. See Figure 2
for an example. We also let Ri and Pi denote the vectors (Ri,1, . . . ,Ri,N ) and (Pi,1, . . . ,Pi,N ),
respectively.

Aside from reversible computations that may be described classically, the only quantum trans-
formation used by the verifier is the Hadamard transform H that acts on a single qubit and is
defined by H : |0〉 7→ (|0〉+ |1〉)/

√
2 and H : |1〉 7→ (|0〉 − |1〉)/

√
2 as usual.

We now describe the actions of the verifier and honest prover. When describing the actions of
the honest prover and states of the entire system, it is assumed that the input QBF φ is true.

Step 1 (prover). Given a QBF φ and anm×N matrix R of elements in F, let Q(R) denote the cor-
responding matrix of correct polynomials as defined in Section 3.1. For each i, Q(R)i,1, . . . , Q(R)i,N

is thus the sequence of polynomials the honest prover returns in the classical protocol given random
field elements Ri,1, . . . , Ri,N . The honest (quantum) prover prepares superposition

2−kmN/2
∑
R

|R〉|R〉|Q(R)〉

in registers R, S, and P, sends R and P to the verifier, and keeps the register S. The state of the
system is now

2−kmN/2
∑
R

{
|R〉|Q(R)〉

}
verifier

{
|R〉

}
prover

.

Step 1 (verifier). The verifier rejects if (Ri,Pi) contain an invalid proof that the input formula
φ evaluates to true for any i ∈ {1, . . . ,m} with respect to the classical protocol described in
Section 3.1. This check is performed by reversibly computing the predicate E, so as not to alter
superpositions of valid pairs (R,P ). In the case that φ is true and the prover is honest the verifier
never rejects on this step. The verifier now chooses u ∈ {1, . . . , N}m uniformly at random and
sends u and Pu to the prover. The state of the system is now

2−kmN/2
∑
R

{
|R〉|Q(R)u〉

}
verifier

{
|R〉|Q(R)u〉

}
prover

.

Step 2 (prover). Let Ti,j be a unitary transformation such that Ti,j : |R〉|0〉 7→ |R〉|Q(R)i,j〉 for
each i, j. Upon receiving u and Pu, the honest prover applies transformation T−1

i,j to S together
with Pi,j for each pair i, j. This returns each register of Pu to its initial zero value. The prover
then sends S to the verifier. At this point the state of the system is

2−kmN/2
∑
R

{
|R〉|R〉|Q(R)u〉

}
verifier

{
|0〉

}
prover

.
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Here, the state |0〉 for the prover means that each register of Pu contains 0, and so the prover has
completely disentangled itself from the verifier’s registers.

Step 2 (verifier). The verifier subtracts Ri,j from Si,j for each i, j. In the case of the honest
prover this has the effect of simply erasing S. Next, the verifier applies the Hadamard transform to
every qubit in each register of Ru. If Ru now contains only 0 values, the verifier accepts, otherwise
the verifier rejects. In short, the verifier is projecting the state of Ru onto the state where Ru is
uniformly distributed over all possible values. It is easy to check that in the case of the honest
prover the registers Ru are not entangled with any other registers, as each register of Pu depends
only on those of Ru, and are in a uniform superposition over all possible values. Thus, the verifier
accepts with certainty in this case.

This completes the description of the protocol and the proof of completeness.

3.3 Proof of soundness

Now we show that the verifier accepts with exponentially small probability in case φ is false, given
any prover. Recall that the verifier acts as follows.

Step 1 (verifier). Receive quantum registers R and P from the prover. Reject if (Ri,Pi)
contain an invalid proof that the input formula φ evaluates to true for any i ∈ {1, . . . ,m}. Choose
u ∈ {1, . . . , N}m uniformly at random and send u and Pu to the prover.

Step 2 (verifier). Receive S from the prover and subtract Ri,j from Si,j for each i, j. Apply a
Hadamard transform to every qubit in each register of Ru and observe. If Ru now contains only 0
values then accept, otherwise reject.

Let us examine the state of the prover and verifier as the protocol is executed. The prover first
sends registers R and P to the verifier. The state of the system at this point may be expressed as∑

R,P

α(R,P )|R〉|P 〉|ξ(R,P )〉, (1)

where each α(R,P ) is a complex number and |ξ(R,P )〉 is a normalized vector representing the state
of the prover’s ancilla registers, which may be entangled with R and P in any manner the prover
chooses. Since the verifier rejects any pair R,P for which each (Ri, Pi) is not a valid proof that φ
is true, we may assume the state in Eq. 1 is a superposition over such valid pairs for the purposes
of bounding the probability that the verifier accepts.

The verifier chooses u randomly and sends u and Pu to the prover. The prover applies some
transformation to its registers (now including Pu), sends some register S to the verifier, and the
verifier subtracts the contents of R from S. The state of the system may now be described by∑

R,P u

β(R, u, P u)|R〉|P u〉|η(R, u, P u)〉, (2)

where each β(R, u, P u) is some complex number and |η(R, u, P u)〉 is a normalized vector describing
the state of the prover’s registers as well as register S.

The verifier now performs the Hadamard transforms on Ru and observes, rejecting if any bit is
not set to 0 and accepting otherwise. In order to calculate the resulting probability of acceptance, let
us for now assume that u is fixed. Denote by H⊗k the unitary transformation on k qubits obtained
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by applying the Hadamard transform to each qubit individually. Let l =
∑m

i=1(N −ui +1), so that
l denotes the number of registers (i.e., field elements) in Ru. Now, we have that the probability of
acceptance is∥∥∥∥∥∥

∑
R,P u

β(R, u, P u)|Ru〉〈0 |H⊗k |R1,u1〉〈0 |H⊗k |R1,u1+1〉 · · · 〈0 |H⊗k |Rm,um〉|P u〉|η(R, u, P u)〉

∥∥∥∥∥∥
2

.

Noting that 〈0 |H⊗k |x〉 = 2−k/2 for every x ∈ F, this simplifies to

2−lk

∥∥∥∥∥∥
∑
R,P u

β(R, u, P u)|Ru〉|P u〉|η(R, u, P u)〉

∥∥∥∥∥∥
2

= 2−lk
∑

Ru,P u

∥∥∥∥∥∥
∑
Ru

β(R, u, P u)|η(R, u, P u)〉

∥∥∥∥∥∥
2

.

By the triangle inequality, this probability is at most

2−lk
∑

Ru,P u

∑
Ru

|β(R, u, P u)|

2

. (3)

It remains to prove an upper bound on the probability in Eq. 3 given that u is chosen uniformly
at random. In order to do this, let us associate with each register Ri,j and each register Pi,j

a random variable. The probability with which each random variable takes a particular value
is precisely the probability that an observation of the associated register yields the given value,
assuming that the observation takes place while the entire system is in the state described in Eq. 1.
As we have done for registers, we may consider collections of random variables as being single
random variables, abbreviated by Ru, Pu, etc.

Now, note that
|β(R, u, P u)|2 = Pr [R = R, Pu = P u]

for each R and P u. This follows from the fact that the registers in R and Pu are never touched
between the points in the protocol corresponding to the states in Eq. 1 and Eq. 2. Therefore we
may rewrite the probability in Eq. 3 as

2−lk
∑

Ru,P u

∑
Ru

√
Pr [R = R,Pu = P u]

2

. (4)

To bound this expression, it will be helpful to consider the following definition.

Definition 1 For any finite set S and mapping f : S → [0, 1], define

θS(f) =
∑
s∈S

√
f(s).

Now, for each pair Ru, P u, define XRu,P u : F l → [0, 1] as follows:

XRu,P u

(
Ru

)
= Pr

[
Ru = Ru |Ru = Ru,Pu = P u

]
.

The probability in Eq. 4 may be written as

2−lk
∑

Ru,P u

Pr [Ru = Ru,Pu = P u] (θF l(XRu,P u))2.
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We next define certain events based on the above random variables. Recall the definition of
Q(R) from above (i.e., Q(R) is the m×N matrix of correct polynomials an honest prover answers
for given R). For 1 ≤ i ≤ m, 1 ≤ j ≤ N−1, and R denoting the contents of R, define Ai,j to be the
event that Pi,j′ does not contain Q(R)i,j′ for j′ ≤ j but Pi,j+1 does contain Q(R)i,j+1. Informally,
the event Ai,j means that the prover has tried to “sneak in” a correct polynomial in register Pi,j+1.
Also, for 1 ≤ i ≤ m, define Ai,N to be the event that Pi,j′ does not contain Q(R)i,j′ for every j′.
This event means that the prover never tries to put a correct polynomial in registers Pi,1, . . . ,Pi,N .
Note that we must have Pr[Ai,1 ∪ · · · ∪ Ai,N ] = 1 for each i, as the verifier rejects in step 1 if Pi,1

contains Q(R)i,1. Finally, define the event Bu as Bu =
⋃

iAi,ui . The event Bu, which we will later
show is very likely to occur when u is chosen uniformly, means that the verifier has chosen some
u that catches at least one of the locations where the prover is cheating, i.e., trying to “sneak in”
correct polynomials. Now define mappings YRu,P u : F l → [0, 1] and ZRu,P u : F l → [0, 1] as follows:

YRu,P u

(
Ru

)
= Pr

[
Ru =Ru

∣∣Ru =Ru,Pu =P u, Bu

]
,

ZRu,P u

(
Ru

)
= Pr

[
Ru =Ru

∣∣Ru =Ru,Pu =P u,¬Bu

]
,

for events Bu and ¬Bu. We have

θF l(XRu,P u) = θF l (λu YRu,P u + (1− λu)ZRu,P u) .

for λu = Pr [Bu |Ru = Ru,Pu = P u ].
Now consider the number of values of Ru for which YRu,P u

(
Ru

)
= 0; we claim that this number

is at least
(
1− dm2−k

)
2kl for every Ru, P u. This may be argued as follows. First, fix values for

Ru, P u, and i, and assume event Ai,ui takes place. By the properties of the classical protocol
discussed in Section 3.1, there are at most d values of Ri,ui that do not cause the classical protocol
to reject in this case. Thus, the number of values of Ru for which we have

Pr
[
Ru = Ru

∣∣Ru = Ru, Pu = P u, Ai,ui

]
6= 0

is at most d 2k(l−1). Since
m∑

i=1

Pr
[
Ru = Ru

∣∣Ru =Ru, Pu = P u, Ai,ui

]
≥ YRu,P u

(
Ru

)
≥ 0,

the total number of values of Ru for which we have YRu,P u

(
Ru

)
6= 0 is at most dm2k(l−1).

Next, let us bound Pr[Bu] assuming u is chosen uniformly from {1, . . . , N}m. We have

Pr[Bu] =
∑
P

Pr[Bu|P = P ] Pr[P = P ]

= 1−
(

1− 1
N

)m

> 1− e−m/N .

At this point, a simple lemma is required.

Lemma 1 Let f, g : S → [0, 1] satisfy
∑

s∈S f(s) ≤ 1 and
∑

s∈S g(s) ≤ 1, let λ ∈ [0, 1], and let
r = |{s ∈ S|f(s) = 0}|. Then θS(λf + (1− λ)g) ≤

√
(1− λ)r +

√
|S| − r.
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Proof. First note that for any function h : S → [0, 1] such that
∑

s∈S h(s) ≤ 1, we have θS(h) ≤√
|S| by the Cauchy-Schwarz inequality. Define T = {s ∈ S|f(s) = 0}. We have

θS(λf + (1− λ)g) =
√

1− λ θT (g) + θS\T (λf(s) + (1− λ)g(s))

≤
√

(1− λ)|T |+
√
|S\T |

=
√

(1− λ)r +
√
|S| − r

as claimed.

We apply Lemma 1 to obtain

2−lk (θF l (XRu,P u))2 ≤ 2−lk

(√
(1− λu)(2lk − dm2k(l−1)) +

√
dm2k(l−1)

)2

≤ 1− Pr [Bu |Ru = Ru,Pu = P u ]
(
1− dm2−k

)
+ 2

√
dm2−k.

Hence, the probability that the verifier accepts is at most

2−lk
∑

Ru,P u

Pr [Ru = Ru,Pu = P u] (θF l (XRu,P u))2 ≤ 1−
(
1− e−m/N

) (
1− dm2−k

)
+ 2

√
dm2−k.

By initially choosing m and k to be sufficiently fast growing polynomials in n (e.g., m = (n+ 1)N
and k = 2n+ dm+ 6), this probability may be made smaller than 2−n, which completes the proof.

4 Conclusions and Open Problems

We have defined in this paper a natural quantum analogue of the notion of an interactive proof
system, and proved that there exist three-message quantum interactive proof systems with expo-
nentially small error for any PSPACE language.

Currently the best upper bound known on the power of quantum interactive proof systems is
that any language having a quantum interactive proof system is in EXP [23]. We do not know if EXP
has constant-round quantum interactive proofs, if quantum interactive proofs characterize PSPACE,
or if the class of languages having quantum interactive proofs lies strictly between PSPACE and
EXP. Another interesting class is the class of languages having two-message quantum interactive
proof systems. How does this class relate to PSPACE, for instance?

Several variants on interactive proof systems have been studied, such as multi-prover interactive
proofs [5, 9, 13, 18, 20], probabilistically checkable proofs [3, 20], and interactive proof systems
having verifiers with very limited computing power [14, 17]. How do quantum analogues of these
models compare with their classical counterparts?
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