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Abstract fier) only sends uniformly generated sequences of bits to
Merlin (the prover) instead of arbitrary quantum informa-
This paper studies quantum Arthur-Merlin games, which tion. Thus, Arthur may not send any quantum informa-
are a restricted form of quantum interactive proof system in tion at all to Merlin, and one may view all of Arthur's
which the verifier's messages are given by unbiased coin-computations (quantum or classical) as taking place after
flips. The following results are proved. all messages have been exchanged. Similar to the classical
e For one-message quantum Arthur-Merlin games, which €@s€, quantum Arthur-Merlin games give rise to complexity
correspond to the complexity cla®MA, complete- ~ classes depending on the number of messages exchanged
ness and soundness errors can be reduced exponentiallpetween Arthur and Merlin. In particular, we obtain three
without increasing the length of Merlin’s message. Pre- Primary complexity classes corresponding to Arthur-Merlin
vious constructions for reducing error required a poly- 92mes with one message, two messages, and three or more

nomial increase in the length of Merlin’'s message. Ap- Messages.

plications of this fact include a proof that logarithmic In the one-message case, Merlin sends a single message
length quantum certificates yield no increase in power to Arthur, who checks it and makes a decision to accept or
overBQP and a simple proof thahMA C PP. reject the input. The corresponding complexity class is de-

notedQMA, and has recently been considered in several pa-
pers[2,8,9, 15,19, 21, 22]. Because there is really no inter-

tum interactive proof systems. In fact, for any language action between Arthur and Merlin in this situation, Merlin's
having a quantum interactive proof system there exists MeSsage to Arthur may be viewed as a quantum witness

a three-message quantum Arthur-Merlin game in which or certificate that Arthur checks in polynomial time with a
Arthur's only message consists of just a single coin-flip duantum computer. To our knowledge, the idea of a quan-

that achieves perfect completeness and soundness errofM State playing the role of a certificate in this sense was
exponentially close to 1/2. first proposed by Knill [14], and the idea was later studied

. [ ter depth by Kit 11]. Kit d vari fun-
e Any language having a two-message quantum Arthur in greater depth by Kitaev [11]. Kitaev proved various fun

: . 4 . N “damental properties dhMA, which are described in Ki-
Merlin game IS contained iBP - PP. This gives some . taev, Shen, and Vyalyi [12] and Aharovov and Naveh [1].
suggestion that three messages are stronger than two in .

One of the facts that Kitaev proved was that the com-

the quantum Arthur-Merlin setting. pleteness and soundness errors iQEA protocol may

be efficiently reduced, essentially by parallel repetition. Be-

cause quantum information cannot be copied, however, and
1. Introduction Arthur’s verification procedure is potentially destructive to

Merlin’s message, Arthur requires multiple copies of Mer-
This paper investigates the complexity-theoretic aspects oflin’s message for this method to work. Consequently, this
guantum Arthur-Merlin games, which are defined in an method requires a polynomial increase in the length of Mer-
analogous way to classical Arthur-Merlin games [3, 4]. lin’s message to Arthur in order to achieve exponentially de-
Specifically, quantum Arthur-Merlin games are quantum in- creasing error. In this paper, we prove that this increase in
teractive proof systems [13, 23] in which Arthur (the veri- the length of Merlin's message is not required after all; us-

¢ Inthe case of three or more messages, quantum Arthur-
Merlin games are equivalent in power to ordinary quan-



ing a different error reduction method, an exponential re- possible second messages to Arthur in a single message.
duction in error is possible with no increase whatsoever in The reason why this strategy fails in the quantum case is
the length of Merlin’s message to Arthur. that Merlin’s first and second messages may need to be en-

It is known thatQMA is contained inPP, which can tangled in order to be convincing to Arthur, but it is not pos-
be proved using th&apP-based method of Fortnow and sible for Merlin to simultaneously entangle his two possible
Rogers [6] together with some simple facts from matrix Second messages with the first.
analysis. This fact was noted without proof in Ref. [13]. The remainder of this paper is organized in the follow-
A proof does appear, however, in a recent paper of Vya-ing way. First, Section 2 discusses some notation and back-
lyi [21], who in fact strengthens this result to show that ground information used in the paper. Section 3 discusses
QMA is contained in a subclass,PP of PP. Based on  one-message quantum Arthur-Merlin games, Section 4 dis-
our new amplification result, we give a simplified proof of cusses the two-message case, and Section 5 discusses the
this fact. We also use our amplification result to prove that case of three or more messages. These sections therefore
quantum Merlin-Arthur games in which Merlin’s message correspond to the three complexity classgslA, QAM,
has logarithmic length give no increase in power dy@P. and QMAM, respectively. The paper concludes with Sec-

In the two-message case, Arthur flips some number oftion 6, which mentions some open problems relating to
fair coins, sends the results of those coin-flips to Mer- quantum Arthur-Merlin games.
lin, and Merlin responds with some quantum state. Arthur
performs a polynomial-time quantum computation on the L .
random bits together with Merlin’s response, which deter- 2. Preliminaries
mines whether Arthur accepts or rejects. The corresponding . o )
complexity class will be denote@AM. Two facts about By default, all strings and languages in this paper will be
QAM are proved in this paper. The first is the very ba- OVer the alphabet = {0, 1}. We denote byoly the set of
sic fact that parallel repetition reduces error exactly as in @/l functionsf: N — N\{0} (whereN = {0,1,2,...}) for
the classical case. (Parallel repetition is currently known to Which there exists a polynomial-time deterministic Turing
hold for general quantum interactive proof systems only in Machine that outputs/ ") on input1”.
the case of perfect completeness.) The second fact is that We will assume that the reader has some familiarity
QAM C BP - PP. This may be viewed as weak evidence with the mathematics of quantum information, which is

that two-message quantum Arthur-Merlin games are not asdiscussed in detail in Kitaev, Shen, and Vyalyi [12] and
powerful as PSPACE. Nielsen and Chuang [17]. It will be possible for us to re-

Finally, in the three-message case, Merlin sends Arthur astrict our attention _to pure quantum states_ for much of the
message consisting of some number of qubits, Arthur flips PaPer. although mixed quantum states will be used occa-
some number of fair coins and sends the results to Mer-Sionally (in particular, in Sections 3.2, 5.1, and 5.2).
lin, and then Merlin responds with a second collection of ~ For simplicity we will define quantum Arthur-Merlin
qubits. Arthur performs a polynomial-time quantum com- 9ames in terms ofquaptum circuits composed of gates from
putation on all of the qubits sent by Merlin together with the Shor basis: Toffoli gates, Hadamard gates, ashiift
the values of his own coin-flips, and decides whether to ac-9ates (which induce the mappin@) — [0), |1) — i|1)).
cept or reject. The corresponding complexity class will be This is a universal set of gates (see Ref. [10]), so there is no
denotedQMAM. It is proved that any language having an loss of generality in restricting.our attention to this se.t. As-
ordinary quantum interactive proof system is contained in SUme that a reasonable encoding scheme has been fixed that
QMAM, implying QMAM = QIP. In principle this fact allows quantum circuits to be encoded as binary strings hav-
resembles the theorem of Goldwasser and Sipser [7] establng length at least the size of the encoded circuit and at most
lishing that classical Arthur-Merlin games and interactive SOme fixed polynomial in the circuit's size.
proof systems are equivalent in power. However, there isno A collection{A, : z € ¥*} of quantum circuits is said
similarity in the proofs of these facts. Indeed, our result is to bepolynomial-time unifornif there exists a polynomial-
stronger than what is likely to hold classically. Specifically, time deterministic Turing machin® that, oninput: € X*,
we prove that any language having a quantum interactiveoutputs an encoding of the circult,. Although this is not
proof system has a three-message quantum Arthur-Merlinthe most conventional notion of circuit uniformity, as the
game in which Arthur’s only message to Merlin consists of family is parameterized by strings rather than string lengths,
just a single coin-flip (in order to achieve perfect complete- it is better suited to our needs. More generally, such a fam-
ness and soundness error exponentially close to 1/2). This idly may be parameterized by tuples of strings; for instance
impossible classically unless interaction is useless in clas-we will consider families of the form
sical interactive proof systems; for if Arthur flips only one
coin, Merlin may as well send his first message and the two {Am,y rre¥,ye Er(“”‘)}



for » some function inpoly when two- and three-message
quantum Arthur-Merlin games are discussed.

It will sometimes be helpful when describing certain
guantum Arthur-Merlin games to refergoantum registers
These are simply collections of qubits to which we assign

One may consider the cases wherandb are constants
or functions of the input length = |x| in this definition. If
a andb are functions of the input length, it is assumed that
a(n) andb(n) can be computed deterministically in time
polynomial inn. When no reference is made to the proba-

some name. The qubits of a given register may be entan-bilities a andb, itis assumed = 2/3 andb = 1/3.

gled with other qubits, so it may not be possible to describe

the state of a quantum register by a single vector. When weg 1 Amplification

refer to thereduced statef a given register, we are refer-
ring to the mixed state obtained by tracing out all other reg-
isters beside the one to which we are referring.

The definitions for quantum Arthur-Merlin games and
the resulting complexity class€sVIA, QAM, andQMAM
will appear in their respective sections.

3. QMA

A QMA verification procedurel is a polynomial-time uni-
form family {A, : =z € ¥*} of quantum circuits together
with a functionm € poly. The functionm specifies the

Itis known thatQMA is robust with respect to error bounds
in the following sense.

Theorem 3.2 (Kitaev). Leta,b: N — (0,1) andp € poly
satisfy

1
a(n) —b(n) > ——
() =) = -
forall n € N. Then

QMA(a,b) = QMA(1 —279,279)

length of Merlin’s message to Arthur, and it is assumed that for everyq € poly.

each circuit4, acts onm(|z|) + k(]z|) qubits for some
functionk specifying the number of work (@ncilla) qubits
used by the circuit. In order to simplify our notation, when
the inputz has been fixed or is implicit we will generally
write m to meanm(|z|), k& to meank(|z|), and so forth.
When we want to emphasize the length of Merlin’s mes-
sage, we will refer tad as anm-qubit QMA verification
procedure.

Consider the following process for a strimge >* and
a quantum statp)) onm qubits:

1. Run the circuit4, on the input statgy)|0").

2. Measure the first qubit of the resulting state in the stan-

dard basis, interpreting the outcome laaseptand the
outcome 0 aseject

The probability associated with each of the two possible
outcomes will be referred to aBr[A, acceptdy)] and
Pr[A, rejects|y)] accordingly.

Definition 3.1. The classQMA(a,b) consists of all lan-
guagesl, C X* for which there exists @MA verification
procedurg A, : x € ¥*} for which the following holds:

1. For allz € L there exists am qubit quantum statp))
such that
Pr[A, acceptgy)] > a.

2. Forallz ¢ L and allm qubit quantum stateg)),
Pr[A, acceptgy)] < b.

For anym € poly, the classQMA,, (a,b) consists of all
languaged. C X* for which there exists am-qubit QMA
verification procedure that satisfies the above properties.

A proof of this theorem appears in Section 14.2 of Kitaev,
Shen, and Vyalyi [12]. The idea of the proof is as follows.
If we have a verification procedurd with completeness
and soundness probabilities given dwandb, we construct
a new verification procedure that independently rdnsn
some sufficiently large number of copies of the original cer-
tificate and accepts if the number of acceptances! a
appropriately large (abové: + b)/2, say). The difficulty
in proving that this construction works lies in the fact that
the new certificate cannot be assumed to consist of several
copies of the original certificate, but may be an arbitrary
(possibly highly entangled) quantum state. Intuitively, how-
ever, entanglement cannot help Merlin to cheat; under the
assumption that ¢ L, the probability of acceptance for
any particular execution ofl is bounded above by, and
this is true regardless of whether one conditions on the out-
comes of any of the other executions 4f This construc-
tion requires an increase in the length of Merlin’s message
to Arthur in order to reduce error.

The main result of this section is the following theorem,
which states that one may decrease error without any in-
crease in the length of Merlin’s message.

Theorem 3.3. Leta,b: N — (0,1) andp € poly satisfy

a(n) —b(n) >

1
p(n)
forall n € N. Then

QMAm(a> b) = QI\/IAm(l - 2—(17 2_(1)

for everyg, m € poly.
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Figure 1. Example circuit diagram for verification procedure B.
Proof. AssumeL € QMA,,(a,b), and A is an m-qubit Until > N (whereN is chosen depending on the de-
QMA verification procedure that witnesses this fact. We  sired error bound).
will describe a newn-qubit QMA verification procedure 4 Foreach = 1,..., N set
B with exponentially small completeness and soundness er- )
ror. It will simplify matters to assume hereafter that the in- 8; — { 1 !f Ty =Ti—1
putz is fixed—it will be clear that the new verification pro- ’ 0 ifri#rio.

cedure is polynomial-time uniform. As the inpuis fixed,
we will write m, k, etc., rather tham(|x|), k(|«]|), etc., and
we will write A and B to denoteAd, and B, respectively. Although the description of this procedure refers to vari-

It will be helpful to refer to then message qubits along 0us measurements, it is possible to simulate these measure-
with the k& work-space qubits ofl as a singlen + & qubit ments with unitary gates in the standard way, which allows
quantum registeR. Define projections acting on the possi- the entire procedure to be implemented by a unitary quan-
ble states of the regist&as follows: tum circuit. Figure 1 illustrates a quantum circuit imple-

menting this procedure for the cade = 5. In this figure,
I = [1)(1| ® L1, A1 = L, ®]0F)(0F, 1) S represents the computation described in the last step of
Iy = 0){(0]| ® I;myk—1, Ao = Lmtr — Aq. B (performed reversibly), and the last qubit rather than the

first represents the output qubit to simplify the picture.
Here, and throughout the paper, we wriieto denote the Suppose first that Merlin's message) is an eigenvec-

identity operator acting oh qubits. The measurement de- 1, o¢ (I, ®(0F|) AL, A(I,,, ®|0%)), which is equivalent to
scribed by{IIy, I, } is just a measurement of the first qubit 6) = |4)|0) being an eigenvector ak; ATTI; AA,. Let
of R in the computational basis; this measurement deter-the corresponding eigenvalue pewhich implies the veri-
mines whether Arthur accepts or rejects after the cirduit  f-ation procedured would accepi) with probability p.

is applied. The measurement described{By, A1} gives ¢ il pe shown that the verification procedufewould ac-
outcome 1 if the lask qubits of R, which correspond to cept|+) with probability

Arthur's work-space qubits, are set to their initial all-zero
state, and gives outcome 0 otherwise. Z N Pl —p)N—i
The procedure3 operates as follows: ] '

Acceptif I | s, > N - 2t and reject otherwise.

N- 2 <G<N
1. Assume the first: qubits ofR contain Merlin's message

) and the remaining qubits are set to the sta®). This will follow from the fact that the procedur® ob-

tains each possible sequeneg, .. ., sy) with probability

2. Setrg — landi — 1. pP)(1 — p)N =) for w(s) = SN | s;. This is straight-
3. Repeat: forwardifp =0orp =1, soassumé < p < 1.
a. Apply A toR and measur® with respect to the mea- Define vectorsyo), [71), |do), and|dy) as follows:
suementdescrbed Wil ). Letr derte N moASo) 0 ST
b. Apply AT, to R and measur® with respect to the o L
measurement described By, A, }. Letr; denote 1) = w |6,) = M

the outcome, and set— i + 1. N/ VP
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Figure 2. Transition probabilities for verification procedure M.
The fact that|¢) is an eigenvector of\; ATTI; AA; with In general Merlin might not provide Arthur with an
eigenvaluep implies that each of the vectoisg), 1), eigenvector of I, ® (0% |) ATII; A(I,,®|0%)), but the above
|60}, |01} is a unit vector, and thab, ) = |¢). We have analysis makes it straightforward to determine the maxi-

mum probability with which Merlin can cause the proce-
Aldo) = —vpPlv) +V1-p|n) dure B to accept. Assumé3 uses! work-space qubits in
Al8)) = /T —=ply) +vplm)- addition to thek work-space qubits used hyt. For any
sequence: = (rq,...,ry) Of measurement outcomes let
The second equality follows frofd,) = |¢), and the first ~ f(r) be 1 or O depending on whether the sequence would
follows from the second along with the observation that be accepted or rejected B3 respectively. Also defing,. to
be a projection operator that projects onto states for which
A (\/1 —pldo) + \/13\61>) = 7). the work-space qubits a8 record measurement outcomes
r=(ry,...,rn). Then for
With the above equations (2) in hand, it is not difficult to T it
determine the probability associated with each sequence of & = > (In @ (")) BTAB(I,, @ [0FH))
measurement outcomes. We begin in state= |6;) and rif(r)=1

apply A. After the measurement describedfiyo, Il } the e haye that the probability that accepts messade)

(renormalized) state of registBrbecomes ) or |71) ac- is (¢|Q|v). The largest probability with which Merlin can
cording to whether the outcome is 0 or 1, with associated cause the procedurB to accept is given by the largest
probabilities1 — p andp, respectively. If instead we were eigenvalue of).

to start in statédy ), the renormalized states after measure- 7| o {|41), ..., |1om)} be a complete orthonormal col-
ment would be t_h_e same, k_Jut the probabllltles are reversediectiOn of eigenvectors of

we have probability associated with outcome 0 and prob-

ability 1 — p with outcome 1. For the second step of the (I, @ (OF ) AT A(1,,, @ |0F)),

loop the situation is similar. If the registBris in state]v; ), . ) )

the transformatiom is applied, and the state is measured With associated eigenvalugs . . ., po- . By the above anal-
via the measuremertA, A, }, the renormalized state af-  YSIS we may conclude that for eachhis set is also a set of
ter measurement will be eithéf; ) or |5y), with associated ~ €igenvectors of

probabilitiesp and1 — p. If instead the initial state i8y,) k+1\ ot k41

rather thar|~, ), the renormalized states after the measure- (I @ (07T BTA-B(Im ® 0777)),

ment are again the same, but the probabilities are reversedand therefore is a set of eigenvectors of the gurThe as-
These transition probabilities are illustrated in Figure 2. In sociated eigenvalues f@} are therefore given by

all cases we see that the probability of obtaining the same
outcome as for the previous measuremept @énd the prob- Z (N> pq‘(l — )N,
ability of the opposite outcome is— p. The probability as- ’

sociated with a given sequenge= (s1,...,sy) is there-
fore p*(*) (1 — p)N—*(*) as claimed, as each is 1 if the Because each; is bounded above by the maximum accep-
measurement outcomes ; andr; are equal, and is 0 oth-  tance probability for the proceduré we have at this point
erwise. (Settingy = 1 includes the first measurement out- that the theorem follows by a suitable choice féralong
come in this pattern.) with standard Chernoff-type bounds. ]

)

N-fb<G<N



3.2. Applications

Two applications of Theorem 3.3 will be given in this sec-
tion. The first is a simplified proof th&)MA is contained
in PP.

Theorem 3.4. QMA C PP.

Proof. Let L C ¥* be alanguage i@MA. By Theorem 3.3
there exists a functiom € poly such that

LeQMA,, (1 _ 9= (m+2), 2*<m+2>) .

Let A be a verification procedure that witnesses this fact.
Specifically, each circuitl,, acts onk + m qubits, for some

k € poly, and satisfies the following. lf € L, then there
exists anm qubit state ) such that

Pr[A, acceptde)] > 1 — 272,
while if z € L, then
Pr[A, acceptgqy)] < 27™ 2

for everym qubit statg ).
For eache € X*, define ™ x 2™ matrix @, as

Qs = (I, ® (0F]) AITL A, (I, ® |0%)).
EachQ@, is positive semidefinite, and

(¥]|Qz|¥) = Pr[A, acceptdy)]

for any unit vectory) onm qubits. The maximum prob-
ability with which A, can be made to accept is therefore
the largest eigenvalue @,. Because the trace of a ma-
trix is equal to the sum of its eigenvalues and all eigenval-
ues of@), are nonnegative, it follows thatif € L, then

tr(Qy) >1—-2"""2>3/4,
while if z ¢ L, then
tr(Q,) < 2m2 ™% < 1/4,

Now, based on a straightforward modification of Fort-

By closure properties of GapP functiose GapP. More-
over, we have:(z) = 21®) tr(Q,), and therefore

3 i
x€L= h(z)> 12“‘)

Lota)
x ¢ L= h(z) < 12 .

Because!(®) is an FP function, it follows theh (z) —2¢(*)
is a GapP function that is positive:if € L and negative if
x ¢ L. Thus,L € PP as required. ]

Remark. A simple modification of the above proof yields
QMA C AyPP, whereAyPP is defined in Vyalyi [21].

The second application concerns quantum Merlin-Arthur
games where Merlin sends only a logarithmic number of
qubits to Arthur.

Classical Merlin-Arthur games with logarithmic-length
messages from Merlin to Arthur are obviously equivalent
in power to BPP, because Arthur could simply search
through all possible messages in polynomial time in lieu
of interacting with Merlin. In the quantum case, however,
this argument does not work, as one may construct ex-
ponentially large sets of pairwise nearly-orthogonal quan-
tum states on a logarithmic number of qubits, such as those
used in quantum fingerprinting [5]. Nevertheless, logarith-
mic length quantum messages can be shown to be useless in
the context ofQMA using a different method, based on the
strong amplification property d§MA proved above.

Fora,b : N — [0,1] define QMA,.,(a,b) to be the
class of all languages contained@MA,, (a, b) for some
m(n) € O(logn), and letQMA,,, = QMA,,(2/3,1/3).

The choice of the constants 2/3 and 1/3 is arbitrary, which
follows from Theorem 3.3.

Theorem 3.5. QMA,,, = BQP.

Proof: AssumeL € QMA,, for m logarithmic, and as-
sumeA is aQMA verification procedure that withesses this
fact and has completeness and soundness error less than
2-(m+2) et

Qo = (Im ® (0F]) AIIL A, (I, @ |0F)) .

Similar to the proof of Theorem 3.4, we have

now and Rogers [6] based on our choice of the Shor basis,

we have that there exist a polynomially-bound&®@l func-
tion t andGapP functionsf andg such that

f(x7 Z.? j)
2ot(x)

g(x,i, )

8?(Qz[%]]) = 2t(x)

and  3(Qc[i,j]) =

for0 <i,j < 2™. Define

om_1

h(z) = Z f(x,i,1).
=0

zeLl = tr(Qy) >3/4, 2¢L = tr(Qy) <1/4.

We will describe a polynomial-time quantum algorithm
B that decided. with bounded error. The algorithid sim-
ply constructs a totally mixed state owerqubits and runs
the verification procedurd using this state in place of Mer-
lin’s message. Running the verification procedure on the to-
tally mixed state is equivalent to running the verification
procedure onn qubits initialized to some uniformly gen-
erated standard basis state. This is easily simulated using



Hadamard transforms and controlled not gategrargubits
appropriately. The totally mixed state on qubits corre-
sponds to the density matr " 1,,,, from which it follows
that the probability of acceptance Bfis given by

Pr[B acceptst] = tr (Q, 27" 1) = 27" t1(Qa).

Given thatm is logarithmic in|x|, we have that the prob-
abilities with which B accepts inpute: € L and inputs

x ¢ L are bounded away from one another by the recip-
rocal of some polynomial. This difference can be amplified
by standard methods, implying thate BQP. [ ]

4. QAM

A QAM verification procedured consists of functions
m,r € poly and a polynomial-time uniform family

{Al.,y rxeXy€ ZT(‘”ED}

of quantum circuits. As in the case QfMA verification
procedures, each circuil, , acts on two collections of
qubits:m(]z|) qubits sent by Merlin and(|x|) qubits cor-
responding to Arthur's workspace. The notion of a circuit
A, , accepting a message) is defined in the same way as
for QMA. In the present case, the stripgcorresponds to
a sequence of coin-flips sent by Arthur to Merlin, on which
Merlin’s message may depend.

Definition 4.1. The classQAM(a, b) consists of all lan-
guagesl, C X* for which there exists & AM verification
procedureA satisfying the following conditions.

1. If z € L then there exists a collection of statgs, )}
onm qubits such that

1
o > Pr[A,, acceptyiy,)] > a.
yeDT
2. Ifz ¢ L then for every collection of statg$y,, ) } onm
qubits it holds that

LS P, acceptsis,)] < b.

27
yeD”
As for QMA, one may consider the cases whem@ndb are
constants or functions ef = |z|, and in the case thatand
b are functions of the input length it is assumed that)
andb(n) can be computed deterministically in time polyno-
mial in n. Also as before, [efQAM = QAM(2/3,1/3).

4.1. Error reduction for QAM

The first fact aboufQAM that we prove is that complete-

Proposition 4.2. Leta,b: N — (0, 1) satisfy

L
p(n)

for all n > N for somep € poly. Then for any € poly,

a(n) —b(n) >

QAM(a,b) = QAM(1 — 279,279).

Proof. Let L € QAM(a,b), and letA be aQAM veri-
fication procedure witnhessing this fact. We consider a new
QAM verification procedure that corresponds to playing the
game described byA, ,} in parallel N times. The new
procedure accepts if and only if the number of acceptances
of the original game is at leas{ - “T*b Although Merlin is
not required to play the repetitions independently, we will
show that playing the repetitions independently in fact gives
him an optimal strategy. The proposition then follows by
choosing an appropriately large valuefand applying a
Chernoff-type bound.

Assume hereafter that the inpuis fixed, and define

QYY) = (1@ (0" AL, Iy A, (I ©]0%)),
QLY = (1@ (0F) AL, A, (I ® [0%))

for eachy € X7. We haveQ!" = T — Q{”, and conse-

quentIyQLO) andQ,(,l) share a complete set of orthonormal
eigenvectors. Lef|vy 1), ..., |1y 2m)} be such a set, and
let

(2)

Pyis--- (2)

,py’27n
be the corresponding eigenvalues f@ff), z € {0,1}.

As Q" andQ\" are positive semidefinite and sum to the
(0) (1)

identity, p, ; andp, ; are nonnegative real numbers with
pg?z + pél_g = 1 for eachy andj. Assume without loss of

generality that the eigenvectors and eigenvalues are ordered
in such a way that

1 1
p;’% 2 el > pé,%m"

This implies that the maximum acceptance probability of

Ay, is p(l) .
Y y,1
Under the assumption that Arthur’s coin-flips are given
by y1,...,yn, if Merlin plays the repetitions indepen-
dently, and optimally for each repetition, his probability of

convincing Arthur to accept is

R et ©

z1
zi4-Fzy > N- 4L

ness and soundness errors may be reduced by running many

copies of the protocol in parallel. The proof is similar in
principle to the proof of Lemma 14.1 in [12], which corre-
sponds to our Theorem 3.2.

Without any assumption on Merlin’s strategy, the maximum
probability with which Merlin can winV - “T”’ repetitions
of the original game when Arthur’s coin-flips are given by



y1,...,yn iS equal to the largest eigenvalue of Proof. Suppose that € L. Letz(y) = 1—pu(A,,,), and let
Z be arandom variable whose value:{g) for a uniformly

(1) & ... (zn) - T
> Qu @ @ QY. 4 choseny € I The assumption of the proposition implies
Zl+f{;-;§§f%ﬂ, that E[Z] < 1/9. By Markov’s inequality we have
Therefore, to prove the proposition it suffices to show that Pr[Z >1/3] < B[Z] <1/3,
these quantities are equal. T3

All of the summands in Eq. 4 share the complete set of 5, therefore
orthonormal eigenvalues given by

{lwy17i1>"'|wyz\ui1\r> D1, IN € {17"‘72m}}7

and so this set also describes a complete set of orthonor
mal eigenvectors of the sum. The eigenvalue associated withrheorem 4.4. QAM C BP - PP.

Prlp(Ay,) > 2/3] = Pr[Z < 1/3] > 2/3.

The proof forz ¢ L is similar. ]

[Vypin) - [Pynin) 1S Proof. Let L € QAM, and let
(21) (2n)
Z pyltil"'pyNj\iiN' ®) A= {Azy re X, yeE"'(le}
2Z1,..,ZNEX ’

atotanzN- be aQAM verification procedure fof with completeness

Defineu; (X) = X, uo(X) =1 — X, and let and soundness errors bounded by 1/9. Such a procedure ex-
ists by Proposition 4.2. It follows from the proof of Theo-
f(Xy,..., Xn) = Z Uz (X1) -ty (X).- rem 3.4 that there exists a langua§e= PP such that
Z1,..,ZNEX
aoban 2N H(Aay) > 2/3 = (2,y) € K,
The quantity in Eq. 5 is equal t(p, ,....p") . ). Be- w(Apy) <1/3 = (2,y) € K.

causef is a multilinear function that is nondecreasing in
each variable, the maximum of the quantity in Eqg. 5 is
£, pl) 1), which is equal to the quantity in Eq. 3.
This completes the proof.

It is possible thaj(A, ) € (1/3,2/3) for some values of
y, but in this case no requirement is made on whether or
not (z,y) € K. The theorem now follows from Proposi-

tion 4.3. [ |
4.2. An upper bound on QAM Remark. At first glance one might expect the stronger re-
lation QAM C BP - QMA to hold, but we do not know
In this section we observe the simple upper boGudM C whether or not this is the case.
BP - PP. Recall thatl, € BP - PP if and only if there exists
asetK € PP and a function € poly such that 5. QMAM

v € L= Pri(z,y) € K] 2 2/3, A QMAM verification procedured consists of functions

x ¢ L=Pri(z,y) € K] <1/3, my, me, T € poly and a polynomial-time uniformly gener-
e i ) ated family

where the probability is ovey € X7(#1) chosen uniformly.
_ The following fact concerning the m_aximum probabili- {A:L’,y Lz eY,ye Er(\w\)}
ties of acceptance of, , for randomy will be used. Here
we letp (A, ,) denote the maximum probability thatt, ,, of quantum circuits. The functions; andms specify the
can be made to accept (maximized over all choices of Mer-number of qubits in Merlin’s first and second messages to
lin's messagé, )). Arthur. Each circuitd,, ,, acts onm (|z]) +ma(|z]) +k(|z|)

qubits, where as beforg|z|) denotes the number of qubits
corresponding to Arthur’s workspace.
{Aw,y cxeYtye Z“"’”')} IntheQMAM case, it becomes necessary to discuss pos-
sible actions that Merlin may perform rather than just dis-
is a QAM verification procedure for a languagethathas  ¢yssing states that he may send. This is because Merlin’s
completeness and soundness errors bounded by 1/9. For an¥trategy could involve preparing some quantum state, send-
x € ¥* and fory € X" chosen uniformly at random, ing part of that state to Arthur on the first message, and
rel = Prlu(A,,)>2/3] > 2/3 transforming the part of that state he did not send to Arthur

(after receiving Arthur’s coin-flips) in order to produce his
v¢ L = Prlu(Asy) <1/3] > 2/3. second message.

Proposition 4.3. Suppose that



Definition 5.1. A languageL C ¥* is in QMAM(a, b) registerV corresponds to the verifier's work-space, the reg-
if there exists @&QMAM verification procedurd A, ,} as isterM corresponds to the message qubits that are sent back
above such that the following conditions are satisfied. and forth between the prover and verifier, and the register
corresponds to the prover’s workspace. The regigtdre-
gins in the prover’s possession because the prover sends the
first message. The verifier's work-space registelegins
initialized to the state0*), while the prover initializes the
pair (M, P) to some arbitrary quantum stdte).

In the first message, the prover semdgo the verifier.
The verifier applies some unitary transformatignto the
pair (V, M) and returnsvl to the prover in the second mes-

2. If & ¢ L then for everyl, every quantum statg)) on sage. The prover now applies some arbitrary unitar_y trans-
my +ma +1 quitS, and every collection of unitary op- formationU to the palr(M, P) and returndM to the verifier

1. If z € L then for somd there exists a quantum state
|) onmy + mq + [ qubits and a collection of unitary
operators{U, : y € X"} acting onmg + [ qubits such
that

1
> Z Pr[A, , acceptsl,,, ® Uy)|¢¥)] > a.
yeD”

erators{U, : y € X"} acting onms + [ qubits, in the third and final message. Finally, the verifier applies
a second unitary transformatidsi to the pair(V, M) and
1 measures the first qubit of the resulting collection of qubits
— Pr[A, , acceptsl,,, ® U, < b X . S
2r Ay P, w)I¥)] in the standard basis. The outcome 1 is interpreted as ac-

»r
ve cept and 0 is interpreted as reject.

The same assumptions regardingndb apply in this case LetIly, I11, Ag, andA; be projections defined as
as in theQMA andQAM cases.
I = [1)(1] ® Tim—1,

In the above definition, the circuit, ,, is acting onmn; +m, Ty = |0)(0| ® I
qubits sent by Merlin in addition to Arthur’s workspace 0 ktm=1>

qubits, while(1,,,, ®U,)|v) is a state omn; +mso +1 qubits. Ay = [0%)(0%| ® I,

It is to be understood that the ldsjubits of(I,,,, @ U, )|¢) Ao = Tjom — A1

remain in Merlin's possession, sé, , is effectively ten-

sored with the identity acting on these qubits. In other words, these aket+ m qubit projections that act on

the pair of registersM, V); I1; andIl, are projections onto
those states for which the first qubit of the registés 1 or
0, respectively, and\; and A, are projections onto those

This section contains background information on quantum States for which the registsfcontains the stat@”) or con-
interactive proof systems that will be used to prove that tains a state orthogonal to*), respectively. These are sim-
guantum Arthur-Merlin games have the same power as ar_|I_ar def|n|t|_ons to Eqg. 1, but for notational convenience the
bitrary quantum interactive proof systems. A more com- first & qubits refer to the work-space qublsand the last
plete discussion of quantum interactive proof systems can’” qubits refer to the message quidits 3 _
be found in Ref. [13]. _ The maximum probability with wh|ch. a verifier speci-
As in the classical case, a quantum interactive proof sys-fied by V1 andV; can be made to accept is
tem consists of two parties, a prover with unlimited com- 2
putation power and a computationally bounded verifier. 1M V2 @ L) (5 @ U) (Vi @ L)([05) )|
The prover and verifier may processes and exchange quanmaximized over all choices of the state¢) and the uni-
tum information; the prover can perform arbitrary quan- tary transformatiorV. The numbet is determined by the
tum computations while the verifier's computations must prover's strategy, so one may maximize over this number
be described by polynomial-time uniform families of quan- a5 well. However, there is no loss of generality in assum-
tum circuits. It will only be necessary for us to discuss the jng; — 1, + £, as itis always possible for a quantum prover
particular case of three-message quantum interactive prootg pjay optimally with this many work-space qubits.
systems, as any (polynomial-message) quantum interactive - There is another way to characterize the maximum ac-
proof system can be simulated by a three-message quanturBeptance probability for a given verifier based onftHelity

interactive proof. Moreover, such a proof system may be fynction: for two mixed-states and¢, fidelity betweenp
taken to have perfect completeness and exponentially smallnd¢ is defined as

soundness error.
For a fixed inputr, a three-message quantum interactive F(p,&) = try/\/p&/p.
proof system operates as follows. The verifier begins with
a k-qubit registerV and the prover begins with two regis- To describe this characterization we will need to define var-
ters: anm-qubit registerM and anl-qubit registerP. The ious sets of states of the pair of registé¥s M). For any

5.1. Background on quantum interactive proofs



projection A on k + m qubits letS(A) denote the set of 1. Receive registe¥ from Merlin.
all mixed statep of (V, M) that satisfyp = ApA, i.e., the 2. Flip a fair coin and send the result to Merlin.
collection of states whose support is contained in the space8. Receive registeM from Merlin. If the coin flipped in

onto whichA projects. Also letSy(A) denote the set of all step 2 wasiEADS, apply V% to (V, M) andacceptif the

reduced states of that result from some stajec S(A), first qubit of V (i.e., the output qubit of the quantum in-

i.e., teractive proof system) is 1, otherwisgect If the coin
Sv(A) ={trmp : p€ SN}, in step 2 wagaiLs, applyV;' to (V, M) andacceptf all

wheretry denotes the partial trace over the register qubits ofV are set to 0, otherwiseject

Suppose first that € L, so that some prover, whose ac-
tions are described by a stdtg) and a unitary operatdy
as discussed in the previous section, can convinde ac-

Lemma 5.2. The maximum probability with which a veri-
fier specified by’ andV; can be made to accept is

max {F(p, 62 peSy(iAV)), ¢ e SV(VJH1V2)} . cept W@th certai_nty. Then .Merlin can convince Arthur to ac-
cept with certainty by acting as follows:
This lemma is implicit in Ref. [13]. 1. Prepare stat&)*) in registerV and statg)) in regis-
) ters(M, P). Apply V; to registergV, M), and send/ to
5.2. Equivalence of QMAM and QIP Arthur.

2. If Arthur flips HEADS, applyU to (M, P) and send to

In this section we prove thaMAM = QIP. Because Arthur. If Arthur flips TAILS, sendM to Arthur without

quantum Arthur-Merlin games are a restricted form of quan- applyingU.
tum interactive proof systemMAM C QIP is obvious. )

To prove the containmer®IP C QMAM, we will need Now assumer ¢ L, so that no prover can convindé
the following lemmas in addition to the facts summarized © accept with probability exceeding Suppose that the

in the previous section. The first lemma is a corollary of réduced density matrix of registét sent by Merlin iso.
Uhlmann’s Theorem (v. [17]). By Lemmas 5.3 and 5.4, the probability that Arthur can be

) , o made to accept is at most
Lemma 5.3. Suppose the pair of registerd/, M) is in

some mixed quantum state for which the reduced state of EF(p, o)+ EF(QJ)? < 1 + 11?(;,7 £)
Vis o. If the pair (V, M) is measured with respect to a bi- 2 2 2 2
nary valued measurement described by orthogonal projec-maximized ovep € SV(VlAlvf) and¢ € SV(VJHJ/Q).
tions {Ag, A1}, then the probability of obtaining the out- By Lemma 5.2 this probability is at most

come 1 is at mosk (o, p)? for somep € Sy(Aq). 1 Ve 1
. . . N AP ) b J(E))
The second lemma is a simple property of the fidelity func- 9 + ) < 92 +277,
tion. which completes the proof. [ ]

Lemma 5.4 (Refs. [16, 20]).For density matrice, £, and  cCorollary 5.6. For any functionp € poly we have
o, we haveF'(p,0)? + F(0,£)* < 1+ F(p,£).
_ _ QIP C QMAM(1,1/2 4+ 27P).
Now we have the required tools to prove the main theo-

rem of this section, which follows. Now, suppose that we have gVl AM protocol for a lan-
guagel with perfect completeness and soundness e¥ror

and we repeat the protocdl times in parallel, accepting if
and only if all NV of the repetitions accept. Itis clear that this
resulting protocol has perfect completeness, because Mer-
lin can play optimally for each parallel repetition indepen-
dently and achieve an acceptance probability of 1 for any
Proof. Let L € QIP, which implies thatl has a three- x € L. In the case that ¢ L, Merlin can gain no advan-
message quantum interactive proof system with complete-tage whatsoever over playing the repetitions independently,
ness error 0 and soundness eerpr) = 2~22(") on inputs and so the soundness error decreases‘t@as we would
of lengthn. hope. This follows from the fact that the same holds for arbi-
Using the notation described in Section 5.1, consider atrary three-message quantum interactive proof systems [13],
QMAM verification procedured that corresponds to the of which three-message quantum Arthur-Merlin games are
following actions for Arthur. (It will be assumed that the in- a restricted type. This implies the following corollary.
putz is fixed, as the uniformity of thiQ MAM verification

procedure is clear given the uniformity of the verifier be- B
ing simulated.) QIP = QMAM(1,277).

Theorem 5.5. Let L € QIP and letp € poly. ThenL has a
three message quantum Arthur-Merlin game with complete-
ness error 0 and soundness error at mbge + 2-7(*) on
inputs of lengt. Moreover, in this quantum Arthur-Merlin
game, Arthur's message consists of a single coin-flip.

Corollary 5.7. For any functionp € poly we have



5.3. More than three messages

Finally, we note that one may define quantum Arthur-

Merlin games having any polynomial number of messages [6]

in a similar way to three-message quantum Arthur-Merlin
games. Such games are easily seen to be equivalentin power

to three-message quantum Arthur-Merlin games. Specifi- [7]

cally, polynomial-message quantum Arthur-Merlin games
will be special cases of quantum interactive proof sys-

tems, and can therefore be parallelized to three-message in-
teractive proofs and simulated by three-message quantum

Arthur-Merlin games as described in the previous section.

6.

: : : [
Several interesting questions about quantum Arthur-Merlin

Open guestions

[5] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quan-

(9]

games remain unanswered. Some examples include the fol-
lowing questions.

Are there interesting examples of problem<JN A or
QAM that are not known to be iIAM? A similar ques-

tion may be asked fagMAM vs. PSPACE.

The question of whether there exists an oracle relative

to whichBQP is outside ofPH appears to be a difficult

problem. In fact it is currently not even known if there is
an oracle relative to whicBRQP ¢ AM. Is there an or-
acle relative to whiclQMA or QAM is not contained

in AM? If so, what abouQMA or QAM versusPH?
Such results might shed some light on the problem of

BQP vs.PH.

Nisan and Wigderson [18] provedmost-NP = AM.
Is it the case thailmost-QMA = QAM?
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