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Abstract

This paper studies quantum Arthur-Merlin games, which
are a restricted form of quantum interactive proof system in
which the verifier’s messages are given by unbiased coin-
flips. The following results are proved.

• For one-message quantum Arthur-Merlin games, which
correspond to the complexity classQMA, complete-
ness and soundness errors can be reduced exponentially
without increasing the length of Merlin’s message. Pre-
vious constructions for reducing error required a poly-
nomial increase in the length of Merlin’s message. Ap-
plications of this fact include a proof that logarithmic
length quantum certificates yield no increase in power
overBQP and a simple proof thatQMA ⊆ PP.

• In the case of three or more messages, quantum Arthur-
Merlin games are equivalent in power to ordinary quan-
tum interactive proof systems. In fact, for any language
having a quantum interactive proof system there exists
a three-message quantum Arthur-Merlin game in which
Arthur’s only message consists of just a single coin-flip
that achieves perfect completeness and soundness error
exponentially close to 1/2.

• Any language having a two-message quantum Arthur-
Merlin game is contained inBP · PP. This gives some
suggestion that three messages are stronger than two in
the quantum Arthur-Merlin setting.

1. Introduction

This paper investigates the complexity-theoretic aspects of
quantum Arthur-Merlin games, which are defined in an
analogous way to classical Arthur-Merlin games [3, 4].
Specifically, quantum Arthur-Merlin games are quantum in-
teractive proof systems [13, 23] in which Arthur (the veri-

fier) only sends uniformly generated sequences of bits to
Merlin (the prover) instead of arbitrary quantum informa-
tion. Thus, Arthur may not send any quantum informa-
tion at all to Merlin, and one may view all of Arthur’s
computations (quantum or classical) as taking place after
all messages have been exchanged. Similar to the classical
case, quantum Arthur-Merlin games give rise to complexity
classes depending on the number of messages exchanged
between Arthur and Merlin. In particular, we obtain three
primary complexity classes corresponding to Arthur-Merlin
games with one message, two messages, and three or more
messages.

In the one-message case, Merlin sends a single message
to Arthur, who checks it and makes a decision to accept or
reject the input. The corresponding complexity class is de-
notedQMA, and has recently been considered in several pa-
pers [2, 8, 9, 15, 19, 21, 22]. Because there is really no inter-
action between Arthur and Merlin in this situation, Merlin’s
message to Arthur may be viewed as a quantum witness
or certificate that Arthur checks in polynomial time with a
quantum computer. To our knowledge, the idea of a quan-
tum state playing the role of a certificate in this sense was
first proposed by Knill [14], and the idea was later studied
in greater depth by Kitaev [11]. Kitaev proved various fun-
damental properties ofQMA, which are described in Ki-
taev, Shen, and Vyalyi [12] and Aharovov and Naveh [1].

One of the facts that Kitaev proved was that the com-
pleteness and soundness errors in aQMA protocol may
be efficiently reduced, essentially by parallel repetition. Be-
cause quantum information cannot be copied, however, and
Arthur’s verification procedure is potentially destructive to
Merlin’s message, Arthur requires multiple copies of Mer-
lin’s message for this method to work. Consequently, this
method requires a polynomial increase in the length of Mer-
lin’s message to Arthur in order to achieve exponentially de-
creasing error. In this paper, we prove that this increase in
the length of Merlin’s message is not required after all; us-



ing a different error reduction method, an exponential re-
duction in error is possible with no increase whatsoever in
the length of Merlin’s message to Arthur.

It is known thatQMA is contained inPP, which can
be proved using theGapP-based method of Fortnow and
Rogers [6] together with some simple facts from matrix
analysis. This fact was noted without proof in Ref. [13].
A proof does appear, however, in a recent paper of Vya-
lyi [21], who in fact strengthens this result to show that
QMA is contained in a subclassA0PP of PP. Based on
our new amplification result, we give a simplified proof of
this fact. We also use our amplification result to prove that
quantum Merlin-Arthur games in which Merlin’s message
has logarithmic length give no increase in power overBQP.

In the two-message case, Arthur flips some number of
fair coins, sends the results of those coin-flips to Mer-
lin, and Merlin responds with some quantum state. Arthur
performs a polynomial-time quantum computation on the
random bits together with Merlin’s response, which deter-
mines whether Arthur accepts or rejects. The corresponding
complexity class will be denotedQAM. Two facts about
QAM are proved in this paper. The first is the very ba-
sic fact that parallel repetition reduces error exactly as in
the classical case. (Parallel repetition is currently known to
hold for general quantum interactive proof systems only in
the case of perfect completeness.) The second fact is that
QAM ⊆ BP · PP. This may be viewed as weak evidence
that two-message quantum Arthur-Merlin games are not as
powerful as PSPACE.

Finally, in the three-message case, Merlin sends Arthur a
message consisting of some number of qubits, Arthur flips
some number of fair coins and sends the results to Mer-
lin, and then Merlin responds with a second collection of
qubits. Arthur performs a polynomial-time quantum com-
putation on all of the qubits sent by Merlin together with
the values of his own coin-flips, and decides whether to ac-
cept or reject. The corresponding complexity class will be
denotedQMAM. It is proved that any language having an
ordinary quantum interactive proof system is contained in
QMAM, implying QMAM = QIP. In principle this fact
resembles the theorem of Goldwasser and Sipser [7] estab-
lishing that classical Arthur-Merlin games and interactive
proof systems are equivalent in power. However, there is no
similarity in the proofs of these facts. Indeed, our result is
stronger than what is likely to hold classically. Specifically,
we prove that any language having a quantum interactive
proof system has a three-message quantum Arthur-Merlin
game in which Arthur’s only message to Merlin consists of
just a single coin-flip (in order to achieve perfect complete-
ness and soundness error exponentially close to 1/2). This is
impossible classically unless interaction is useless in clas-
sical interactive proof systems; for if Arthur flips only one
coin, Merlin may as well send his first message and the two

possible second messages to Arthur in a single message.
The reason why this strategy fails in the quantum case is
that Merlin’s first and second messages may need to be en-
tangled in order to be convincing to Arthur, but it is not pos-
sible for Merlin to simultaneously entangle his two possible
second messages with the first.

The remainder of this paper is organized in the follow-
ing way. First, Section 2 discusses some notation and back-
ground information used in the paper. Section 3 discusses
one-message quantum Arthur-Merlin games, Section 4 dis-
cusses the two-message case, and Section 5 discusses the
case of three or more messages. These sections therefore
correspond to the three complexity classesQMA, QAM,
andQMAM, respectively. The paper concludes with Sec-
tion 6, which mentions some open problems relating to
quantum Arthur-Merlin games.

2. Preliminaries

By default, all strings and languages in this paper will be
over the alphabetΣ = {0, 1}. We denote bypoly the set of
all functionsf : N→ N\{0} (whereN = {0, 1, 2, . . .}) for
which there exists a polynomial-time deterministic Turing
machine that outputs1f(n) on input1n.

We will assume that the reader has some familiarity
with the mathematics of quantum information, which is
discussed in detail in Kitaev, Shen, and Vyalyi [12] and
Nielsen and Chuang [17]. It will be possible for us to re-
strict our attention to pure quantum states for much of the
paper, although mixed quantum states will be used occa-
sionally (in particular, in Sections 3.2, 5.1, and 5.2).

For simplicity we will define quantum Arthur-Merlin
games in terms of quantum circuits composed of gates from
the Shor basis: Toffoli gates, Hadamard gates, andi-shift
gates (which induce the mapping|0〉 7→ |0〉, |1〉 7→ i|1〉).
This is a universal set of gates (see Ref. [10]), so there is no
loss of generality in restricting our attention to this set. As-
sume that a reasonable encoding scheme has been fixed that
allows quantum circuits to be encoded as binary strings hav-
ing length at least the size of the encoded circuit and at most
some fixed polynomial in the circuit’s size.

A collection{Ax : x ∈ Σ∗} of quantum circuits is said
to bepolynomial-time uniformif there exists a polynomial-
time deterministic Turing machineM that, on inputx ∈ Σ∗,
outputs an encoding of the circuitAx. Although this is not
the most conventional notion of circuit uniformity, as the
family is parameterized by strings rather than string lengths,
it is better suited to our needs. More generally, such a fam-
ily may be parameterized by tuples of strings; for instance
we will consider families of the form{

Ax,y : x ∈ Σ∗, y ∈ Σr(|x|)
}



for r some function inpoly when two- and three-message
quantum Arthur-Merlin games are discussed.

It will sometimes be helpful when describing certain
quantum Arthur-Merlin games to refer toquantum registers.
These are simply collections of qubits to which we assign
some name. The qubits of a given register may be entan-
gled with other qubits, so it may not be possible to describe
the state of a quantum register by a single vector. When we
refer to thereduced stateof a given register, we are refer-
ring to the mixed state obtained by tracing out all other reg-
isters beside the one to which we are referring.

The definitions for quantum Arthur-Merlin games and
the resulting complexity classesQMA, QAM, andQMAM
will appear in their respective sections.

3. QMA

A QMA verification procedureA is a polynomial-time uni-
form family {Ax : x ∈ Σ∗} of quantum circuits together
with a functionm ∈ poly . The functionm specifies the
length of Merlin’s message to Arthur, and it is assumed that
each circuitAx acts onm(|x|) + k(|x|) qubits for some
functionk specifying the number of work (orancilla) qubits
used by the circuit. In order to simplify our notation, when
the inputx has been fixed or is implicit we will generally
write m to meanm(|x|), k to meank(|x|), and so forth.
When we want to emphasize the length of Merlin’s mes-
sage, we will refer toA as anm-qubit QMA verification
procedure.

Consider the following process for a stringx ∈ Σ∗ and
a quantum state|ψ〉 onm qubits:

1. Run the circuitAx on the input state|ψ〉|0k 〉.
2. Measure the first qubit of the resulting state in the stan-

dard basis, interpreting the outcome 1 asacceptand the
outcome 0 asreject.

The probability associated with each of the two possible
outcomes will be referred to asPr[Ax accepts|ψ〉] and
Pr[Ax rejects|ψ〉] accordingly.

Definition 3.1. The classQMA(a, b) consists of all lan-
guagesL ⊆ Σ∗ for which there exists aQMA verification
procedure{Ax : x ∈ Σ∗} for which the following holds:

1. For allx ∈ L there exists anm qubit quantum state|ψ〉
such that

Pr[Ax accepts|ψ〉] ≥ a.

2. For allx 6∈ L and allm qubit quantum states|ψ〉,

Pr[Ax accepts|ψ〉] ≤ b.

For anym ∈ poly , the classQMAm(a, b) consists of all
languagesL ⊆ Σ∗ for which there exists anm-qubitQMA
verification procedure that satisfies the above properties.

One may consider the cases wherea andb are constants
or functions of the input lengthn = |x| in this definition. If
a andb are functions of the input length, it is assumed that
a(n) and b(n) can be computed deterministically in time
polynomial inn. When no reference is made to the proba-
bilities a andb, it is assumeda = 2/3 andb = 1/3.

3.1. Amplification

It is known thatQMA is robust with respect to error bounds
in the following sense.

Theorem 3.2 (Kitaev). Leta, b : N→ (0, 1) andp ∈ poly
satisfy

a(n)− b(n) ≥ 1
p(n)

for all n ∈ N. Then

QMA(a, b) = QMA(1− 2−q, 2−q)

for everyq ∈ poly .

A proof of this theorem appears in Section 14.2 of Kitaev,
Shen, and Vyalyi [12]. The idea of the proof is as follows.
If we have a verification procedureA with completeness
and soundness probabilities given bya andb, we construct
a new verification procedure that independently runsA on
some sufficiently large number of copies of the original cer-
tificate and accepts if the number of acceptances ofA is
appropriately large (above(a + b)/2, say). The difficulty
in proving that this construction works lies in the fact that
the new certificate cannot be assumed to consist of several
copies of the original certificate, but may be an arbitrary
(possibly highly entangled) quantum state. Intuitively, how-
ever, entanglement cannot help Merlin to cheat; under the
assumption thatx 6∈ L, the probability of acceptance for
any particular execution ofA is bounded above byb, and
this is true regardless of whether one conditions on the out-
comes of any of the other executions ofA. This construc-
tion requires an increase in the length of Merlin’s message
to Arthur in order to reduce error.

The main result of this section is the following theorem,
which states that one may decrease error without any in-
crease in the length of Merlin’s message.

Theorem 3.3. Leta, b : N→ (0, 1) andp ∈ poly satisfy

a(n)− b(n) ≥ 1
p(n)

for all n ∈ N. Then

QMAm(a, b) = QMAm(1− 2−q, 2−q)

for everyq,m ∈ poly .
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Figure 1. Example circuit diagram for verification procedure B.

Proof. AssumeL ∈ QMAm(a, b), andA is anm-qubit
QMA verification procedure that witnesses this fact. We
will describe a newm-qubit QMA verification procedure
B with exponentially small completeness and soundness er-
ror. It will simplify matters to assume hereafter that the in-
putx is fixed—it will be clear that the new verification pro-
cedure is polynomial-time uniform. As the inputx is fixed,
we will writem, k, etc., rather thanm(|x|), k(|x|), etc., and
we will write A andB to denoteAx andBx, respectively.

It will be helpful to refer to them message qubits along
with thek work-space qubits ofA as a singlem + k qubit
quantum registerR. Define projections acting on the possi-
ble states of the registerR as follows:

Π1 = |1〉〈1| ⊗ Im+k−1, ∆1 = Im ⊗ |0k 〉〈0k |,
Π0 = |0〉〈0| ⊗ Im+k−1, ∆0 = Im+k −∆1.

(1)

Here, and throughout the paper, we writeIl to denote the
identity operator acting onl qubits. The measurement de-
scribed by{Π0,Π1} is just a measurement of the first qubit
of R in the computational basis; this measurement deter-
mines whether Arthur accepts or rejects after the circuitA
is applied. The measurement described by{∆0,∆1} gives
outcome 1 if the lastk qubits of R, which correspond to
Arthur’s work-space qubits, are set to their initial all-zero
state, and gives outcome 0 otherwise.

The procedureB operates as follows:

1. Assume the firstm qubits ofR contain Merlin’s message
|ψ〉 and the remainingk qubits are set to the state|0k 〉.

2. Setr0 ← 1 andi← 1.

3. Repeat:

a. ApplyA to R and measureR with respect to the mea-
surement described by{Π0,Π1}. Let ri denote the
outcome, and seti← i+ 1.

b. Apply A† to R and measureR with respect to the
measurement described by{∆0,∆1}. Let ri denote
the outcome, and seti← i+ 1.

Until i ≥ N (whereN is chosen depending on the de-
sired error bound).

4. For eachi = 1, . . . , N set

si ←
{

1 if ri = ri−1

0 if ri 6= ri−1.

Accept if
∑N

i=1 si ≥ N · a+b
2 and reject otherwise.

Although the description of this procedure refers to vari-
ous measurements, it is possible to simulate these measure-
ments with unitary gates in the standard way, which allows
the entire procedure to be implemented by a unitary quan-
tum circuit. Figure 1 illustrates a quantum circuit imple-
menting this procedure for the caseN = 5. In this figure,
S represents the computation described in the last step of
B (performed reversibly), and the last qubit rather than the
first represents the output qubit to simplify the picture.

Suppose first that Merlin’s message|ψ〉 is an eigenvec-
tor of (Im⊗〈0k |)A†Π1A(Im⊗|0k 〉), which is equivalent to
|φ〉 = |ψ〉|0k 〉 being an eigenvector of∆1A

†Π1A∆1. Let
the corresponding eigenvalue bep, which implies the veri-
fication procedureA would accept|ψ〉 with probabilityp.
It will be shown that the verification procedureB would ac-
cept|ψ〉 with probability∑

N · a+b
2 ≤j≤N

(
N

j

)
pj(1− p)N−j .

This will follow from the fact that the procedureB ob-
tains each possible sequence(s1, . . . , sN ) with probability
pw(s)(1 − p)N−w(s) for w(s) =

∑N
i=1 si. This is straight-

forward if p = 0 or p = 1, so assume0 < p < 1.
Define vectors|γ0〉, |γ1〉, |δ0〉, and|δ1〉 as follows:

|γ0〉 =
Π0A∆1|φ〉√

1− p
, |δ0〉 =

∆0A
†Π1|γ1〉√
1− p

,

|γ1〉 =
Π1A∆1|φ〉√

p
, |δ1〉 =

∆1A
†Π1|γ1〉√
p

.
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Figure 2. Transition probabilities for verification procedure M .

The fact that|φ〉 is an eigenvector of∆1A
†Π1A∆1 with

eigenvaluep implies that each of the vectors|γ0〉, |γ1〉,
|δ0〉, |δ1〉 is a unit vector, and that|δ1〉 = |φ〉. We have

A|δ0〉 = −√p |γ0〉+
√

1− p |γ1〉
A|δ1〉 =

√
1− p |γ0〉+

√
p |γ1〉.

(2)

The second equality follows from|δ1〉 = |φ〉, and the first
follows from the second along with the observation that

A
(√

1− p|δ0〉+
√
p|δ1〉

)
= |γ1〉.

With the above equations (2) in hand, it is not difficult to
determine the probability associated with each sequence of
measurement outcomes. We begin in state|φ〉 = |δ1〉 and
applyA. After the measurement described by{Π0,Π1} the
(renormalized) state of registerR becomes|γ0〉 or |γ1〉 ac-
cording to whether the outcome is 0 or 1, with associated
probabilities1 − p andp, respectively. If instead we were
to start in state|δ0〉, the renormalized states after measure-
ment would be the same, but the probabilities are reversed;
we have probabilityp associated with outcome 0 and prob-
ability 1 − p with outcome 1. For the second step of the
loop the situation is similar. If the registerR is in state|γ1〉,
the transformationA† is applied, and the state is measured
via the measurement{∆0,∆1}, the renormalized state af-
ter measurement will be either|δ1〉 or |δ0〉, with associated
probabilitiesp and1 − p. If instead the initial state is|γ0〉
rather than|γ1〉, the renormalized states after the measure-
ment are again the same, but the probabilities are reversed.
These transition probabilities are illustrated in Figure 2. In
all cases we see that the probability of obtaining the same
outcome as for the previous measurement isp, and the prob-
ability of the opposite outcome is1− p. The probability as-
sociated with a given sequences = (s1, . . . , sN ) is there-
fore pw(s)(1 − p)N−w(s) as claimed, as eachsi is 1 if the
measurement outcomesri−1 andri are equal, and is 0 oth-
erwise. (Settingr0 = 1 includes the first measurement out-
come in this pattern.)

In general Merlin might not provide Arthur with an
eigenvector of(Im⊗〈0k |)A†Π1A(Im⊗|0k 〉), but the above
analysis makes it straightforward to determine the maxi-
mum probability with which Merlin can cause the proce-
dureB to accept. AssumeB usesl work-space qubits in
addition to thek work-space qubits used byA. For any
sequencer = (r1, . . . , rN ) of measurement outcomes let
f(r) be 1 or 0 depending on whether the sequence would
be accepted or rejected byB, respectively. Also defineΛr to
be a projection operator that projects onto states for which
the work-space qubits ofB record measurement outcomes
r = (r1, . . . , rN ). Then for

Q =
∑

r:f(r)=1

(Im ⊗ 〈0k+l |)B†ΛrB(Im ⊗ |0k+l〉)

we have that the probability thatB accepts message|ψ〉
is 〈ψ |Q|ψ〉. The largest probability with which Merlin can
cause the procedureB to accept is given by the largest
eigenvalue ofQ.

Let {|ψ1〉, . . . , |ψ2m 〉} be a complete orthonormal col-
lection of eigenvectors of

(Im ⊗ 〈0k |)A†Π1A(Im ⊗ |0k 〉),

with associated eigenvaluesp1, . . . , p2m . By the above anal-
ysis we may conclude that for eachr this set is also a set of
eigenvectors of

(Im ⊗ 〈0k+l |)B†ΛrB(Im ⊗ |0k+l〉),

and therefore is a set of eigenvectors of the sumQ. The as-
sociated eigenvalues forQ are therefore given by∑

N · a+b
2 ≤j≤N

(
N

j

)
pj

i (1− pi)N−j .

Because eachpi is bounded above by the maximum accep-
tance probability for the procedureA, we have at this point
that the theorem follows by a suitable choice forN along
with standard Chernoff-type bounds.



3.2. Applications

Two applications of Theorem 3.3 will be given in this sec-
tion. The first is a simplified proof thatQMA is contained
in PP.

Theorem 3.4. QMA ⊆ PP.

Proof. LetL ⊆ Σ∗ be a language inQMA. By Theorem 3.3
there exists a functionm ∈ poly such that

L ∈ QMAm

(
1− 2−(m+2), 2−(m+2)

)
.

Let A be a verification procedure that witnesses this fact.
Specifically, each circuitAx acts onk+m qubits, for some
k ∈ poly , and satisfies the following. Ifx ∈ L, then there
exists anm qubit state|ψ〉 such that

Pr[Ax accepts|ψ〉] ≥ 1− 2−m−2,

while if x 6∈ L, then

Pr[Ax accepts|ψ〉] ≤ 2−m−2

for everym qubit state|ψ〉.
For eachx ∈ Σ∗, define a2m × 2m matrixQx as

Qx =
(
Im ⊗ 〈0k |

)
A†

xΠ1Ax

(
Im ⊗ |0k 〉

)
.

EachQx is positive semidefinite, and

〈ψ |Qx|ψ〉 = Pr[Ax accepts|ψ〉]

for any unit vector|ψ〉 onm qubits. The maximum prob-
ability with which Ax can be made to accept is therefore
the largest eigenvalue ofQx. Because the trace of a ma-
trix is equal to the sum of its eigenvalues and all eigenval-
ues ofQx are nonnegative, it follows that ifx ∈ L, then

tr(Qx) ≥ 1− 2−m−2 ≥ 3/4,

while if x 6∈ L, then

tr(Qx) ≤ 2m2−m−2 ≤ 1/4.

Now, based on a straightforward modification of Fort-
now and Rogers [6] based on our choice of the Shor basis,
we have that there exist a polynomially-boundedFP func-
tion t andGapP functionsf andg such that

<(Qx[i, j]) =
f(x, i, j)

2t(x)
and =(Qx[i, j]) =

g(x, i, j)
2t(x)

for 0 ≤ i, j < 2m. Define

h(x) =
2m−1∑
i=0

f(x, i, i).

By closure properties of GapP functions,h ∈ GapP. More-
over, we haveh(x) = 2t(x) tr(Qx), and therefore

x ∈ L⇒ h(x) ≥ 3
4
2t(x)

x 6∈ L⇒ h(x) ≤ 1
4
2t(x).

Because2t(x) is an FP function, it follows that2h(x)−2t(x)

is a GapP function that is positive ifx ∈ L and negative if
x 6∈ L. Thus,L ∈ PP as required.

Remark. A simple modification of the above proof yields
QMA ⊆ A0PP, whereA0PP is defined in Vyalyi [21].

The second application concerns quantum Merlin-Arthur
games where Merlin sends only a logarithmic number of
qubits to Arthur.

Classical Merlin-Arthur games with logarithmic-length
messages from Merlin to Arthur are obviously equivalent
in power to BPP, because Arthur could simply search
through all possible messages in polynomial time in lieu
of interacting with Merlin. In the quantum case, however,
this argument does not work, as one may construct ex-
ponentially large sets of pairwise nearly-orthogonal quan-
tum states on a logarithmic number of qubits, such as those
used in quantum fingerprinting [5]. Nevertheless, logarith-
mic length quantum messages can be shown to be useless in
the context ofQMA using a different method, based on the
strong amplification property ofQMA proved above.

For a, b : N → [0, 1] defineQMAlog(a, b) to be the
class of all languages contained inQMAm(a, b) for some
m(n) ∈ O(log n), and letQMAlog = QMAlog(2/3, 1/3).
The choice of the constants 2/3 and 1/3 is arbitrary, which
follows from Theorem 3.3.

Theorem 3.5. QMAlog = BQP.

Proof: AssumeL ∈ QMAm for m logarithmic, and as-
sumeA is aQMA verification procedure that witnesses this
fact and has completeness and soundness error less than
2−(m+2). Let

Qx =
(
Im ⊗ 〈0k |

)
A†

xΠ1Ax

(
Im ⊗ |0k 〉

)
.

Similar to the proof of Theorem 3.4, we have

x ∈ L ⇒ tr(Qx) ≥ 3/4, x 6∈ L ⇒ tr(Qx) ≤ 1/4.

We will describe a polynomial-time quantum algorithm
B that decidesL with bounded error. The algorithmB sim-
ply constructs a totally mixed state overm qubits and runs
the verification procedureA using this state in place of Mer-
lin’s message. Running the verification procedure on the to-
tally mixed state is equivalent to running the verification
procedure onm qubits initialized to some uniformly gen-
erated standard basis state. This is easily simulated using



Hadamard transforms and controlled not gates on2m qubits
appropriately. The totally mixed state onm qubits corre-
sponds to the density matrix2−mIm, from which it follows
that the probability of acceptance ofB is given by

Pr[B acceptsx] = tr
(
Qx 2−mIm

)
= 2−m tr(Qx).

Given thatm is logarithmic in|x|, we have that the prob-
abilities with whichB accepts inputsx ∈ L and inputs
x 6∈ L are bounded away from one another by the recip-
rocal of some polynomial. This difference can be amplified
by standard methods, implying thatL ∈ BQP.

4. QAM

A QAM verification procedureA consists of functions
m, r ∈ poly and a polynomial-time uniform family{

Ax,y : x ∈ Σ∗, y ∈ Σr(|x|)
}

of quantum circuits. As in the case ofQMA verification
procedures, each circuitAx,y acts on two collections of
qubits:m(|x|) qubits sent by Merlin andk(|x|) qubits cor-
responding to Arthur’s workspace. The notion of a circuit
Ax,y accepting a message|ψ〉 is defined in the same way as
for QMA. In the present case, the stringy corresponds to
a sequence of coin-flips sent by Arthur to Merlin, on which
Merlin’s message may depend.

Definition 4.1. The classQAM(a, b) consists of all lan-
guagesL ⊆ Σ∗ for which there exists aQAM verification
procedureA satisfying the following conditions.

1. If x ∈ L then there exists a collection of states{|ψy 〉}
onm qubits such that

1
2r

∑
y∈Σr

Pr[Ax,y accepts|ψy 〉] ≥ a.

2. If x 6∈ L then for every collection of states{|ψy 〉} onm
qubits it holds that

1
2r

∑
y∈Σr

Pr[Ax,y accepts|ψy 〉] ≤ b.

As for QMA, one may consider the cases wherea andb are
constants or functions ofn = |x|, and in the case thata and
b are functions of the input length it is assumed thata(n)
andb(n) can be computed deterministically in time polyno-
mial in n. Also as before, letQAM = QAM(2/3, 1/3).

4.1. Error reduction for QAM

The first fact aboutQAM that we prove is that complete-
ness and soundness errors may be reduced by running many
copies of the protocol in parallel. The proof is similar in
principle to the proof of Lemma 14.1 in [12], which corre-
sponds to our Theorem 3.2.

Proposition 4.2. Leta, b : N→ (0, 1) satisfy

a(n)− b(n) ≥ 1
p(n)

for all n ≥ N for somep ∈ poly . Then for anyq ∈ poly ,

QAM(a, b) = QAM(1− 2−q, 2−q).

Proof. Let L ∈ QAM(a, b), and letA be aQAM veri-
fication procedure witnessing this fact. We consider a new
QAM verification procedure that corresponds to playing the
game described by{Ax,y} in parallelN times. The new
procedure accepts if and only if the number of acceptances
of the original game is at leastN · a+b

2 . Although Merlin is
not required to play the repetitions independently, we will
show that playing the repetitions independently in fact gives
him an optimal strategy. The proposition then follows by
choosing an appropriately large value ofN and applying a
Chernoff-type bound.

Assume hereafter that the inputx is fixed, and define

Q(0)
y = (I ⊗ 〈0k |)A†

x,yΠ0Ax,y(I ⊗ |0k 〉),
Q(1)

y = (I ⊗ 〈0k |)A†
x,yΠ1Ax,y(I ⊗ |0k 〉)

for eachy ∈ Σr. We haveQ(1)
y = I − Q

(0)
y , and conse-

quentlyQ(0)
y andQ(1)

y share a complete set of orthonormal
eigenvectors. Let{|ψy,1〉, . . . , |ψy,2m 〉} be such a set, and
let

p
(z)
y,1, . . . , p

(z)
y,2m

be the corresponding eigenvalues forQ(z)
y , z ∈ {0, 1}.

As Q(0)
y andQ(1)

y are positive semidefinite and sum to the

identity, p(0)
y,i and p(1)

y,i are nonnegative real numbers with

p
(0)
y,i + p

(1)
y,i = 1 for eachy andj. Assume without loss of

generality that the eigenvectors and eigenvalues are ordered
in such a way that

p
(1)
y,1 ≥ · · · ≥ p

(1)
y,2m .

This implies that the maximum acceptance probability of
Ax,y is p(1)

y,1.
Under the assumption that Arthur’s coin-flips are given

by y1, . . . , yN , if Merlin plays the repetitions indepen-
dently, and optimally for each repetition, his probability of
convincing Arthur to accept is∑

z1,...,zN∈Σ
z1+···+zN≥N · a+b

2

p
(z1)
y1,1 · · · p

(zN )
yN ,1. (3)

Without any assumption on Merlin’s strategy, the maximum
probability with which Merlin can winN · a+b

2 repetitions
of the original game when Arthur’s coin-flips are given by



y1, . . . , yN is equal to the largest eigenvalue of∑
z1,...,zN∈Σ

z1+···+zN≥N · a+b
2

Q(z1)
y1
⊗ · · · ⊗Q(zN )

yN
. (4)

Therefore, to prove the proposition it suffices to show that
these quantities are equal.

All of the summands in Eq. 4 share the complete set of
orthonormal eigenvalues given by

{|ψy1,i1 〉 · · · |ψyN ,iN
〉 : i1, . . . , iN ∈ {1, . . . , 2m}} ,

and so this set also describes a complete set of orthonor-
mal eigenvectors of the sum. The eigenvalue associated with
|ψy1,i1 〉 · · · |ψyN ,iN

〉 is∑
z1,...,zN∈Σ

z1+···+zN≥N · a+b
2

p
(z1)
y1,i1
· · · p(zN )

yN ,iN
. (5)

Defineu1(X) = X, u0(X) = 1−X, and let

f(X1, . . . , XN ) =
∑

z1,...,zN∈Σ
z1+···+zN≥N · a+b

2

uz1(X1) · · ·uzN
(XN ).

The quantity in Eq. 5 is equal tof(p(1)
y1,i1

, . . . , p
(1)
yN ,iN

). Be-
causef is a multilinear function that is nondecreasing in
each variable, the maximum of the quantity in Eq. 5 is
f(p(1)

y1,1, . . . , p
(1)
yN ,1), which is equal to the quantity in Eq. 3.

This completes the proof.

4.2. An upper bound on QAM

In this section we observe the simple upper boundQAM ⊆
BP ·PP. Recall thatL ∈ BP ·PP if and only if there exists
a setK ∈ PP and a functionr ∈ poly such that

x ∈ L⇒ Pr [(x, y) ∈ K] ≥ 2/3,

x 6∈ L⇒ Pr [(x, y) ∈ K] ≤ 1/3,

where the probability is overy ∈ Σr(|x|) chosen uniformly.
The following fact concerning the maximum probabili-

ties of acceptance ofAx,y for randomy will be used. Here
we letµ(Ax,y) denote the maximum probability thatAx,y

can be made to accept (maximized over all choices of Mer-
lin’s message|ψy 〉).
Proposition 4.3. Suppose that{

Ax,y : x ∈ Σ∗, y ∈ Σr(|x|)
}

is aQAM verification procedure for a languageL that has
completeness and soundness errors bounded by 1/9. For any
x ∈ Σ∗ and fory ∈ Σr chosen uniformly at random,

x ∈ L ⇒ Pr[µ(Ax,y) ≥ 2/3] ≥ 2/3

x 6∈ L ⇒ Pr[µ(Ax,y) ≤ 1/3] ≥ 2/3.

Proof. Suppose thatx ∈ L. Letz(y) = 1−µ(Ax,y), and let
Z be a random variable whose value isz(y) for a uniformly
choseny ∈ Σr. The assumption of the proposition implies
thatE[Z] ≤ 1/9. By Markov’s inequality we have

Pr[Z > 1/3] ≤ E[Z]
1/3

≤ 1/3,

and therefore

Pr[µ(Ax,y) ≥ 2/3] = Pr[Z ≤ 1/3] ≥ 2/3.

The proof forx 6∈ L is similar.

Theorem 4.4. QAM ⊆ BP · PP.

Proof. LetL ∈ QAM, and let

A =
{
Ax,y : x ∈ Σ∗, y ∈ Σr(|x|)

}
be aQAM verification procedure forL with completeness
and soundness errors bounded by 1/9. Such a procedure ex-
ists by Proposition 4.2. It follows from the proof of Theo-
rem 3.4 that there exists a languageK ∈ PP such that

µ(Ax,y) ≥ 2/3⇒ (x, y) ∈ K,

µ(Ax,y) ≤ 1/3⇒ (x, y) 6∈ K.

It is possible thatµ(Ax,y) ∈ (1/3, 2/3) for some values of
y, but in this case no requirement is made on whether or
not (x, y) ∈ K. The theorem now follows from Proposi-
tion 4.3.

Remark. At first glance one might expect the stronger re-
lation QAM ⊆ BP · QMA to hold, but we do not know
whether or not this is the case.

5. QMAM

A QMAM verification procedureA consists of functions
m1,m2, r ∈ poly and a polynomial-time uniformly gener-
ated family {

Ax,y : x ∈ Σ∗, y ∈ Σr(|x|)
}

of quantum circuits. The functionsm1 andm2 specify the
number of qubits in Merlin’s first and second messages to
Arthur. Each circuitAx,y acts onm1(|x|)+m2(|x|)+k(|x|)
qubits, where as beforek(|x|) denotes the number of qubits
corresponding to Arthur’s workspace.

In theQMAM case, it becomes necessary to discuss pos-
sible actions that Merlin may perform rather than just dis-
cussing states that he may send. This is because Merlin’s
strategy could involve preparing some quantum state, send-
ing part of that state to Arthur on the first message, and
transforming the part of that state he did not send to Arthur
(after receiving Arthur’s coin-flips) in order to produce his
second message.



Definition 5.1. A languageL ⊆ Σ∗ is in QMAM(a, b)
if there exists aQMAM verification procedure{Ax,y} as
above such that the following conditions are satisfied.

1. If x ∈ L then for somel there exists a quantum state
|ψ〉 onm1 + m2 + l qubits and a collection of unitary
operators{Uy : y ∈ Σr} acting onm2 + l qubits such
that

1
2r

∑
y∈Σr

Pr[Ax,y accepts(Im1 ⊗ Uy)|ψ〉] ≥ a.

2. If x 6∈ L then for everyl, every quantum state|ψ〉 on
m1 +m2 + l qubits, and every collection of unitary op-
erators{Uy : y ∈ Σr} acting onm2 + l qubits,

1
2r

∑
y∈Σr

Pr[Ax,y accepts(Im1 ⊗ Uy)|ψ〉] ≤ b.

The same assumptions regardinga andb apply in this case
as in theQMA andQAM cases.

In the above definition, the circuitAx,y is acting onm1+m2

qubits sent by Merlin in addition to Arthur’sk workspace
qubits, while(Im1⊗Uy)|ψ〉 is a state onm1+m2+l qubits.
It is to be understood that the lastl qubits of(Im1 ⊗Uy)|ψ〉
remain in Merlin’s possession, soAx,y is effectively ten-
sored with the identity acting on these qubits.

5.1. Background on quantum interactive proofs

This section contains background information on quantum
interactive proof systems that will be used to prove that
quantum Arthur-Merlin games have the same power as ar-
bitrary quantum interactive proof systems. A more com-
plete discussion of quantum interactive proof systems can
be found in Ref. [13].

As in the classical case, a quantum interactive proof sys-
tem consists of two parties, a prover with unlimited com-
putation power and a computationally bounded verifier.
The prover and verifier may processes and exchange quan-
tum information; the prover can perform arbitrary quan-
tum computations while the verifier’s computations must
be described by polynomial-time uniform families of quan-
tum circuits. It will only be necessary for us to discuss the
particular case of three-message quantum interactive proof
systems, as any (polynomial-message) quantum interactive
proof system can be simulated by a three-message quantum
interactive proof. Moreover, such a proof system may be
taken to have perfect completeness and exponentially small
soundness error.

For a fixed inputx, a three-message quantum interactive
proof system operates as follows. The verifier begins with
a k-qubit registerV and the prover begins with two regis-
ters: anm-qubit registerM and anl-qubit registerP. The

registerV corresponds to the verifier’s work-space, the reg-
isterM corresponds to the message qubits that are sent back
and forth between the prover and verifier, and the registerP
corresponds to the prover’s workspace. The registerM be-
gins in the prover’s possession because the prover sends the
first message. The verifier’s work-space registerV begins
initialized to the state|0k 〉, while the prover initializes the
pair (M,P) to some arbitrary quantum state|ψ〉.

In the first message, the prover sendsM to the verifier.
The verifier applies some unitary transformationV1 to the
pair (V,M) and returnsM to the prover in the second mes-
sage. The prover now applies some arbitrary unitary trans-
formationU to the pair(M,P) and returnsM to the verifier
in the third and final message. Finally, the verifier applies
a second unitary transformationV2 to the pair(V,M) and
measures the first qubit of the resulting collection of qubits
in the standard basis. The outcome 1 is interpreted as ac-
cept and 0 is interpreted as reject.

Let Π0, Π1, ∆0, and∆1 be projections defined as

Π1 = |1〉〈1| ⊗ Ik+m−1,

Π0 = |0〉〈0| ⊗ Ik+m−1,

∆1 = |0k 〉〈0k | ⊗ Im,
∆0 = Ik+m −∆1.

In other words, these arek+m qubit projections that act on
the pair of registers(M,V); Π1 andΠ0 are projections onto
those states for which the first qubit of the registerV is 1 or
0, respectively, and∆1 and∆0 are projections onto those
states for which the registerV contains the state|0k 〉 or con-
tains a state orthogonal to|0k 〉, respectively. These are sim-
ilar definitions to Eq. 1, but for notational convenience the
first k qubits refer to the work-space qubitsV and the last
m qubits refer to the message qubitsM.

The maximum probability with which a verifier speci-
fied byV1 andV2 can be made to accept is∥∥(Π1V2 ⊗ Il)(Ik ⊗ U)(V1 ⊗ Il)(|0k 〉|ψ〉)

∥∥2
,

maximized over all choices of the state|ψ〉 and the uni-
tary transformationU . The numberl is determined by the
prover’s strategy, so one may maximize over this number
as well. However, there is no loss of generality in assum-
ing l = m+k, as it is always possible for a quantum prover
to play optimally with this many work-space qubits.

There is another way to characterize the maximum ac-
ceptance probability for a given verifier based on thefidelity
function: for two mixed-statesρ andξ, fidelity betweenρ
andξ is defined as

F (ρ, ξ) = tr
√√

ρ ξ
√
ρ.

To describe this characterization we will need to define var-
ious sets of states of the pair of registers(V,M). For any



projectionΛ on k + m qubits letS(Λ) denote the set of
all mixed statesρ of (V,M) that satisfyρ = ΛρΛ, i.e., the
collection of states whose support is contained in the space
onto whichΛ projects. Also letSV(Λ) denote the set of all
reduced states ofV that result from some stateρ ∈ S(Λ),
i.e.,

SV(Λ) = {trM ρ : ρ ∈ S(Λ)} ,
wheretrM denotes the partial trace over the registerM.

Lemma 5.2. The maximum probability with which a veri-
fier specified byV1 andV2 can be made to accept is

max
{
F (ρ, ξ)2 : ρ ∈ SV(V1∆1V

†
1 ), ξ ∈ SV(V †

2 Π1V2)
}
.

This lemma is implicit in Ref. [13].

5.2. Equivalence of QMAM and QIP

In this section we prove thatQMAM = QIP. Because
quantum Arthur-Merlin games are a restricted form of quan-
tum interactive proof systems,QMAM ⊆ QIP is obvious.
To prove the containmentQIP ⊆ QMAM, we will need
the following lemmas in addition to the facts summarized
in the previous section. The first lemma is a corollary of
Uhlmann’s Theorem (v. [17]).

Lemma 5.3. Suppose the pair of registers(V,M) is in
some mixed quantum state for which the reduced state of
V is σ. If the pair (V,M) is measured with respect to a bi-
nary valued measurement described by orthogonal projec-
tions {Λ0,Λ1}, then the probability of obtaining the out-
come 1 is at mostF (σ, ρ)2 for someρ ∈ SV(Λ1).

The second lemma is a simple property of the fidelity func-
tion.

Lemma 5.4 (Refs. [16, 20]).For density matricesρ, ξ, and
σ, we haveF (ρ, σ)2 + F (σ, ξ)2 ≤ 1 + F (ρ, ξ).

Now we have the required tools to prove the main theo-
rem of this section, which follows.

Theorem 5.5. LetL ∈ QIP and letp ∈ poly . ThenL has a
three message quantum Arthur-Merlin game with complete-
ness error 0 and soundness error at most1/2 + 2−p(n) on
inputs of lengthn. Moreover, in this quantum Arthur-Merlin
game, Arthur’s message consists of a single coin-flip.

Proof. Let L ∈ QIP, which implies thatL has a three-
message quantum interactive proof system with complete-
ness error 0 and soundness errorε(n) = 2−2p(n) on inputs
of lengthn.

Using the notation described in Section 5.1, consider a
QMAM verification procedureA that corresponds to the
following actions for Arthur. (It will be assumed that the in-
putx is fixed, as the uniformity of thisQMAM verification
procedure is clear given the uniformity of the verifier be-
ing simulated.)

1. Receive registerV from Merlin.
2. Flip a fair coin and send the result to Merlin.
3. Receive registerM from Merlin. If the coin flipped in

step 2 wasHEADS, applyV2 to (V,M) andacceptif the
first qubit ofV (i.e., the output qubit of the quantum in-
teractive proof system) is 1, otherwisereject. If the coin
in step 2 wasTAILS, applyV †

1 to (V,M) andacceptif all
qubits ofV are set to 0, otherwisereject.

Suppose first thatx ∈ L, so that some prover, whose ac-
tions are described by a state|ψ〉 and a unitary operatorU
as discussed in the previous section, can convinceV to ac-
cept with certainty. Then Merlin can convince Arthur to ac-
cept with certainty by acting as follows:

1. Prepare state|0k 〉 in registerV and state|ψ〉 in regis-
ters(M,P). Apply V1 to registers(V,M), and sendV to
Arthur.

2. If Arthur flips HEADS, applyU to (M,P) and sendM to
Arthur. If Arthur flips TAILS, sendM to Arthur without
applyingU .

Now assumex 6∈ L, so that no prover can convinceV
to accept with probability exceedingε. Suppose that the
reduced density matrix of registerV sent by Merlin isσ.
By Lemmas 5.3 and 5.4, the probability that Arthur can be
made to accept is at most

1
2
F (ρ, σ)2 +

1
2
F (ξ, σ)2 ≤ 1

2
+

1
2
F (ρ, ξ)

maximized overρ ∈ SV(V1∆1V
†
1 ) andξ ∈ SV(V †

2 Π1V2).
By Lemma 5.2 this probability is at most

1
2

+
√
ε

2
≤ 1

2
+ 2−p(|x|),

which completes the proof.

Corollary 5.6. For any functionp ∈ poly we have

QIP ⊆ QMAM(1, 1/2 + 2−p).

Now, suppose that we have aQMAM protocol for a lan-
guageL with perfect completeness and soundness errorδ,
and we repeat the protocolN times in parallel, accepting if
and only if allN of the repetitions accept. It is clear that this
resulting protocol has perfect completeness, because Mer-
lin can play optimally for each parallel repetition indepen-
dently and achieve an acceptance probability of 1 for any
x ∈ L. In the case thatx 6∈ L, Merlin can gain no advan-
tage whatsoever over playing the repetitions independently,
and so the soundness error decreases toδN as we would
hope. This follows from the fact that the same holds for arbi-
trary three-message quantum interactive proof systems [13],
of which three-message quantum Arthur-Merlin games are
a restricted type. This implies the following corollary.

Corollary 5.7. For any functionp ∈ poly we have

QIP = QMAM(1, 2−p).



5.3. More than three messages

Finally, we note that one may define quantum Arthur-
Merlin games having any polynomial number of messages
in a similar way to three-message quantum Arthur-Merlin
games. Such games are easily seen to be equivalent in power
to three-message quantum Arthur-Merlin games. Specifi-
cally, polynomial-message quantum Arthur-Merlin games
will be special cases of quantum interactive proof sys-
tems, and can therefore be parallelized to three-message in-
teractive proofs and simulated by three-message quantum
Arthur-Merlin games as described in the previous section.

6. Open questions

Several interesting questions about quantum Arthur-Merlin
games remain unanswered. Some examples include the fol-
lowing questions.

• Are there interesting examples of problems inQMA or
QAM that are not known to be inAM? A similar ques-
tion may be asked forQMAM vs.PSPACE.

• The question of whether there exists an oracle relative
to whichBQP is outside ofPH appears to be a difficult
problem. In fact it is currently not even known if there is
an oracle relative to whichBQP 6⊆ AM. Is there an or-
acle relative to whichQMA or QAM is not contained
in AM? If so, what aboutQMA or QAM versusPH?
Such results might shed some light on the problem of
BQP vs.PH.

• Nisan and Wigderson [18] provedalmost-NP = AM.
Is it the case thatalmost-QMA = QAM?
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