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Abstract

This paper introduces quantum analogues of non-interactive perfect and statistical zero-
knowledge proof systems. Similar to the classical cases, it is shown that sharing randomness or
entanglement is necessary for non-trivial protocols of non-interactive quantum perfect and statis-
tical zero-knowledge. It is also shown that, with sharing EPR pairs a priori, the class of languages
having one-sided bounded error non-interactive quantum perfect zero-knowledge proof systems has
a natural complete problem. Non-triviality of such a proof system is based on the fact proved
in this paper that the Graph Non-Automorphism problem, which is not known in BQP, can be
reduced to our complete problem. Our results may be the first non-trivial quantum zero-knowledge
proofs secure even against dishonest quantum verifiers, since our protocols are non-interactive, and
thus the zero-knowledge property does not depend on whether the verifier in the protocol is honest
or not. A restricted version of our complete problem derives a natural complete problem for BQP.

1 Introduction

Zero-knowledge proof systems were introduced by Goldwasser, Micali, and Rackoff [12] and have been
studied extensively from both complexity theoretical and cryptographic viewpoints. Because of their
wide applicability in the domain of classical communication and cryptography, quantum analogue of
zero-knowledge proof systems is expected to play very important roles in the domain of quantum
communication and cryptography.

Very recently Watrous [21] proposed a formal model of quantum statistical zero-knowledge proof
systems. To our knowledge, his model is the only one for a formal model of quantum zero-knowledge
proofs, although he only considers the case with an honest verifier . The reason why he only considers
the case with an honest verifier seems to be that even his model may not give a cryptographically
satisfying definition for quantum statistical zero-knowledge when the honest verifier assumption is
absent. Indeed, generally speaking, difficulties arise when we try to define the notion of quantum zero-
knowledge against cheating verifiers by extending classical definitions of zero-knowledge in the most
straightforward ways. See [13] for a discussion of such difficulties in security of quantum protocols.
Nevertheless, the model of quantum statistical zero-knowledge proofs by Watrous is natural and
reasonable at least in some restricted situations. One of such restricted situations is the case with
an honest verifier, which was discussed by Watrous himself. Another situation is the case of non-
interactive protocols, which this paper treats.
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Classical version of non-interactive zero-knowledge proof systems was introduced by Blum, Feld-
man, and Micali [3], and was later studied by a number of works [5, 6, 2, 9, 16, 4, 11, 20]. Such non-
interactive proof systems put an assumption that a verifier and a prover share some random string, and
it is known that sharing randomness is necessary for non-trivial protocols (i.e. protocols for languages
beyond BPP) of non-interactive quantum zero-knowledge proofs [9]. As for non-interactive statistical
zero-knowledge proof systems, De Santis, Di Crescenzo, Persiano, and Yung showed an existence of
a complete promise problem for the class NISZK of languages having non-interactive statistical zero-
knowledge proof systems. Goldreich, Sahai, and Vadhan [11] showed another two complete promise
problems for NISZK, namely the Entropy Approximation (EA) problem and the Statistical Difference
from Uniform (SDU) problem, from which they derived a number of properties of NISZK such as
evidence of non-triviality of the class NISZK.

This paper focuses on quantum analogues of non-interactive perfect and statistical zero-knowledge
proof systems. The notion of quantum zero-knowledge used in this paper is along the lines de-
fined by Watrous [21]. First, similar to the classical cases, it is shown that sharing randomness or
entanglement is necessary for non-trivial protocols (i.e. protocols for languages beyond BQP) of non-
interactive quantum perfect and statistical zero-knowledge. Next, it is shown that, with sharing EPR
pairs a priori, the class of languages having one-sided bounded error non-interactive quantum perfect
zero-knowledge proof systems has a natural complete promise problem, which we call the Quantum
State Closeness to Identity (QSCI) problem, informally described as follows: given a description of a
quantum circuit Q, is the output qubits of Q is maximally entangled to the non-output part or is it far
from that? Note that our QSCI problem may be viewed as a quantum variant of the SDU problem,
which is shown NISZK-complete by Goldreich, Sahai, and Vadhan [11]. However, our proof for the
completeness of the QSCI problem is quite different from their proof for the classical case at least
in the following two senses: (i) the completeness of the QSCI problem is shown in a direct manner,
while that of the classical SDU problem was shown by using other complete problems such as the
EA problem, and (ii) our proof for the completeness result is rather quantum information theoreti-
cal. Using our complete problem, it is straightforward to show that the Graph Non-Automorphism
(GNA) problem (or sometimes called the Rigid Graphs problem) has a non-interactive quantum per-
fect zero-knowledge proof system of perfect completeness. Since the GNA problem is not know in
BQP, this gives an evidence of non-triviality of our proof systems. One of the merits of consider-
ing non-interactive models is that the zero-knowledge property in non-interactive protocols does not
depend on whether the verifier in the protocol is honest or not. Thus, our results may be the first
non-trivial quantum zero-knowledge proofs secure even against dishonest quantum verifiers. It is also
shown that a restricted version of our complete problem derives a natural complete problem for BQP.

The remainder of this paper is organized as follows. In Section 2 we give formal definitions of non-
interactive quantum statistical and perfect zero-knowledge proof systems, and introduce the Quantum
State Closeness to Identity problem. In Section 3 we show the necessity of sharing randomness or
entanglement for non-trivial protocols of non-interactive quantum zero-knowledge. In Section 4 we
show our main result of completeness and its applications. Finally, we conclude with Section 5,
which mentions our conjectures on non-interactive quantum zero-knowledge proofs. Familiarity with
the basics of quantum computation and information theory as well as classical zero-knowledge proof
systems is assumed throughout this paper. See [14, 17] for the basics of quantum computation and
information theory and [7, 8] for those of classical zero-knowledge proof systems.

2 Definitions

2.1 Quantum Circuits and Polynomial-Time Preparable Sets of Quantum States

A family {Qx} of quantum circuits is said to be polynomial-time uniformly generated if there exists
a classical deterministic procedure that, on each input x, outputs a description of Qx and runs in
time polynomial in n = |x|. For simplicity, we assume that all input strings are over the alphabet

2



Σ = {0, 1}. It is assumed that the quantum circuits in such a family are composed of gates in some
reasonable, universal, finite set of quantum gates such as the Shor basis. Furthermore, it is assumed
that the number of gates in any circuit is not more than the length of the description of that circuit,
therefore Qx must have size polynomial in n. For convenience, in the subsequent sections, we often
identify a circuit Qx with the unitary operator it induces.

It should be mentioned that to permit non-unitary quantum circuits, in particular, to permit
measurements at any timing in the computation does not change the computational power of the model
of quantum circuits in view of time complexity. See [1] for a detailed description of the equivalence of
the unitary and non-unitary quantum circuit models.

Given a collection {ρx} of mixed states, let us say that the collection is polynomial-time preparable
if there exists a polynomial-time uniformly generated family {Qx} of quantum circuits such that, for
every x of length n, (i) Qx is a quantum circuit over q(n) qubits for some polynomially bounded
function q : Z

+ → N, and (ii) for the pure state Qx|0q(n)〉, the first qout(n) qubits of it is in the mixed
state ρx when tracing out the rest q(n)−qout(n) qubits, where qout : Z

+ → N is a polynomially bounded
function satisfying qout ≤ q. In the above description, the collection of the first qout(n) qubits may
be regarded as an output, and thus we also say that such a family {Qx} of quantum circuits is q-in
qout-out .

2.2 Non-Interactive Quantum Statistical Zero-Knowledge with Shared EPR-Pairs

Here we give a definition of non-interactive quantum statistical (and perfect) zero-knowledge proof
systems in which the verifier and the prover share EPR-pairs prior to the protocol.

Similar to quantum statistical zero-knowledge proof systems [21], we define non-interactive quan-
tum statistical zero-knowledge proof systems in terms of quantum circuits.

For each input x ∈ Σ∗ of length n = |x|, the entire system of a non-interactive quantum statistical
zero-knowledge proof consists of q(n) = qV(n) + qM(n) + qP(n) qubits, where qV(n) is the number of
qubits that are private to a verifier V , qP(n) is the number of qubits that are private to a prover P ,
and qM(n) is the number of message qubits sent from P to V . Furthermore, it is assumed that the
verifier V and the prover P shares EPR pairs a priori among their private qubits. Let qS(n) be the
number of the EPR pairs shared by V and P . It is also assumed that qV , qM, and qS are polynomially
bounded functions. Let qV

S
= qV − qS and qP

S
= qP − qS .

A (qV , qM)-restricted quantum verifier V is a polynomial-time computable mapping of the form
V : Σ∗ → Σ∗, where Σ = {0, 1} is the alphabet set. V receives a message of at most qM(n) qubits from
the prover, and uses at most qV(n) qubits for his private space, including qubits of shared EPR pairs.
For each input x ∈ Σ∗ of length n = |x|, V (x) is interpreted as a description of a polynomial-time
uniformly generated quantum circuit acting on qV(n) + qM(n) qubits. One of the private qubits of
the verifier is designated as the output qubit.

A (qM, qP)-restricted quantum prover P is a mapping of the form P : Σ∗ → Σ∗. P uses at most
qP(n) qubits for his private space, including qubits of shared EPR pairs, and sends a message of at
most qM(n) qubits to the verifier. For each input x ∈ Σ∗, |x| = n, P (x) is interpreted as a description
of a quantum circuit acting on qM(n) + qP(n) qubits. No restrictions are placed on the complexity of
the mapping P (i.e., each P (x) can be an arbitrary unitary transformation).

A (qV , qM, qP)-restricted non-interactive quantum proof system consists of a (qV , qM)-restricted
quantum verifier V and a (qM, qP)-restricted quantum prover P . Let V = l2(Σ

qV ), M = l2(Σ
qM), and

P = l2(Σ
qP ) denote the Hilbert spaces corresponding to the private qubits of the verifier, the message

qubits between the verifier and the prover, and the private qubits of the prover, respectively. We
say that a (qV , qM, qP)-restricted non-interactive quantum proof system is qS-shared-EPR-pairs if, for
every input x of length n, there are qS(n) copies of the EPR pair (|00〉 + |11〉)/

√
2 that are initially

shared by the verifier and the prover. Let VS = l2(Σ
qS ) and PS = l2(Σ

qS ) denote the Hilbert spaces
corresponding to the verifier and the prover parts of these shared EPR pairs, respectively, and write
V = VS ⊗ VS and P = PS ⊗PS . It is assumed that all the qubits in VS , M, and PS are initialized to
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the |0〉-states.
Given a verifier V , a prover P , and an input x of length n, define a circuit (P (x), V (x)) acting on

q(n) qubits to be the one applying P (x) to M⊗P and V (x) to V ⊗M in sequence.
The probability that the (P, V ) accepts x is defined to be the probability that an observation of

the output qubit in the basis of {|0〉, |1〉} yields |1〉, after the circuit (P (x), V (x)) is applied to the
initial state |ψinit〉.

In what follows, the circuits P (x) and V (x) of prover and verifier may be simply denoted by P
and V , respectively, if it is not confusing. We also use the notation D(H) for the set of mixed states
in H.

First we define the class NIQSZK(qV , qM, qP , qS , a, b) of languages having (qV , qM, qP)-restricted
qS-shared-EPR-pairs non-interactive quantum statistical zero-knowledge proof systems with error
probabilities a and b in completeness and soundness sides, respectively.

Definition 1 Given polynomially bounded functions qV , qM, qS : Z
+ → N and a function qP : Z

+ → N,
and functions a, b : Z

+ → [0, 1], let NIQSZK(qV , qM, qP , qS , a, b) denote the class of languages L for
which there exists a (qV , qM)-restricted quantum verifier V such that, for every input x of length n,

(i) Completeness:
if x ∈ L, there exists a (qM, qP)-restricted quantum prover P such that (P, V ) accepts x with
probability at least a(n),

(ii) Soundness:
if x 6∈ L, for any (qM, qP)-restricted quantum prover P ′, (P ′, V ) accepts x with probability at
most b(n),

(iii) Zero-Knowledge:
there exists a polynomial-time preparable set {σx} of mixed states of qV(n) + qM(n) qubits such
that, if x ∈ L,

‖σx − trP(P |ψinit〉〈ψinit|P †)‖tr ≤ δ(n)

for an honest prover P and some negligible function δ (i.e., δ(n) < 1/p(n) for sufficiently large
n for all polynomials p).

We say that a language L is in NIQSZK(a, b) in short if there exist some polynomially bounded
functions qV , qM, and qS such that L is in NIQSZK(qV , qM, qP , qS , a, b) for any function qP .

Similarly, we define the class NIQPZK(qV , qM, qP , qS , a, b) of languages having (qV , qM, qP)-
restricted qS-shared-EPR-pairs non-interactive quantum perfect zero-knowledge proof systems with
error probabilities a and b in completeness and soundness sides, respectively.

Definition 2 Given polynomially bounded functions qV , qM, qS : Z
+ → N and a function qP : Z

+ → N,
and functions a, b : Z

+ → [0, 1], let NIQPZK(qV , qM, qP , qS , a, b) denote the class of languages L for
which there exists a (qV , qM)-restricted quantum verifier V such that, for every input x of length n,

(i) Completeness:
if x ∈ L, there exists a (qM, qP)-restricted quantum prover P such that (P, V ) accepts x with
probability at least a(n),

(ii) Soundness:
if x 6∈ L, for any (qM, qP)-restricted quantum prover P ′, (P ′, V ) accepts x with probability at
most b(n),

(iii) Zero-Knowledge:
there exists a polynomial-time preparable set {σx} of mixed states of qV(n) + qM(n) qubits such
that, if x ∈ L, σx exactly coincides with trP(P |ψinit〉〈ψinit|P †).
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As is the statistical zero-knowledge case, we say that a language L is in NIQPZK(a, b) in
short if there exist some polynomially bounded functions qV , qM, and qS such that L is in
NIQPZK(qV , qM, qP , qS , a, b) for any function qP .

Note that, similar to the QMA case, parallel repetition of non-interactive quantum statistical (or
perfect) zero-knowledge proof systems can reduce completeness and soundness errors to be exponen-
tially small while preserving the zero-knowledge property.

2.3 Variants of Quantum State Distinguishability Problem

This paper focuses on the following promise problems, all of which are parameterized by constants α
and β satisfying 0 ≤ α < β ≤ 1.

First we review the (α, β)-Quantum State Distinguishability ((α, β)-QSD) problem, which was
introduced and shown to be HVQSZK-complete (for any 0 ≤ α < β2 ≤ 1) by Watrous [21]. Note that
this problem can be regarded as a quantum analogue of the Statistical Difference problem [18], which
is HVSZK-complete (and thus SZK-complete from the result HVSZK = SZK [10] shown later).

(α, β)-Quantum State Distinguishability ((α, β)-QSD)

Input: Descriptions of quantum circuits Q0 and Q1, each acting over the Hilbert space
Hin = Hout ⊗Hout, where Hin consists of qin qubits and Hout consists of qout ≤ qin
qubits.

Promise: Letting ρi = trHout
(Qi|0qin〉〈0qin |Q†

i ) for i = 0, 1, we have either one of the following
two:

(a) ‖ρ0 − ρ1‖tr ≤ α,

(b) ‖ρ0 − ρ1‖tr ≥ β.

Output: Accept if ‖ρ0 − ρ1‖tr ≥ β, and reject if ‖ρ0 − ρ1‖tr ≤ α.

Note that the complement of (α, β)-QSD, which we call (α, β)-Quantum State Closeness ((α, β)-
QSC) problem, is also HVQSZK-complete, as shown by Watrous [21].

Next we introduce (α, β)-Quantum State Closeness to Identity ((α, β)-QSCI) problem, which is
a restricted version of the (α, β)-QSC problem. Later (0, β)-QSCI problem will be shown to be
NIQPZK(1, b)-complete for any 0 < β < 1 and any bounded error probability b. Note that this problem
can be regarded as a quantum analogue of the Statistical Difference from Uniform Distribution (SDU)
problem [11], which is NISZK-complete.

(α, β)-Quantum State Closeness to Identity ((α, β)-QSCI)

Input: A description of a quantum circuitQ acting over the Hilbert space Hin = Hout⊗Hout,
where Hin consists of qin qubits and Hout consists of qout ≤ qin qubits.

Promise: Letting ρ = trHout
(Q|0qin〉〈0qin |Q†), we have either one of the following two:

(a) ‖ρ− I/2qout‖tr ≤ α,

(b) ‖ρ− I/2qout‖tr ≥ β.

Output: Accept if ‖ρ− I/2qout‖tr ≤ α, and reject if ‖ρ− I/2qout‖tr ≥ β.

Putting restrictions on the number of output qubits of the quantum circuits given as input yields
the following two promise problems, both of which will be shown to be BQP-complete.
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(α, β)-One Qubit Quantum State Distinguishability ((α, β)-1QSD)

Input: Descriptions of quantum circuits Q0 and Q1, each acting over the Hilbert space
Hin = Hout ⊗ Hout, where Hin consists of qin qubits and Hout consists of a single
qubit.

Promise: Letting ρi = trHout
(Qi|0qin〉〈0qin |Q†

i ) for i = 0, 1, we have either one of the following
two:

(a) ‖ρ0 − ρ1‖tr ≤ α,

(b) ‖ρ0 − ρ1‖tr ≥ β.

Output: Accept if ‖ρ0 − ρ1‖tr ≥ β, and reject if ‖ρ0 − ρ1‖tr ≤ α.

(α, β)-One Qubit Quantum State Closeness to Identity ((α, β)-1QSCI)

Input: A description of a quantum circuitQ acting over the Hilbert space Hin = Hout⊗Hout,
where Hin consists of qin qubits and Hout consists of a single qubit.

Promise: Letting ρ = trHout
(Q|0qin〉〈0qin |Q†), we have either one of the following two:

(a) ‖ρ− I/2‖tr ≤ α,

(b) ‖ρ− I/2‖tr ≥ β.

Output: Accept if ‖ρ− I/2‖tr ≤ α, and reject if ‖ρ− I/2‖tr ≥ β.

3 Necessity of Shared Randomness or Shared Entanglement

First, similar to the classical cases [9], it is shown that sharing randomness or entanglement is necessary
for non-trivial protocols of non-interactive quantum perfect and statistical zero-knowledge.

Theorem 3 Without shared randomness nor shared entanglement, any language having non-
interactive quantum perfect or statistical zero-knowledge proofs is necessarily in BQP.

Proof. It is sufficient to show that, without shared randomness nor shared entanglement,
NIQSZK(3/4, 1/4) is in BQP.

Let L be a language having an NIQSZK(3/4, 1/4) protocol without shared randomness nor shared
entanglement. Let V be the corresponding honest quantum verifier and {σx} be the corresponding
polynomial-time preparable set of mixed states. For every input x, consider the following polynomial-
time quantum algorithm:

1. Prepare σx in a quantum register R.

2. Apply V (x) to R to have a state V (x)σxV (x)†.

3. Accept iff the contents of R correspond to ones that make the original verifier V accept.

(i) In the case x is in L:
From the zero-knowledge property of the original protocol, the difference between σx and the
state received from the honest prover is negligible. Thus, the input x is accepted by the algorithm
above with probability more than 2/3.

6



(ii) In the case x is not in L:
From the soundness property of the original protocol, whatever state the honest verifier V
receives from the prover, V accepts the input x with probability at most 1/4. In particular, if
the honest verifier V receives σx from the prover, V accepts the input x with probability at most
1/4. Thus, the input x is accepted by the algorithm above with probability at most 1/4 (less
than 1/3).

�

4 Completeness Results and their Applications

4.1 NIQPZK(1, 1/2)-Completeness of (0, β)-QSCI

Here we show that the (0, β)-QSCI problem is NIQPZK(1, 1/2)-complete, that is, complete for the
class of languages having non-interactive quantum perfect zero-knowledge proof systems of perfect
completeness. While our result is closely related to the classical result by Goldreich, Sahai, and
Vadhan [11], the proofs adopted in this paper are rather quantum information theoretical.

The proof of Lemma 5 below uses the following well-known property in quantum information
theory.

Theorem 4 ([19, 15]) Let |φ〉, |ψ〉 ∈ H1 ⊗ H2 satisfy trH2 |φ〉〈φ| = trH2 |ψ〉〈ψ|. Then there is a
unitary transformation U over H2 such that (IH1 ⊗ U)|φ〉 = |ψ〉, where IH1 is the identity operator
over H1.

Lemma 5 (0, β)-QSCI is in NIQPZK(1, 1/2) for any 0 < β < 1.

Proof. Let Q be a quantum circuit of the (0, β)-QSCI, which is q-in qout-out. Running O(n) copies of
Q in parallel for n exceeding the length of the input Q constructs a quantum circuit R of q′-in q′out-out
that outputs the associated mixed state ξ of q′out qubits and ξ is either I/2q′out or the one such that
‖ξ − I/2qout‖tr is arbitrary close to 1, say ‖ξ − I/2qout‖tr > 1 − 2−n.

We construct a (q′out, q
′−q′out, qP)-restricted non-interactive quantum perfect zero-knowledge proof

system of q′out-shared-EPR-pairs. Consider the (q′out, q
′ − q′out)-restricted quantum verifier V . Let the

quantum registers M and S consist of the message qubits and qubits in the verifier part of the shared
EPR pairs, respectively. The verification procedure of the verifier is as follows:

1. Receive a message in M from the prover.

2. Apply R† on the pair of quantum registers (M,S).

3. Accept if (M,S) contains 0q′ , otherwise reject.

For the completeness, suppose that ξ = I/2q′out . Note that the pure state |φ〉 = (R|0q′〉) ⊗ |0qP 〉 of
q′ + qP qubits is a purification of ξ. Since the initial state |ψinit〉 ∈ V ⊗M⊗ P of q′ + qP qubits is a
purification of I/2q′out and ξ = I/2q′out , from Theorem 4, there exists a unitary transformation P over
M⊗P such that

(I ⊗ P )|ψinit〉 = |φ〉.

Therefore,

(R† ⊗ I)(I ⊗ P )|ψinit〉 = |0q′+qP 〉.

7



Thus V accepts the input with certainty.
For the soundness, suppose that ‖ξ − I/2q′out‖tr > 1 − 2−n. Then, for any unitary transformation

P ′ over M⊗P, letting |ψ〉 = (I ⊗ P ′)|ψinit〉, we have

‖trP |φ〉〈φ| − trP |ψ〉〈ψ|‖tr > 1 − 2−n,

since trM(trP |φ〉〈φ|) = ξ and trM(trP |ψ〉〈ψ|) = I/2q′out . Therefore we have,

‖|0q′〉〈0q′ | −R†(trP |ψ〉〈ψ|)R‖tr > 1 − 2−n.

Thus the probability that V accepts the input is negligible.
Finally, the zero-knowledge property is obvious, becauseR|0q′〉〈0q′ |R† = trP((I⊗P )|ψinit〉〈ψinit|(I⊗

P †)) is polynomial-time preparable. �

Lemma 6 For any promise problem L ∈ NIQPZK(1, 1/2), there is a polynomial-time deterministic
procedure that reduces L to the (0, β)-QSCI problem for 0 < β < 1.

Proof. Let L be in NIQPZK(1, 1/2). Then from the fact that parallel repetition works well for
non-interactive quantum perfect zero-knowledge proof systems, for any function qP : Z

+ → N, L has
a (qV , qM, qP)-restricted qS-shared-EPR-pairs non-interactive quantum perfect zero-knowledge proof
system of perfect completeness for some polynomially bounded functions qV , qM, qS : Z

+ → N, whose
soundness error is smaller than 2−n for inputs of length n.

Let V and P be the honest verifier and the honest prover of this proof system, and let V (x) and
P (x) be the unitary transformations of V and P , respectively, on a given input x. Let {σx} be a
polynomial-time preparable set such that, if the input x of length n is in L,

σx = trP(P (x)|ψinit〉〈ψinit|P †(x))

for the honest prover P . The existence of such a polynomial-time preparable set is ensured by the
perfect zero-knowledge property. For convenience, we assume that, for every input x of length n,
the first qM(n) qubits of σx correspond to the message qubits of the original proof system, the last
qV(n) − qS(n) qubits of σx correspond to the private qubits of the verifier (not including the prior-
entangled part), and the last qubit corresponds to the output qubit of the original proof system.

Let M, S, and V be quantum registers, each of which consists of qM(n) qubits, qS(n) qubits,
and qV(n) − qS(n) qubits respectively. For every input x, we construct a quantum circuit Qx that
corresponds to the following algorithm:

1. Prepare σx in the triplet (M,S,V) of the quantum registers.

2. If one of qubits in the quantum register V contains 1, output |0qS(n)〉〈0qS(n)|.

3. Do one of the following two uniformly at random.

3.1 Output the qubits in the quantum register S.

3.2 Apply V (x) on the triplet (M,S,V) of the quantum registers.
Output I/2qS (n) if the last qubit in V contains 1, otherwise, output |0qS(n)〉〈0qS(n)|.

Suppose that x is in L. Then σx = trP(P (x)|ψinit〉〈ψinit|P †(x)) is satisfied. Note that
trV

S
⊗M⊗P(P (x)|ψinit〉〈ψinit|P †(x)) = I/2qS(n). Furthermore, for the state P (x)|ψinit〉〈ψinit|P †(x), the

verification procedure of V accepts the input with certainty. Therefore, the circuit Qx constructed
above outputs I/2qS(n) with certainty.

Now suppose that x is not in L. We claim that the output mixed state ρ of Qx satisfies ‖ρ −
I/2qS(n)‖tr > c for some positive constant c ≤ 1. Without loss of generality, we assume that σx is of
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the form σ′x ⊗|0qV(n)〉〈0qV (n)|, since the step 2 reduces σx to the state of this form or outputs the state
farthest away from I/2qS(n).

For the soundness property of the original proof system, for any mixed state ξ⊗ |0qV(n)〉〈0qV (n)| in
D(M⊗ V) satisfying trM⊗V

S
(ξ ⊗ |0qV(n)〉〈0qV (n)|) = I/2qS(n), the verification procedure of V results

in accept with probability at most 2−n.
Therefore, if ‖trM⊗V

S
(σ′x ⊗ |0qV(n)〉〈0qV (n)|) − I/2qS(n)‖tr ≥ 1/2, then

‖trM(σ′x ⊗ |0qV (n)〉〈0qV (n)|) − I/2qS(n) ⊗ |0qV(n)〉〈0qV (n)|‖tr ≥ 1/2,

and thus

‖trMσ′x − I/2qS(n)‖tr ≥ 1/2.

Hence the step 3.1 outputs the mixed state ρ satisfying ‖ρ− I/2qS(n)‖tr ≥ 1/2.
On the other hand, if ‖trM⊗V

S
(σ′x ⊗ |0qV(n)〉〈0qV (n)|) − I/2qS(n)‖tr ≤ 1/2, we have

‖σ′x ⊗ |0qV (n)〉〈0qV (n)| − ξ ⊗ |0qV (n)〉〈0qV (n)|‖tr ≤ 1/2

for some mixed state ξ⊗|0qV(n)〉〈0qV (n)| in D(M⊗V) satisfying trM⊗V
S
(ξ⊗|0qV(n)〉〈0qV (n)|) = I/2qS (n).

Therefore, the step 3.2 results in rejection with probability at least 1/2− 2−(n+1), and thus the circuit
Qx outputs |0qV(n)〉〈0qV (n)| with probability at least 1/2 − 2−(n+1).

Putting things together, in the case x is not in L, the circuit Qx outputs the mixed state ρ satisfying
‖ρ− I/2qS (n)‖tr > c for some constant c greater than, say 1/5.

Now, constructing r copies of Qx to have a circuit Q⊗r
x for appropriately chosen r reduces L to

the (0, β)-QSCI problem for arbitrary 0 < β < 1. �

Thus we have the following theorem.

Theorem 7 (0, β)-QSCI is complete for NIQPZK(1, 1/2) for 0 < β < 1.

4.2 NIQPZK(1, 1/2)-Protocol for Graph Non-Automorphism

The Graph Non-Automorphism (GNA) problem defined below is a special case of the graph non-
isomorphism (GNI) problem, and is not known in BQP nor in NP.

Graph Non-Automorphism (GNA)

Input: A description of a graph G of n vertices.

Output: Accept if π(G) 6= G for all non-trivial permutations π over n vertices and reject
otherwise.

It is easy to show that any instance of GNA is reduced to an instance of (0, β)-QSCI, and thus we
have the following corollary.

Corollary 8 GNA has a non-interactive quantum perfect zero-knowledge proof system of perfect com-
pleteness.

Proof. We assume an appropriate ordering of permutations over n vertices so that each permutation
can be represented with qL(n) = ⌈log n!⌉ = O(n log n) qubits. Let πi be the i-th permutation according
to this ordering for 0 ≤ i ≤ n! − 1.

Let P be a Hilbert space consisting of qL(n) qubits and G be a Hilbert space consisting of qG(n) =
O(n2) qubits (intuitively, P is for a representation of a permutation and G is for a representation of
a graph).

Given a graph G of n vertices, consider the following quantum circuit QG behaving as follows.
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1. Prepare the following quantum state in P ⊗ G:

1√
2qL(n)

n!−1∑

i=0

|i〉|0, πi(G)〉 +
1√

2qL(n)

2qL(n)−1∑

i=n!

|i〉|1, i〉.

2. Output the qubits in P.

If a given graph G has no non-trivial automorphism groups, every πi(G) is different from each
other, and thus the output of QG is the mixed state I/2qL(n).

On the other hand, if a given graph G has a non-trivial automorphism groups, the contents of
qubits in G have at most 2qL(n) − n!/2 ≤ 3/4 · 2qL(n) variations, and the trace-norm between I/2qL(n)

and the output of QG is at least 1/4.
Thus the constructed quantum circuit QG is an instance of (0, 1/4)-QSDI, which completes the

proof. �

4.3 BQP-Completeness Results

Theorem 9 (α, β)-1QSCI and (α, β)-1QSD are complete for BQP for 0 < α < β < 1.

Proof. Straightforward and thus omitted. �

5 Conjectures

Conjecture 1 There is a (deterministic) polynomial-time procedure that, on an input (Q, 1n) where
Q is a description of a quantum circuit specifying a mixed state ρ of q1 qubits, outputs a description
of a quantum circuits R (having size polynomial in n and in the size of Q) specifying a mixed state ξ
of q2 qubits satisfying the following (for α and β satisfying an appropriate condition such as 0 < α <
1/q1 < 1 − 1/q1 < β < 1).

‖ρ− I/2q1‖tr < α ⇒ ‖ξ − I/2q2‖tr < 2−n,

‖ρ− I/2q1‖tr > β ⇒ ‖ξ − I/2q2‖tr > 1 − 2−n.

Under the assumption that Conjecture 1 holds, the following two conjectures can be shown in
similar manners as the proofs of Lemma 5 and Lemma 6.

Conjecture 2 (α, β)-QSCI is in NIQSZK for any α and β satisfying an appropriate condition such
as 0 < α < 1/q1 < 1 − 1/q1 < β < 1, where q1 is the number of output qubits of the quantum circuit
given as an instance of (α, β)-QSCI.

Conjecture 3 For any promise problem L ∈ NIQSZK, there is a polynomial-time deterministic pro-
cedure that reduces L to the (α, β)-QSCI problem for any α and β satisfying an appropriate condition
such as 0 < α < 1/q1 < 1 − 1/q1 < β < 1, where q1 is the number of output qubits of the quantum
circuit given as an instance of (α, β)-QSCI.

Thus, under the assumption that Conjecture 1 holds, the following conjecture is provable.

Conjecture 4 (α, β)-QSCI is complete for NIQSZK for any α and β satisfying an appropriate con-
dition such as 0 < α < 1/q1 < 1 − 1/q1 < β < 1, where q1 is the number of output qubits of the
quantum circuit given as an instance of (α, β)-QSCI.
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