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ABSTRACT

In this paper we consider quantum interactive proof systems,
which are interactive proof systems in which the prover and
verifier may perform quantum computations and exchange
quantum information. We prove that any polynomial-round
quantum interactive proof system with two-sided bounded
error can be parallelized to a quantum interactive proof sys-
tem with exponentially small one-sided error in which the
prover and verifier exchange only 3 messages. This yields a
simplified proof that PSPACE has 3-message quantum in-
teractive proof systems. We also prove that any language
having a quantum interactive proof system can be decided in
deterministic exponential time, implying that single-prover
quantum interactive proof systems are strictly less power-
ful than multiple-prover classical interactive proof systems
unless EXP = NEXP.

1. INTRODUCTION
Interactive proof systems were introduced by Babai [3] and
Goldwasser, Micali, and Rackoff [17] in 1985. In the same
year, Deutsch [10] gave the first formal treatment of quan-
tum computation. Since then, both subjects have received a
great deal of attention and have generated a number of ex-
citing results, perhaps most notably the IP = PSPACE char-
acterization of Lund, Fortnow, Karloff, and Nisan [25] and
Shamir [26], and the polynomial-time quantum algorithms
for factoring and discrete logarithms due to Shor [28].
In this paper we consider quantum interactive proof systems,
which merge notions from these two subjects. A quantum
interactive proof system consists of two parties—a prover
with unbounded quantum computational power and a quan-
tum polynomial-time verifier—that communicate through a
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quantum channel. As in the case of classical interactive
proof systems, the prover attempts to prove to the verifier
that a given input string satisfies some specified property,
while the verifier tries to determine the validity of this proof.
A language L is said to have a quantum interactive proof
system if there exists a quantum verifier V such that (i) there
exists a quantum prover P that can always convince V to
accept when the input is in L, and (ii) no quantum prover
P can convince V to accept with nonnegligible probability
when the input is not in L.

Quantum interactive proof systems were first studied in a
paper by one of us [30], wherein it was shown that every
PSPACE language has a quantum interactive proof system,
with exponentially small one-sided error, in which the prover
and verifier exchange a total of only 3 messages. This im-
plies that any classical interactive proof system can be par-
allelized to require just 3 messages in the quantum setting,
which is a task that cannot be accomplished classically un-
less the polynomial-time hierarchy collapses to AM [3; 18].
In this paper we prove the following stronger result: any
quantum interactive proof system can be parallelized to a
3-message quantum protocol with exponentially small one-
sided error. In order to achieve exponentially small error
in the 3-message case, we prove the somewhat surprising
fact that entanglement among parallel repetitions of a 3-
message quantum interactive proof system gives a cheating
prover absolutely no increase in success probability. Our re-
sult simplifies the proof that PSPACE has 3-message quan-
tum interactive proof systems, in the sense that it treats
any classical protocol for a given PSPACE language as a
black-box.

While (single-prover) classical interactive proof systems rec-
ognize precisely those languages in PSPACE, it was shown
by Babai, Fortnow, and Lund [4] that any language in non-
deterministic exponential time (NEXP) has a two-prover in-
teractive proof system, wherein the two provers are not per-
mitted to communicate with one another during the proto-
col. A sequence of papers [9; 13; 24] led to a result of Feige
and Lovász [14] that any language in NEXP has a two-prover
interactive proof system requiring just one round of com-
munication (meaning that the verifier sends one question to
each of the provers in parallel, then receives their responses).
A natural question to ask is whether NEXP has single-prover
quantum interactive proof systems, or equivalently whether
single-prover quantum interactive proof systems can simu-
late multiple classical provers. We show that this is not
likely to be the case, as any language having a quantum in-
teractive proof system is necessarily contained in determin-



istic exponential time (EXP); under the assumption EXP
6= NEXP, multiple-prover classical interactive proof systems
are strictly more powerful than single-prover quantum in-
teractive proof systems. Our proof of this fact relies on the
technique of semidefinite programming.
The remainder of this paper is organized as follows. In sec-
tion 2 we review necessary background information and de-
fine the quantum interactive proof system model. In sec-
tion 3 we prove that two-sided error quantum interactive
proof systems can be converted to one-sided error quantum
interactive proofs by adding one round of communication
to the protocol, in section 4 we prove that any polynomial-
message (one-sided error) quantum interactive proof system
can be parallelized to a 3-message protocol, and in section 5
we prove that parallel executions of a given 3-message quan-
tum interactive proof system result in an exponential de-
crease in error probability. In section 6 we prove that any
language having a quantum interactive proof system is con-
tained in EXP. We conclude with section 7, which summa-
rizes the relations we have proved and mentions a number
of open questions regarding quantum interactive proofs.

2. PRELIMINARIES
We begin by mentioning some of the basic notation used
in this paper. As usual, N, Z+, and C denote the positive
integers, the nonnegative integers, and complex numbers,
respectively. For a given complex number z, <(z) denotes
the real part of z. We let poly denote the class of functions
f : Z+ → N satisfying the following two properties: (i) there
exists a polynomial p such that f(n) ≤ p(n) for all n ∈ Z+,
and (ii) f(n) is computable in time polynomial in n. We also
write poly−1, 2−poly , etc., to denote classes of functions de-
rived from functions in poly in the obvious ways. The length
of a given string x is denoted |x|, and we assume all strings
are over the alphabet Σ = {0, 1}. Given a finite set S, `2(S)
denotes the Hilbert space of dimension |S| whose elements
are mappings from S to C. All Hilbert spaces considered in
this paper will be finite dimensional, and this assumption
will be made hereafter without explicit mention. For any
positive semidefinite operator A acting on a given Hilbert
space, there exists a unique positive semidefinite operator
denoted by

√
A that satisfies (

√
A)2 = A.

2.1 Quantum formalism
Next we briefly review various facts and notation from quan-
tum computation and quantum information theory. We
will not attempt to provide a comprehensive review, as this
has been done elsewhere. (See, for instance, the surveys of
Berthiaume [8] and Kitaev [23].)
For given Hilbert spaces H and K, L(H,K) denotes the set
of linear operators mapping H to K, L(H) denotes L(H,H),
D(H) denotes the set of positive semidefinite operators on
H having unit trace, U(H) denotes the set of unitary opera-
tors on H, and P(H) denotes the set of projection operators
on H. Finally, T(H,K) denotes the set of linear mappings
from L(H) to L(K), viewing L(H) and L(K) as linear spaces
in the usual way, and T(H) denotes T(H,H). The identity
elements of L(H) and T(H) are denoted IH and IL(H), re-
spectively.
A pure state or superposition of a quantum system having
(finite) classical state set S is a unit vector in the Hilbert
space H = `2(S). We use the Dirac notation to represent
elements of Hilbert spaces: for each s ∈ S, |s〉 represents the

unit vector corresponding to the map that takes s to 1 and
each s′ 6= s to 0. Arbitrary vectors will be denoted |ψ〉, |φ〉,
etc., even though the symbols ψ, φ, etc., are not used alone,
and may be specified by linear combinations of elements
in the orthonormal basis {|s〉 : s ∈ S}. Corresponding to
each |ψ〉 is a linear functional 〈ψ | that maps each vector
|φ〉 to the inner product 〈ψ |φ〉 (conjugate-linear in the first
argument).
A mixed state of a quantum system is a state that may be
described by a distribution on (not necessarily orthogonal)
pure states. A collection {(pk, |ψk 〉)} such that 0 ≤ pk,∑
k pk = 1, and each |ψk 〉 is a pure state is called a mix-

ture: for each k, the system is in superposition |ψk 〉 with
probability pk. With a given mixture {(pk, |ψk 〉)}, we as-
sociate a density operator ρ =

∑
k pk|ψk 〉〈ψk |. Necessary

and sufficient conditions for a given operator ρ ∈ L(H) to
be a density operator (i.e., to represent some mixed state)
are (i) ρ must be positive semidefinite, and (ii) ρ must have
unit trace. (Thus, D(H) denotes the set of density operators
over a given spaceH.) Different mixtures may yield identical
states, in the sense that no measurement can distinguish the
mixtures even in a statistical sense. Two mixtures yielding
different density operators can be statistically distinguished
however, and for this reason we interpret a given density
operator ρ as being a canonical representation of a given
mixed state.
An admissible transformation from D(H) to D(K) is a map-
ping T for which there exists a some collection {A1, . . . , Ak}
of operators in L(H,K) such that (i) T (ρ) =

∑k
j=1AjρA

†
j for

every ρ, and (ii)
∑k
j=1A

†
jAj = IH. It is a straightforward

exercise to verify that such mappings preserve both trace
and the property of a operator being positive semidefinite.
Admissible transformations are precisely those transforma-
tions that can (in principle) be realized physically. We iden-
tify admissible transformations with elements of T(H,K) as

follows: T (X) =
∑k
j=1AjXA

†
j for each X ∈ L(H).

For any Hilbert space H there is exactly one admissible
transformation T ∈ T(H,C), which necessarily satisfies
T (X) = tr(X) for every X ∈ L(H). To perform this trans-
formation on some part of a quantum system essentially
means that this part of the system is discarded or not further
considered. When necessary we refer to this transformation
as the trace-out operation, and more commonly we say that
some part of a given system is traced-out to mean that this
operation is performed on that part of the system. The
partial trace is defined as follows: given a density operator
ρ ∈ D(H ⊗ K) and any orthonormal basis {|e1〉, . . . , |en〉}
of K, define

trK ρ =

n∑
j=1

(IH ⊗ 〈ej |)ρ(IH ⊗ |ej 〉).

Alternately we may define the partial trace by taking the
tensor product of the identity transformation and the trace-
out operation.
Any unitary operator U ∈ U(H) gives rise to an admissible
transformation TU ∈ T(H) given by TU (ρ) = UρU†. Any
transformation that can be expressed in this way will be
called a unitary transformation. When describing unitary
transformations, it is sufficient (and often more convenient)
to describe the transformation in question in terms of its
action on pure states: in case T is a unitary transformation
we write T (|φ〉) = |ψ〉 to mean T (|φ〉〈φ|) = |ψ〉〈ψ |.



It is helpful to note the following alternate characterization
of admissible transformations. A transformation T from
D(H) to D(K) is admissible if and only if there exist Hilbert
spaces F , G, and L satisfying L ∼= H⊗F ∼= K ⊗ G, a uni-
tary operator U ∈ U(L), and an arbitrary vector |ψ〉 ∈ F
such that T (ρ) = trG U(ρ⊗ |ψ〉〈ψ |)U† for every ρ ∈ D(H).
It can be proved (see [23]) that if T is admissible then we
may take L such that dim(L) ≤ dim(H) dim(K).
An important concept in quantum physics is that of a mea-
surement. Although measurements may be treated as par-
ticular types of admissible transformations, it is helpful to
formalize them somewhat differently. Any collection of op-
erators {A1, . . . , Ak} satisfying

∑k
j=1A

†
jAj = I defines a

measurement. If a system in a mixed state ρ is observed
via such a measurement, then the following happens: (i)
for each j ∈ {1, . . . , k} the result of the measurement is j

with probability tr(AjρA
†
j), and (ii) the state of the sys-

tem is changed to one represented by the density operator
AjρA

†
j/ tr(AjρA

†
j) for whichever j resulted in (i). In case

{A1, . . . , Ak} is a collection of orthonormal projections, the
measurement is a projection or von Neumann measurement.
When we say that a system is observed in a particular basis
{|e1〉, . . . , |en〉}, we mean that is observed according to the
projection measurement given by {|e1〉〈e1 |, . . . , |en〉〈en |}.
We define the following norms on L(H) and T(H,K): for

X ∈ L(H) define ‖X‖tr = tr
√
X†X and

‖X‖ = sup
|ψ〉∈H\{0}

‖X|ψ〉‖
‖|ψ〉‖

(with ‖·‖ denoting the `2-norm), and for T ∈ T(H,K) define

‖T‖3 = inf
{
‖A‖ ‖B‖ : T (·) = trF (A · B†)

}
.

Here, the infimum is taken over all A,B ∈ L(H,K ⊗ F)
with dim(H) dim(K) ≤ dim(F). In general, the norm ‖ · ‖tr

(known as the trace norm) is appropriate for measuring dis-
tance between density operators, while ‖ · ‖3 (called the
diamond norm) is appropriate for measuring distances be-
tween admissible transformations. The norm ‖·‖tr may also
be extended to T ∈ T(H,K) as

‖T‖tr = sup
X∈L(H)\{0}

‖T (X)‖tr

‖X‖tr
.

Given two density operators ρ, ξ ∈ D(H), we also define the
fidelity between ρ and ξ, denoted F (ρ, ξ), as follows:

F (ρ, ξ) =
∥∥∥√ρ√ξ ∥∥∥2

tr
.

Some of the proofs contained in this paper rely on the facts
stated in the following theorem.

Theorem 1. The following relations hold:

1. For X ∈ L(H), ‖X‖tr = max {|tr(UX)| : U ∈ U(H)}.
2. Let T ∈ T(H,K) and let L be a Hilbert space satisfying

dim(L) ≥ dim(H). Then ‖T‖3 = ‖T ⊗ IL(L)‖tr.

3. Let T1, T2 ∈ T(H,K). Then ‖T1 ⊗ T2‖3 = ‖T1‖3‖T2‖3.

4. Let H and K be Hilbert spaces with dim(H) ≤ dim(K)
and let ρ, ξ ∈ D(H). Then F (ρ, ξ) = max

{
|〈φ|ψ〉|2

}
,

where the maximum is taken over all |φ〉, |ψ〉 ∈ H ⊗ K
satisfying trK |ψ〉〈ψ | = ρ and trK |φ〉〈φ| = ξ. Equiva-
lently, for ε = min {‖|φ〉 − |ψ〉‖} (over the same set of
values for |ψ〉 and |φ〉) we have F (ρ, ξ) = (1− ε2/2)2.

5. Let ρ, ξ ∈ D(H). Then

2− 2
√
F (ρ, ξ) ≤ ‖ρ− ξ‖tr ≤ 2

√
1− F (ρ, ξ).

6. If |φ〉, |ψ〉 ∈ H⊗K satisfy trK |φ〉〈φ| = trK |ψ〉〈ψ |, then
there exists U ∈ U(K) such that (I ⊗ U)|φ〉 = |ψ〉.

Proofs of the facts comprising Theorem 1 can be found as
follows: 1. see page 430 of [20], 2. and 3. see [1] or [23], 4. see
[22], 5. see [15], and 6. see [21].

2.2 Quantum circuits
The computational model upon which quantum interactive
proof systems are based is the (acyclic) quantum circuit
model. See [1; 8; 23; 31] for background information re-
garding quantum circuits.
A family {Qx} of quantum circuits is said to be polynomial-
time uniformly generated if there exists a deterministic pro-
cedure that, on input x, outputs a description of Qx and
runs in time polynomial in x. It is assumed that the cir-
cuits in such a family are composed only of gates in what
has been called the Shor basis: Hadamard gates,

√
σz gates,

and Toffoli gates [27]. Furthermore, it is assumed that the
number of gates in any circuit is not more than the length
of that circuit’s description (i.e., no compact descriptions
of large circuits are allowed), so Qx must have size polyno-
mial in |x|. Often we identify a circuit Qx with the unitary
operator it induces.
A few notes are in order regarding polynomial-time uni-
formly generated families of quantum circuits. First, we
note that the above notion of uniformity is somewhat non-
standard, since we allow an input x to be given to the pro-
cedure generating the circuits rather than just |x| written in
unary. This does not change the computational power for
the resulting class of quantum circuits, and we find that it is
more convenient to describe the quantum interactive proof
system model using this notion. The second note regards
our choice of the Shor basis. This collection of gates is uni-
versal (in the sense described in [5; 6; 11; 12], for instance);
see [23] for a proof of this fact. While our results hold for
any other reasonable choice for a universal set of gates, we
have chosen this basis for definiteness and convenience; by
allowing reversible computations and Hadamard transforms
to be performed without error, we avoid the need to includ-
ing negligible error terms in some calculations.
The actions performed by the interacting parties in a quan-
tum interactive proof system will be described by quantum
circuits. In the case of the verifier, whose computational
power is assumed to be limited, actions essentially corre-
spond to polynomial-time uniformly generated families of
circuits; this will be made more precise in the next subsec-
tion. In the case of the prover we allow circuits composed
of arbitrary unitary gates, as we do not place restrictions on
the complexity or precision of the prover’s actions. (Note,
however, that the prover must of course obey the restric-
tions imposed by the laws of quantum physics.) One may
instead view the prover as simply applying some arbitrary
unitary transformation to a collection of qubits rather than
applying a particular circuit.
Our model does not change if we consider the more general
class of quantum circuits one obtains if gates are permit-
ted to correspond to arbitrary admissible transformations
on collections of qubits (rather than just the unitary gates



in the Shor basis, which perform only unitary transforma-
tions). This follows from the characterization of admissible
transformations mentioned above—for a detailed discussion
of the equivalence of the unitary vs. non-unitary quantum
circuit models, see [1]. Often we will describe quantum cir-
cuits in a high-level manner that suggests that measure-
ments are performed at various times as the circuits are
applied to some collection of qubits. In fact, as all of our
circuits are assumed to be unitary, such measurements do
not occur, but rather are assumed to be simulated by uni-
tary gates as described in [1].

2.3 Quantum interactive proof systems
In this section we define the quantum interactive proof sys-
tem model. It is assumed the reader is familiar with classical
interactive proof systems, which have been discussed in de-
tail in a number of works (see, e.g., [16] and the references
therein).

As in the classical case, a quantum interactive proof system
consists of two parties, a prover with unlimited computation
power and a computationally bounded verifier, that receive
a common input string and have an interaction that deter-
mines whether or not the verifier is to accept the input.
The goal of the prover is to convince the verifier that the in-
put satisfies some particular property, while the goal of the
verifier is to decide whether the prover’s argument is valid.
Quantum interactive proofs differ from classical interactive
proofs in that the prover and verifier may send and process
quantum information (i.e., qubits). This may result in a sit-
uation in which the prover’s qubits and verifier’s qubits are
entangled. While the verifier in a quantum interactive proof
system gains the advantage of being able to perform quan-
tum computations over classical computations, it seems to
be the case that this is secondary to cryptographic advan-
tages offered by entanglement.

We now formalize the notion of a quantum interactive proof
system using the quantum circuit model. We begin by de-
scribing separately the two parties.

A quantum verifier is a polynomial-time computable map-
ping of the form V : Σ∗ → Σ∗. For each x ∈ Σ∗, V (x)
is interpreted as a k(|x|)-tuple (V (x)1, . . . , V (x)k(|x|)), for
some polynomial bounded function k, with each V (x)j a de-
scription of a quantum circuits acting on qV(|x|) + qM(|x|)
qubits (for qV and qM polynomial bounded functions to be
discussed shortly). It is assumed that these circuit descrip-
tions satisfy the properties of polynomial-time uniformly
generated circuits discussed in the previous subsection; each
circuit V (x)j is of size polynomial in |x|, and each circuit
V (x)j is composed only of gates in the Shor basis. The
qubits upon which each circuit V (x)j acts are divided into
two sets: qV(|x|) qubits that are private to the verifier, and
qM(|x|) qubits that represent the communication channel
between the prover and verifier. One of the verifier’s private
qubits is designated as the output qubit.

A prover is a mapping P that maps each input x ∈ Σ∗ to an
l(|x|)-tuple (P (x)1, . . . , P (x)l(|x|)) of quantum circuits, for
some function l, with each circuit acting on qM(|x|)+qP(|x|)
qubits. No restrictions are placed on the complexity of the
mapping P , the gates of which each P (x)j is composed, or
on the size of each P (x)j (i.e., each P (x)j may simply be
viewed as a unitary transformation). As in the case of the
verifier, the qubits upon which each P (x)j acts are divided
into two sets: qP(|x|) qubits that are private to the prover,

and qM(|x|) qubits representing the communication channel.
A verifier V and a prover P are compatible if for all in-
puts x we have (i) each V (x)i and P (x)j agree on the num-
ber qM(|x|) of message qubits upon which they act, and
(ii) k(|x|) = bm(|x|)/2 + 1c and l(|x|) = bm(|x|)/2 + 1/2c
for some m(|x|) (representing the number of messages ex-
changed). We say that V is an m-message verifier and P
is an m-message prover in this case. Whenever we discuss
an interaction between a prover and verifier, we naturally
assume they are compatible.
Given a verifier V , a prover P , and an input x, we define a
circuit (V (x), P (x)) acting on q(|x|) = qV(|x|) + qM(|x|) +
qP(|x|) qubits as follows. If m(|x|) is odd, circuits

P (x)1, V (x)1, . . . , P (x)(m(|x|)+1)/2, V (x)(m(|x|)+1)/2

are applied in sequence, each to the qM(|x|) + qP(|x|) mes-
sage and prover qubits or to the qV(|x|) + qM(|x|) verifier
and message qubits accordingly. If m(|x|) is even the sit-
uation is similar, except that the verifier applies the first
circuit; circuits

V (x)1, P (x)1, V (x)2, . . . , P (x)m(|x|)/2, V (x)m(|x|)/2+1

are applied in sequence similar to the above case. This sit-
uation is illustrated in Figure 1 for the case m(|x|) = 4.
Now, for a given input x, the probability that the pair (V, P )
accepts x is defined to be the probability that an observation
of the output qubit (in the {|0〉, |1〉} basis) yields the value
1, after the circuit (V (x), P (x)) is applied to a collection of
q(|x|) qubits each initially in the |0〉 state.
Finally, we define a number of classes of languages based on
quantum interactive proof systems.

Definition 1. For functions m : Z+ → N and a, b :
Z+ → [0, 1], let QIP(m,a, b) denote the class of languages L
for which there exists an m-message verifier V such that

1. There exists an m-message prover P such that for any
x ∈ L, (V, P ) accepts x with probability at least a(|x|).

2. For all m-message provers P and all x 6∈ L, (V, P )
accepts x with probability at most b(|x|).

We also let QIP(poly , a, b) denote the union of the classes
QIP(m,a, b) over all m ∈ poly .
It will be necessary in our proofs to refer to the quantum
states of various subsystems of a quantum interactive proof
system. We will use the following notation for this pur-
pose. Assume we have a verifier V and a prover P , and
let us fix an input x. For readability we often drop the ar-
gument x and |x| in the various functions above when it
is understood (e.g., we write Vj and Pj to denote V (x)j
and P (x)j for each j, and we write m to denote m(|x|)).
Let V = `2(Σ

qV ), M = `2(Σ
qM), and P = `2(Σ

qP ) denote
the Hilbert spaces corresponding to the verifier’s qubits, the
message qubits, and the prover’s qubits, respectively. At a
given instant, the state of the circuit (V, P ) is thus a unit
vector in the space V ⊗M⊗ P. For instance, if |ψinit 〉 de-
notes the state in which all qubits are zero, the state of the
system after all of the prover’s and verifier’s circuits have
been applied is V2P2V1P1|ψinit 〉 in the case m = 3. Here,
and throughout this paper, we assume that operators act-
ing on subsystems of a given system are extended to the
entire system by tensoring with the identity—in all cases
it will be clear from context upon what part of a system a
given operator acts. We may also consider the mixed states
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Figure 1: Quantum circuit for a 4-message quantum interactive proof system

of subsystems of circuits in the usual way; for instance, if
|ψ〉 ∈ V ⊗M⊗P denotes the state of (V, P ) at some time,
then trM⊗P |ψ〉〈ψ | ∈ D(V) denotes the mixed state of the
verifier’s qubits that results by excluding the message qubits
and prover’s qubits from consideration.

3. ONE-SIDED VS. TWO-SIDED ERROR
In this section we prove that any quantum interactive proof
system having two-sided bounded error can be made to have
one-sided bounded error at the cost of one additional round
of communication.

Theorem 2. Let m ∈ poly and let a : Z+ → [0, 1] be
such that there exists a family {Q1n} of polynomial-time uni-
formly generated quantum circuits such that Q1n performs
(exactly) the unitary transformation Ta(n) having the follow-
ing effect on pure states:

Ta(n)(|0〉) =
√
a(n)|0〉 −

√
1− a(n)|1〉

Ta(n)(|1〉) =
√

1− a(n)|0〉+
√
a(n)|1〉.

Then for b : Z+ → [0, 1] satisfying b(n) < a(n) for every n,
QIP(m,a, b) ⊆ QIP(m+ 2, 1, 1− (a− b)2).

Proof. Let L ∈ QIP(m,a, b) for m, a, and b as in the
statement of the theorem. Without loss of generality, we
may assume there exists an m-message protocol for L that
causes the verifier to accept with probability precisely equal
to a(|x|) for each input x ∈ L (following from the fact
that any nontrivial protocol can be modified to yield one
in which the prover can decrease the probability that the
verifier accepts by any desired quantity). In order to prove
L ∈ QIP(m+2, 1, 1− (a−b)2), we consider the modification
of such a protocol as described in Figure 2.
Consider an execution of this protocol on a given input x
of length n. Suppose that |ψ〉 describes the state of reg-
ister R, along with any of the prover’s private registers,
after the original protocol is simulated in step 1. After
B and B′ are incremented, the state of the entire system
may be expressed as αacc |00〉|ψacc 〉 + αrej |11〉|ψrej 〉, where
αacc , αrej ∈ [0, 1] and |ψ〉 = αacc |ψacc 〉 + αrej |ψrej 〉 (for
|ψacc 〉 and |ψrej 〉 representing the normalized projections
of |ψ〉 onto accepting and rejecting states). The prover
now applies some transformation U to the registers of the
system except B, resulting in state αacc |0〉U (|0〉|ψacc 〉) +

1. Run the original protocol, except do not output accept
or reject. Let R denote the verifier’s qubits in the ini-
tial protocol after all messages have been exchanged.
Assume registers B and B′ (not used in the original
protocol) are initially zero. Increment both B and B′ if
and only if the contents of R would cause the original
verifier to reject.

2. Send B′ and R to the prover.

3. Receive B′ from the prover, subtract B from B′, and
perform Ta(|x|) on B. Observe B: if B contains 0, then
accept, otherwise reject.

Figure 2: Verifier’s protocol for Theorem 2.

αrej |1〉U (|1〉|ψrej 〉). After receiving B′ from the prover in
step 3, the verifier subtracts B from B′, yielding the state
αacc |0〉|φacc 〉 + αrej |1〉|φrej 〉, where |φacc 〉 = U (|0〉|ψacc 〉)
and |φrej 〉 is equivalent to U (|1〉|ψrej 〉), but with B′ flipped.
Finally, the verifier applies transformation Ta(n) to B. The
probability of acceptance is thus given by∥∥∥αacc

√
a(n)|φacc 〉+ αrej

√
1− a(n)|φrej 〉

∥∥∥2

. (1)

Assume x ∈ L, so that αacc =
√
a(n) and αrej =

√
1− a(n).

The prover may choose U so that U(|0〉|ψacc 〉) = |0〉|γ〉
and U(|1〉|ψrej 〉) = |1〉|γ〉 for arbitrary |γ〉, implying that
|φacc 〉 = |φrej 〉. By (1) the probability of acceptance is there-
fore 1 as required.

Now assume x 6∈ L. By (1), the probability of acceptance is
bounded by(

αacc

√
a(n) + αrej

√
1− a(n)

)2

≤ 1−
(
a(n)− α2

acc

)2 ≤ 1− (a(n)− b(n))2,

as required.

By definition QIP(m,a, b) ⊆ QIP(m,a′, b) whenever a′ < a,
and thus Theorem 2 implies

QIP(m,a, b) ⊆ QIP(m+ 2, 1, 1− (a′ − b)2)



assuming (i) b(n) < a′(n) ≤ a(n) for every n and (ii) Ta′(n)

can be performed by polynomial-time uniformly generated
circuits. It is the case that a function a′ can in fact always
be chosen that is exponentially close (in a point-wise sense)
to a given (polynomial-time computable) function a:

Proposition 3. Let f ∈ 2−poly , let a : Z+ → [0, 1] be
polynomial-time computable, and assume a(n)−f(n) ∈ [0, 1]
for every n. Then there exists a function a′ : Z+ → [0, 1]
such that (i) a′(n) ∈ (a(n) − f(n), a(n)] for every n, and
(ii) there exists a family {Q1n} of polynomial-time uniformly
generated quantum circuits for exactly performing the trans-
formation Ta′(n).

This proposition follows from a more general theorem re-
garding the accuracy to which any 2-dimensional unitary
transformation can be approximated by gates in our basis.
(See [23] for details.) As a result, we see that

QIP(m,a, b) ⊆ QIP(m+ 2, 1, 1− poly−1)

given that a− b ∈ poly−1.

4. PARALLELIZATION OF QUANTUM INTERAC-
TIVE PROOF SYSTEMS

Next, we prove that any one-sided error quantum interactive
proof system in which the prover and verifier exchange a
polynomial number of messages can be parallelized to one
in which the prover and verifier exchange just 3 messages.

Theorem 4. Let m ∈ poly and let ε : Z+ → [0, 1] be any
function. Then

QIP(m, 1, 1− ε) ⊆ QIP

(
3, 1, 1− ε2

4m2

)
.

For convenience we restrict our attention to quantum inter-
active proofs in which m is odd, implying that the prover
sends the first message. (A quantum protocol with even m
can trivially be simulated by one with odd m in which the
verifier rejects if the first message does not consist of all
zero-valued qubits.) Since there is nothing to prove in case
m ≤ 3, we will assume m > 3. For a given fixed input x, we
let k denote (m+1)/2, so the prover and verifier alternately
apply circuits P1, . . . , Pk and V1, . . . , Vk on this input. We
define MAP(V1, . . . , Vk) (the maximum acceptance proba-
bility of V1, . . . , Vk) as follows:

MAP(V1, . . . , Vk) = max
{
‖ΠaccVkPk · · ·V1P1|ψinit 〉‖2} ,

where the maximum is over all P1, . . . , Pk ∈ U(M ⊗ P)
and Πacc denotes the projection onto accepting states (i.e.,
states for which the output qubit is 1). Let Πinit denote the
projection onto those states for which the verifier’s qubits
are all in the state |0〉.
In order to prove Theorem 4 we require the following lemma.

Lemma 5. Let ρ1, . . . , ρk ∈ D(V ⊗M) and V1, . . . , Vk ∈
U(V ⊗ M) satisfy ρk = (V †k ΠaccVk)ρk(V

†
k ΠaccVk), ρ1 =

Πinit ρ1 Πinit, and MAP(V1, . . . , Vk) < 1− ε. Then

k−1∑
j=1

√
F
(
trM VjρjV

†
j , trM ρj+1

)
≤ (k − 1)− ε2

8(k − 1)
.

Proof. Let |ψ1〉, . . . , |ψk 〉 ∈ V ⊗ M ⊗ P be such that
trP |ψj 〉〈ψj | = ρj , and write

F
(
trM VjρjV

†
j , trM ρj+1

)
=

(
1−

η2
j

2

)2

for η1, . . . , ηk−1 ≥ 0. By Theorem 1 (item 4) there exist
vectors |ξj 〉, |γj 〉 ∈ V ⊗M⊗P such that trM⊗P |ξj 〉〈ξj | =

trM VjρjV
†
j , trM⊗P |γj 〉〈γj | = trM ρj+1, and ‖|ξj 〉−|γj 〉‖ ≤

ηj , for 1 ≤ j ≤ k − 1. For each j we have trM⊗P |γj 〉〈γj | =
trM⊗P |ψj+1〉〈ψj+1 |, and thus by Theorem 1 (item 6) there
exists Qj+1 ∈ U(M⊗P) such that Qj+1|γj 〉 = |ψj+1〉. Sim-

ilarly, as trM⊗P Vj |ψj 〉〈ψj |V †j = trM⊗P |ξj 〉〈ξj |, there ex-
ists Rj+1 ∈ U(M⊗P) such that Rj+1Vj |ψj 〉 = |ξj 〉. Define
Pj+1 = Qj+1Rj+1 for 1 ≤ j ≤ k− 1. As ρ1 = Πinit ρ1 Πinit,
we may also define P1 such that P1|ψinit 〉 = |ψ1〉. Now, for
1 ≤ j ≤ k − 1 we have

‖Pj+1Vj |ψj 〉 − |ψj+1〉‖ = ‖|ξj 〉 − |γj 〉‖ ≤ ηj ,

and consequently

‖PkVk−1 · · ·P1|ψinit 〉 − |ψk 〉‖

= ‖PkVk−1 · · ·P2V1|ψ1〉 − |ψk 〉‖ ≤
k−1∑
j=1

ηj .

Since ρk = (V †k ΠaccVk)ρk(V
†
k ΠaccVk), it follows that

‖ΠaccVk|ψk 〉‖ = 1, and thus

‖ΠaccVkPk · · ·V1P1|ψinit 〉‖ ≥ 1−
k−1∑
j=1

ηj .

As MAP(V1, . . . , Vk) < 1 − ε, we therefore have
∑k−1
j=1 ηj ≥

1 −
√

1− ε ≥ ε/2. The lemma now follows by noting that

the maximum of
∑k−1
j=1 (1 − η2

j /2) subject to the constraint∑k−1
j=1 ηj ≥ ε/2 is as stated.

Proof of Theorem 4. Fix an input x, and let V1, . . . , Vk ∈
U(V⊗M) describe the verifier’s circuits for this input. Also
let P1, . . . , Pk ∈ U(M⊗P) be an optimal sequence of uni-
tary transformations for the prover, and let Πinit and Πacc

be as above.
In Figure 3, we describe the verifier’s 3-message protocol.
In step 1, the verifier effectively measures (V1,M1) and

1. Receive registers V1, . . . ,Vk and M1, . . . ,Mk from the
prover. Reject if V1 does not contain all zeroes. Per-
form Vk on (Vk,Mk), reject if (Vk,Mk) does not

contain an accepting state, and then perform V †k on
(Vk,Mk).

2. Prepare (B,B′) in state |φ+〉 = 1√
2
(|0〉|0〉+ |1〉|1〉) and

choose r ∈ {1, . . . , k − 1} uniformly at random. Apply
Vr to (Vr,Mr), perform a controlled-swap between Vr

and Vr+1 with control bit B, and send Mr, Mr+1, B′,
and r to the prover.

3. Receive B′ from the prover, perform a controlled-not
operation on (B,B′), and perform a Hadamard trans-
form on B. Accept if B contains 0, and reject otherwise.

Figure 3: Verifier’s parallelization protocol.



(Vk,Mk) corresponding to projections Πinit and V †k ΠaccVk,
respectively. Under the assumption that the verifier does not
reject in step 1, the state of the entire system is projected
according to Πinit and V †k ΠaccVk appropriately.
First let us assume MAP(V1, . . . , Vk) = 1. We now de-
fine a prover that causes the (3-message) verifier to ac-
cept with certainty. The prover initially prepares regis-
ters (Vj ,Mj ,Pj), 1 ≤ j ≤ k, as follows: (V1,M1,P1)
is prepared in state P1|ψinit 〉, and (Vj+1,Mj+1,Pj+1) is
prepared in state Pj+1VjPj · · ·V1P1|ψinit 〉 for j ≥ 1. For
whichever r the verifier sends in step 2, the prover per-
forms Pr+1 to (Mr,Pr) and then performs a controlled-swap
on (Mr,Pr) and (Mr+1,Pr+1) using control bit B′. The
prover then sends B′ back to the verifier. Assuming that
MAP(V1, . . . , Vk) = 1 and P1, . . . , Pk is an optimal sequence
of transformations in the m-message case, it is routine to
show that the 3-message verifier accepts with certainty.
Now consider the case that MAP(V1, . . . , Vk) < 1 − ε. For
each j, let ρj ∈ D(V ⊗M) denote the state of the registers
(Vj ,Mj) received from the prover in step 1, assuming all
other registers are traced out. We claim that the probability
that the verifier accepts for each choice of r is at most

pr :=
1

2
+

1

2

√
F
(
trM VrρrV

†
r , trM ρr+1

)
.

Since r is chosen uniformly, this will imply that the total
probability that the verifier accepts is bounded by

k−1∑
r=1

pr
k − 1

≤ 1− ε2

16(k − 1)2
= 1− ε2

4(m− 1)2

by Lemma 5. To account for the possibility that we have
added 1 to m to handle the case that m was initially even,
we obtain the bound given in the statement of the theorem.
It remains to prove that pr bounds the probability that the
verifier accepts for given r. Consider the state of the entire
system immediately after the controlled-not in step 3 has
been performed. We may denote this state by (|0〉|φ0〉 +
|1〉|φ1〉)/

√
2 for unit vectors |φ0〉, |φ1〉 ∈ V ⊗ K, where the

V component of each vector describes the state of Vr and
the K component describes all registers of the system besides
B and Vr. Note that by Theorem 1 (item 4) we must have
|〈φ0 |φ1〉|2 ≤ F

(
trM VrρrV

†
r , trM ρr+1

)
, as trK |φ0〉〈φ0 | =

trM VrρrV
†
r and trK |φ1〉〈φ1 | = trM ρr+1. The verifier ap-

plies a Hadamard transform to B and accepts if the resulting
bit is 0. The probability of acceptance is thus given by∥∥∥∥1

2
|0〉(|φ0〉+ |φ1〉)

∥∥∥∥2

=
1

2
+

1

2
<〈φ0 |φ1〉,

which is bounded by 1
2

+ 1
2

√
F (trM VrρrV

†
r , trM ρr+1) as

required.

5. AMPLIFICATION OF 3-MESSAGE PROTOCOLS
The simplest way to (potentially) reduce the error probabil-
ity of a quantum interactive proof system is to perform the
protocol many times in parallel and to allow the verifier to
make its decision to accept or reject based on the outcomes
of the individual executions. In case the original protocol
has one-sided error, the verifier simply accepts if and only if
every one of the parallel executions accepts. For the case of
two-sided error, the verifier may choose to accept or reject

based on the ratio of acceptance to rejection of the parallel
executions.
One might expect that there is the possibility that this
method will not work, since a malicious prover might en-
tangle its responses among the parallel executions, perhaps
in a way that biases the outcome of a particular execution
based on the outcome of another. We prove, however, that
in the case of one-sided error 3-message protocols this can-
not happen; the prover gains no advantage whatsoever by
entangling parallel executions.

Theorem 6. Let p ∈ poly and let b : Z+ → [0, 1] be any
function. Then QIP(3, 1, b) ⊆ QIP(3, 1, bp).

The proof of this theorem is based on the following lemma,
which relates the maximum acceptance probability of an
interactive proof system to the diamond norm of a mapping
based only the specification of the verifier.

Lemma 7. Let operators V1, V2 ∈ U(V ⊗M) and projec-
tions Πinit and Πacc be as defined previously. Define
W1,W2 ∈ L(V ⊗M) as W1 = V1Πinit and W2 = V †2 Πacc,

and define T ∈ T(V ⊗ M,M) as T (X) = trVW1XW
†
2 .

Then MAP(V1, V2) = ‖T‖2
3.

Proof. First note that

MAP(V1, V2)=max

{∣∣∣〈φ|W †
2UW1|ψ〉

∣∣∣2} ,
where the maximum is over all |ψ〉, |φ〉, and U ∈ U(M⊗P),
where |ψ〉, |φ〉 ∈ V ⊗M⊗P are unit vectors.
Now, for P of sufficiently large dimension, by Theorem 1
(item 2) we have that

‖T‖3 = ‖T ⊗ IL(P)‖tr = max
{
‖T ⊗ IL(P)(Y )‖tr

}
,

where the maximum is taken over all Y ∈ L(V ⊗M ⊗ P)
satisfying ‖Y ‖tr = 1. Any Y ∈ L(V ⊗M ⊗ P) satisfying
‖Y ‖tr = 1 can be written as

∑
j αj |ψj 〉〈φj | where

∑
j |αj | =

1 and each |ψj 〉, |φj 〉 ∈ V ⊗M⊗ P is a unit vector. Thus,
it must be the case that the maximum of ‖T ⊗ IL(P)(Y )‖tr

is obtained on an operator of the form |ψ〉〈φ| (again for |ψ〉
and |φ〉 unit vectors). We therefore have

‖T‖3 = max
{
‖T ⊗ IL(P)(|ψ〉〈φ|)‖tr

}
= max

{
‖ trVW1|ψ〉〈φ|W †

2 ‖tr

}
,

with both maximums being taken over all choices for unit
vectors |ψ〉, |φ〉 ∈ V ⊗M⊗ P. By Theorem 1 (item 1) we
therefore have

‖T‖2
3 = max

{∣∣∣tr(U trVW1|ψ〉〈φ|W †
2

)∣∣∣}2

for U ∈ U(M⊗P). Simplifying this equality, we have

‖T‖2
3 = max

{∣∣∣tr(UW1|ψ〉〈φ|W †
2

)∣∣∣}2

= max
{∣∣∣〈φ|W †

2UW1|ψ〉
∣∣∣}2

= MAP(V1, V2)

as required.

Proof of Theorem 6. Let L ∈ QIP(3, 1, b) and let V be
a verifier witnessing this fact. Fix an input string x and
define T ∈ T(V ⊗ M,M) as in Lemma 7. If x ∈ L we



have ‖T‖2
3 = 1, while if x 6∈ L we have ‖T‖2

3 ≤ b. Now
let V ′ be a verifier that runs p copies of the protocol of
V in parallel and accepts if and only if every one of the p
copies accepts. The operators corresponding to the actions
of V ′ are described by V ′i = Vi ⊗ · · · ⊗ Vi (p times) for
i = 1, 2, while the projections Π′

init and Π′
acc corresponding

to the initial and accepting conditions of V ′ are given by
Π′

init = Πinit ⊗ · · · ⊗ Πinit and Π′
acc = Πacc ⊗ · · · ⊗ Πacc (p

times each). Consequently, defining T ′ for V ′ as in Lemma 7
we have T ′ = T ⊗ · · · ⊗ T . By Item 3 in Theorem 1 we have
‖T ′‖3 = ‖T ⊗ · · · ⊗ T‖3 = ‖T‖p3. Thus, if x ∈ L then
MAP(V ′1 , V

′
2 ) = 1, while if x 6∈ L then MAP(V ′1 , V

′
2 ) ≤ bp.

We note that a simple modification of the proof of this the-
orem implies that 1-message and 2-message quantum inter-
active proofs can be amplified in a similar way (although
there is a much simpler proof in the 1-message case).
By Theorem 2, Proposition 3, Theorem 4, and Theorem 6,
we obtain the following corollary:

Corollary 8. Let p ∈ poly, ε ∈ poly−1, and assume
a, b : Z+ → [0, 1] satisfy a(n) − b(n) ≥ ε(n) for every n.
Then QIP(poly , a, b) ⊆ QIP(3, 1, 2−p).

6. EXPONENTIAL-TIME SIMULATION OF QUAN-
TUM INTERACTIVE PROOFS

Finally, we prove the following upper bound on the power
of quantum interactive proof systems: any language hav-
ing a quantum interactive proof system can be decided in
deterministic exponential time.

Theorem 9. QIP(3, 1, 1/2) ⊆ EXP.

Here, EXP denotes the class of languages L decidable by a
deterministic Turing machine M in time bounded by 2p for
some p ∈ poly .
The method used to prove this fact is based on semidef-
inite programming. For information on semidefinite pro-
gramming, we refer the reader to [2; 29] and the references
therein.
The following problem is called the standard semidefinite
programming (SDP) problem:

Input: A1, . . . , Ak, C ∈ CN×N and b1, . . . , bk ∈ C.

Problem: Minimize <(trC†X) for X ∈ CN×N positive

semidefinite and satisfying trA†jX = bj for
j = 1, . . . , k.

It should be noted that it is generally required that the un-
derlying field be the real numbers rather than the complex
numbers for this problem. It is a fairly straightforward exer-
cise, however, to show that the two problems are equivalent
(up to a polynomial factor increase in the size of the prob-
lem). Given an accuracy bound ε, the SDP problem can be
solved in (deterministic) time polynomial in the input size
and | log ε | (given that a polynomial upper-bound on the
length of the solution is known) [19] (see also [2]).

Proof of Theorem 9 First we consider an optimization
problem that reduces to the SDP problem. We then show
that membership in a given language L ∈ QIP(3, 1, 1/2) can
be decided in EXP by solving an exponential-size instance
of our optimization problem.
Assume we are given positive integer parameters N1, N2,
and M , as well as M×N1 complex matrices B1,1, . . . , B1,k1 ,

and M ×N2 complex matrices B2,1, . . . , B2,k2 . Define map-

pings T̃1, T̃2 : CNi×Ni → CM×M as follows:

T̃i(Y ) =

ki∑
j=1

Bi,jY B
†
i,j ,

and suppose we are promised that one of the following two
possibilities holds for given ε > 0:

1. There exist positive semidefinite, trace 1 matrices Y1 and

Y2 such that T̃1(Y1) = T̃2(Y2).

2. For all positive semidefinite, trace 1 matrices Y1 and Y2,

‖T̃1(Y1)− T̃2(Y2)‖ > ε.

We wish to determine which of these two cases holds. This
problem reduces to the SDP problem, as we now show.
Let N ′ = N1 + N2 + 2M + 1 and consider the set of all
N ′ ×N ′ matrices having the form

X = diag(t, Y1, Y2, tI − (T̃1(Y1)− T̃2(Y2)),

tI + (T̃1(Y1)− T̃2(Y2))) (2)

(where t is a scalar) and subject to the constraints that
trY1 = trY2 = 1 and X is positive semidefinite. For any
such X we must have that t is a nonnegative real number,
that Y1 and Y2 are positive semidefinite, and furthermore

that t ≥ ‖T̃1(Y1) − T̃2(Y2)‖. Thus, there exists an X satis-
fying these constraints for which t = 0 if and only if item 1
above is satisfied; otherwise t > ε for all such X, in which
item 2 holds.
We will define a collection of matrices A1, . . . , Al and num-
bers b1, . . . , bl that, in the sense of the SDP problem, impose
the constraints on a given matrixX that it be of the form (2)
with tr(Y1) = tr(Y2) = 1. First, for each i, j ∈ {1, . . . , N ′},
define Ei,j to be the N ′×N ′ matrix having a 1 as its i, j en-

try and with all other entries 0. Note that trE†i,jX = X[i, j]

for any N ′ × N ′ matrix X. Let us also define K1 = {1},
K2 = {2, . . . , N1 + 1}, K3 = {N1 + 2, . . . , N1 + N2 + 1},
K4 = {N1 + N2 + 2, . . . , N1 + N2 + M + 1}, and K5 =
{N1 +N2 +M +2, . . . , N1 +N2 +2M +1}. Next, we do the
following:

• For every pair i, j such that i ∈ Km1 and j ∈ Km2 for
m1 6= m2, define Ui,j = Ei,j and ui,j = 0.

• Define V1 =
∑
i∈K2

Ei,i, V2 =
∑
i∈K3

Ei,i, and set v1 =
v2 = 1.

• For each i, j ∈ {1, . . . ,M} define

Fi,j =

N∑
i′,j′=1

[(
k1∑
t=1

B†1,t[i
′, i]B1,t[j, j

′]

)
Ei′+1,j′+1

−

(
k2∑
t=1

B†2,t[i
′, i]B2,t[j, j

′]

)
Ei′+N1+1,j′+N1+1

]
,

define Gi,j and Hi,j as follows:

Gi,j = δi,jE1,1 − Fi,j − Ei+N1+N2+1,j+N1+N2+1,

Hi,j = δi,jE1,1 + Fi,j − Ei+N1+N2+M+1,j+N1+N2+M+1,

and set gi,j = hi,j = 0.

Relabel the matrices {Ui,j} ∪ {V1, V2} ∪ {Gi,j} ∪ {Hi,j} and
the numbers {ui,j} ∪ {v1, v2} ∪ {gi,j} ∪ {hi,j} as A1, . . . , Al



and b1, . . . , bl for appropriately chosen l, and consider the
collection of all N ′ × N ′ matrices X for which we have
trA†1X = b1, . . . , trA†lX = bl. It may be verified that
this is precisely the collection of matrices of the form (2)
such that tr(Y1) = tr(Y2) = 1; the first item above imposes
the constraint that X be of the form diag(t, Y1, Y2, Z1, Z2)
for Y1 an N1 × N1 matrix, Y2 an N2 × N2 matrix, and
Z1 and Z2 M ×M matrices, the second item imposes the
constraint trY1 = trY2 = 1, and the third item imposes

the constraint that Z1 = tI − (T̃1(Y1) − T̃2(Y2)) and Z2 =

tI + (T̃1(Y1) − T̃2(Y2)). By defining C = E1,1, we see that
the minimum of <(trC†X) subject to the above constraints

is precisely the minimum value of ‖T̃1(Y1) − T̃2(Y2)‖ over
all matrices Y1, Y2 representing density operators, and thus
determines which of possibility 1 or 2 above holds.
Now we show that membership in a given language L ∈
QIP(3, 1, 1/2) can be reduced to an exponential-size instance
of the optimization problem discussed above. Assume V is
a 3-message verifier for L having one-sided error bounded
by 1/2. For a given input x, we therefore wish to determine
whether MAP(V1, V2) = 1 or MAP(V1, V2) < 1/2 holds.
Recall the definitions of the spaces V, M, and P and the
projections Πinit and Πacc as defined in Section 2.3. Define
H1 = M and define H2 to be V ⊗M with the output qubit
removed (i.e., H2 = `2(Σ

qV−1×ΣqM)). Define Ti : D(Hi) →
D(V) for i = 1, 2 as follows:

T1 : ρ 7→ trM
(
V1 (|0qV 〉〈0qV | ⊗ ρ)V †1

)
,

T2 : ρ 7→ trM
(
V †2 (|1〉〈1| ⊗ ρ)V2

)
.

We claim that if MAP(V1, V2) = 1 then there exists ρ1 ∈
D(H1) and ρ2 ∈ D(H2) such that T1(ρ1) = T2(ρ2), and if
MAP(V1, V2) < 1/2 then

‖T1(ρ1)− T2(ρ2)‖ ≥ 2−qV−4

for any ρ1 ∈ D(H1) and ρ2 ∈ D(H2). If MAP(V1, V2) = 1,
this is straightforward. Suppose on the other hand that
MAP(V1, V2) < 1/2. For any ρ1 ∈ D(H1) and ρ2 ∈ D(H2)
we may conclude√

F (T1(ρ1), T2(ρ2)) ≤
31

32

by Lemma 5. Consequently

‖T1(ρ1)− T2(ρ2)‖ ≥ 2−qV ‖T1(ρ1)− T2(ρ2)‖tr ≥ 2−qV−4

by Theorem 1 (item 5).
Now let M = 2qV , N1 = 2qM , and N2 = 2qV+qM−1. It
remains to be shown that a collection of M × N1 matrices
B1,1, . . . , B1,k1 (describing an approximation T̃1 to T1) and
M ×N2 matrices B2,1, . . . , B2,k2 (describing an approxima-

tion T̃2 to T2) may be computed in time exponential in |x|
to a sufficient degree of accuracy such that the solution to
the corresponding instance of SDP described above reveals
whether or not x ∈ L. But under the assumption that V1

and V2 are polynomial-time uniformly generated circuits as
discussed in Section 2, it is routine to show that in exponen-
tial time one may compute matrices Bi,1, . . . , Bi,ki for which

the inequalities ‖Ti(ρi)− T̃i(ρi)‖tr < 2−p(|x|) (i = 1, 2) hold
for any fixed polynomial p and all ρi ∈ D(Hi). (Note that
this bound in precision is sufficient for our purposes, but is
indeed very coarse—the error can in fact be made smaller
than 2−2p

, as an exponential number of bits of precision

r
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Figure 4: Relationships among quantum interactive proof
system classes and some other complexity classes.

may be computed for each entry of each Bi,j in exponen-
tial time.) Thus, taking p = qV + 7 for instance, we have

that x ∈ L implies ‖T̃1(ρ1) − T̃2(ρ2)‖ ≤ 2−(qV+6) for some

ρ1, ρ2, while x 6∈ L implies ‖T̃1(ρ1) − T̃2(ρ2)‖ ≥ 2−(qV+5)

for every ρ1, ρ2. As there exist polynomial time algorithms
for the SDP problem for which the solution is accurate to a
polynomial number of bits of precision in the instance size, it
follows that in time exponential in |x|O(1) we may determine
whether or not x ∈ L, which completes the proof.

7. CONCLUSION
Figure 4 summarizes relationships among some of the classes
considered in this paper. Here we let QIP(m) denote the
one-sided error class QIP(m, 1, 1/2). A definition of the class
BQP may be found in [7], while RQP may be defined as a
one-sided error version of BQP.

A number of open questions regarding quantum interactive
proof systems remain. Of particular interest is the following
question: can QIP(1), QIP(2), and QIP(3) be characterized
by classical complexity classes? More generally, what other
relations hold among quantum interactive proof systems and
classical models of computation? We know very little about
QIP(2); how does this class compare to PP or to PSPACE?
Finally, one may consider many variants on quantum inter-
active proof systems, such as quantum variants of PCPs and
multiprover proof systems. How do these models compare
to their classical counterparts?
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