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Abstract

Quantum Merlin-Arthur proof systems are a weak form of quantum interactive proof systems,
where mighty Merlin as a prover presents a proof in a pure quantum state and Arthur as a ver-
ifier performs polynomial-time quantum computation to verify its correctness with high success
probability. For a more general treatment, this paper considers quantum “multiple-Merlin”-Arthur
proof systems in which Arthur uses multiple quantum proofs unentangled each other for his ver-
ification. Although classical multi-proof systems are easily shown to be essentially equivalent to
classical single-proof systems, it is unclear whether quantum multi-proof systems collapse to quan-
tum single-proof systems. This paper investigates the possibility that quantum multi-proof systems
collapse to quantum single-proof systems, and shows that (i) a necessary and sufficient condition
under which the number of quantum proofs is reducible to two and (ii) using multiple quantum
proofs does not increase the power of quantum Merlin-Arthur proof systems in the case of perfect
soundness. Our proof for the latter result also gives a new characterization of the class NQP, which
bridges two existing concepts of “quantum nondeterminism”. It is also shown that (iii) there is
a relativized world in which co-NP (actually co-UP) does not have quantum Merlin-Arthur proof
systems even with multiple quantum proofs.
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1 Introduction

Babai [3] introduced Merlin-Arthur proof systems (or Merlin-Arthur games as originally called), which
can be viewed as a weak form of interactive proof systems in which powerful Merlin, who is a prover,
presents a proof and Arthur, who is a verifier, probabilistically verifies its correctness with high success
probability. The class of languages having Merlin-Arthur proof systems is denoted by MA, and has
played important roles in computational complexity theory [3, 5, 4] (also see [13] for history).

A quantum analogue of MA was first discussed by Knill [28] and studied intensively by Kitaev [25],
Watrous [34], and a number of very recent works [24, 35, 21, 22, 36]. In the most commonly-used
version of quantum Merlin-Arthur proof systems, a proof presented by Merlin is a pure quantum state
called a quantum proof and Arthur’s verification process is a polynomial-time quantum computation.
However, all the previous works only consider the model in which Arthur receives a single quantum
proof, and no discussions are done so far on the model in which Arthur receives multiple quantum
proofs unentangled each other.

Classically, multiple proofs can be concatenated into a long single proof, and thus, there is no
advantage to use multiple proofs. However, it is unclear whether using multiple quantum proofs is
computationally equivalent to using a single quantum proof, because knowing that a given proof is
a tensor product of some unentangled quantum states might be advantageous to Arthur and might
make significant difference. For example, in the case of two quantum proofs versus one, consider
the following most straightforward Arthur’s simulation of two quantum proofs by a single quantum
proof: given a single quantum proof that is expected to be a tensor product of two unentangled
quantum states, Arthur first runs some pre-processing to rule out any quantum proof far from states
of a tensor product of two unentangled quantum states, and then performs the verification procedure
for two-proof systems. It turns out that this most straightforward method does not work well, since
there is no positive operator value measurement (POVM) that determines whether a given unknown
state is in a tensor product form or even maximally entangled, as is shown in Section 7. Other
fact is that the unpublished proof by Kitaev and Watrous for the upper bound PP of the class
QMA of languages having single-proof quantum Merlin-Arthur proof systems (and even the proof of
QMA ⊆ PSPACE [25, 26]) no longer works well for the multi-proof cases with the most straightforward
modification. Also, the existing proofs that parallel repetition of a single-proof protocol reduces the
error probability to be arbitrarily small [27, 34, 26] cannot be applied to the multi-proof cases. Of
course, these arguments do not imply that using multiple quantum proofs is more powerful from
the complexity theoretical viewpoint than using only a single quantum proof. The authors believe,
however, that these at least justify that it is meaningful to consider the multi-proof model of quantum
Merlin-Arthur proof systems.

For this reason, this paper extends the usual single-proof model of quantum Merlin-Arthur proof
systems to the multi-proof model by allowing Arthur to use multiple quantum proofs, which are given
in a tensor product form of multiple pure quantum states. One may think of this model as a special
case of quantum multi-prover interactive proof systems discussed in [29]in which a verifier cannot ask
questions to provers, and provers do not share entanglement a priori. Formally, we say that a language
L has a (k, a, b)-quantum Merlin-Arthur proof system if there exists a polynomial-time quantum verifier
V such that, for every input x of length n, (i) if x ∈ L, there exists a set of k quantum proofs which
causes V to accept x with probability at least a(n), and (ii) if x 6∈ L, for any set of k quantum proofs,
V accepts x with probability at most b(n). Let QMA(k, a, b) denote the class of languages having
(k, a, b)-quantum Merlin-Arthur proof systems. We often abbreviate QMA(k) for QMA(k, 2/3, 1/3)
for brevity throughout this paper.

This paper first shows a condition under which QMA(k) = QMA(2). Our condition is related to the
possibility of amplifying success probabilities without increasing the number of quantum proofs. More
formally, we have QMA(k) = QMA(2) for every k if QMA(k, a, b) coincides with QMA(k, 2/3, 1/3)
for every k and any two-sided bounded error probabilities (a, b). Furthermore, QMA(k, a, b) coincides
with QMA(2, 2/3, 1/3) for every k and any two-sided bounded error probability (a, b), if and only
if QMA(k, a, b) coincides with QMA(k, 2/3, 1/3) for every k and any two-sided bounded error prob-
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ability (a, b). Our proofs for these properties also imply an interesting consequence for the case of
perfect completeness. Namely, QMA(k, 1, b) = QMA(1, 1, 1/2) for every fixed positive integer k ≥ 2
and any bounded error probability b, if and only if QMA(2, 1, b) = QMA(1, 1, b) for any bounded error
probability b.

Next, for the case of perfect soundness, it is shown that QMA(k, a, 0) = QMA(1, a, 0) for every k
and any error probability a. With further analyses, the class NQP, which is the class resulting from
another concept of “quantum nondeterminism” introduced by Adleman, DeMarrais, and Huang [1] and
discussed by a number of works [15, 14, 38], is characterized by the union of QMA(1, a, 0) for all error
probability functions a. This bridges between two existing concepts of “quantum nondeterminism”.

Finally, to see a limitation of QMA(k), this paper exhibits a relativized world where QMA(k) is
not as powerful as the polynomial-time hierarchy. Earlier, Fortnow and Sipser [17] built an oracle
relative to which IP does not include co-NP (Fortnow, Rompel, and Sipser [16] extended this to
an oracle relative to which even MIP does not include co-NP). This paper constructs a relativized
world in which QMA(k) does not contain co-NP (actually we show an oracle A relative to which
co-UPA * QMA(k)A for every k). The construction uses a technique, so-called a block sensitivity
method, developed mostly for the black-box computation model. As an immediate consequence, we
have that, for every k, there exists a relativized world in which none of BQP, QMA(k), and co-QMA(k)
coincides with each other.

The remainder of this paper is organized as follows. In Section 2 we give a brief review for several
basic notions of quantum computation and information theory used in this paper. In Section 3 we
formally define the multi-proof model of quantum Merlin-Arthur proof systems. In Section 4 we show
a condition under which QMA(k) = QMA(2). In Section 5 we focus on the one-sided bounded error
cases. In Section 6 we exhibits an oracle relative to which QMA(k) does not contain co-UP. In
Section 7 we show that there is no POVM that determines whether a given unknown state is in a
tensor product form or maximally entangled. Finally, we conclude with Section 8 which summarizes
this paper.

2 Preliminaries

2.1 Quantum Basics

A pure quantum state, or pure state in short, is a unit-norm vector |ψ〉 in the Hilbert space H. A
mixed state is a series (pi, |ψi〉) such that

∑
i pi = 1, 0 ≤ pi ≤ 1, and |ψi〉 ∈ H for each i. This can

be interpreted as being in the pure state |ψi〉 with probability pi. A mixed state (pi, |ψi〉) is often
described in the form of a density matrix ρ =

∑
i pi|ψi〉〈ψi|. Any density matrix is positive semidefinite

and has trace 1. It should be noted that different probabilistic mixtures of pure states can yield mixed
states with the identical density matrix. It is also noted that there is no physical method (i.e.,
no measurement) to distinguish mixed states with the identical density matrix. Therefore, density
matrices give complete descriptions of quantum states, and thus we may use the term “density matrix”
to indicate the corresponding mixed state.

Given a density matrix ρ over Hilbert space H⊗K, the quantum state after tracing out K is
a density matrix over H defined as trKρ =

∑d
i=1(IH ⊗ 〈ei|)ρ(IH ⊗ |ei〉) for any orthonormal basis

{|e1〉, . . . , |ed〉} of K, where d is the dimension of K and IH is the identity operator over H. For any
mixed state with its density matrix ρ over H, there is a pure state |ψ〉 in H⊗K for the Hilbert space
K of dim(K) = dim(H) such that |ψ〉 is a purification of ρ, that is, trK|ψ〉〈ψ| = ρ.

A positive operator valued measure (POVM) is defined to be a set M = {M1, . . . ,Mk} of nonnega-

tive Hermitian operators such that
∑k

i=1Mi = I. For any POVM M , there is a quantum mechanical
measurement such that the measurement Mi results in i with probability exactly tr(Miρ). See [20, 31]
for more rigorous description of quantum measurements.

The trace norm of a linear operator A is defined by ‖A‖tr = 1
2 tr

√
A†A. The fidelity F (ρ, σ) between

two density matrices ρ and σ is defined by F (ρ, σ) = tr
√√

ρσ
√
ρ. The following three are important

properties on the trace norm and the fidelity.
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Theorem 1 ([2]) Let pM = (pM

1 , . . . , pM
m ) and qM = (qM

1 , . . . , qM
m ) be the probability distributions

generated by a POVM M on mixed states with density matrices ρ, σ, respectively. Then, for any
POVM M , 1/2|pM − qM| ≤ ‖ρ− σ‖tr, where |pM − qM| =

∑m
i=1 |pM

i − qM

i |.

Theorem 2 ([18]) For any density matrices ρ and σ, 1 − F (ρ, σ) ≤ ‖ρ− σ‖tr ≤
√

1 − (F (ρ, σ))2.

Theorem 3 ([23]) For any density matrices ρ1, ρ2, σ1, and σ2,

F (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = F (ρ1, σ1)F (ρ2, σ2).

For more detailed description, see [19, 30, 26] for instance.

2.2 Quantum Turing Machines

We use a model of multi-tape quantum Turing machines (referred to as QTMs) [10, 37, 32]. Formally,
a k-tape QTM is defined as a sextuple (Q,Σ1 × · · · × Σk,Γ1 × Γ2 × · · · × Γk, q0, Qf , δ), where Q is a
finite set of internal states including the initial state q0 and a set Qf of final states, each Σi is an input
alphabet of the ith tape, each Γi is a tape alphabet of the ith tape including a distinguished blank sym-

bol ♮ and Σi, and δ is a quantum transition function from Q× Γ1 × · · · × Γk to CQ×Γ1×···×Γk×{←,↓,→}k .
In this paper, it is assumed that all amplitudes used for QTMs are drawn from C̃, where C̃ is the set
of complex numbers whose real part and imaginary part are approximated to within 2−n by a deter-
ministic Turing machine on input 1n in time polynomial in n. A multi-tape QTM M is well-formed
if its time-evolution operator UM preserves the l2-norm, that is, ‖U |φ〉‖ = ‖|φ〉‖ for any |φ〉.

In this paper, we also need to consider pure quantum states as (a part of) inputs to a QTM; that
is, if a pure state |φ〉 of n qubits is an input to a QTM M , then M begins its computation with a
superposition of its initial configurations, each of which constitutes s, where s ∈ {0, 1}n, as an input
with amplitude 〈s|φ〉. Assume that a QTM M starts with a superposition |φ〉 of configurations and
writes a qubit (called an output qubit) at the start cell of the output tape before it halts. We say that
M accepts input |φ〉 with probability p if p is the squared magnitude of the amplitude resulted from
observing the start cell of the output tape in {|0〉, |1〉} basis. In this case, we also say that M rejects
input |φ〉 with probability 1 − p. Let ηM (|φ〉) denote the acceptance probability of M on input |φ〉.

For more terminology, the reader should refer to [10, 19].

2.3 Quantum Circuits

A quantum circuit consists of a finite number of qubits to which a finite number of quantum gates
are applied in sequence. A family {Qx} of quantum circuits is polynomial-time uniformly generated
if there exists a classical deterministic procedure that, on each input x, outputs a description of Qx
and runs in time polynomial in n = |x|. It is assumed that the quantum circuits in such a family
are composed of gates in some reasonable, universal, finite set of quantum gates such as the Shor
basis [33, 11]. Furthermore, it is assumed that the number of gates in any circuit is not more than the
length of the description of that circuit, therefore Qx must have size polynomial in n. It is well-known
that a polynomial-time quantum Turing machine and a polynomial-time uniformly generated family
of quantum circuits are computationally equivalent. For convenience, in the subsequent sections, we
often identify a circuit Qx with the unitary operator it induces.

3 Quantum Merlin-Arthur Proof Systems

In quantum Merlin-Arthur proof systems, mighty Merlin as a prover provides a single quantum proof
to a verifier Arthur for his verification. Here, a quantum proof is a pure state and a quantum proof
of size s is a pure state of s qubits. Arthur uses quantum computation to verify the quantum proof
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in polynomial time with high success probability. There is no further interaction between Merlin and
Arthur.

Here we extend this usual model of single-proof systems to the one of multi-proof systems. To be
more precise, let x be any input of length n and, for each i, 1 ≤ i ≤ k, let |φi〉 be a quantum proof
of size qM(n), where qM is a polynomially bounded function. These k quantum proofs are given to a
verifier Arthur in the form |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φk〉.

Although k, the number of quantum proofs, has been treated to be constant so far, one may think
of k : Z+ → N as a function of the input length n. Hereafter, we treat k as a function. Note that the
number of quantum proofs must be bounded polynomial in n.

One can define quantum Merlin-Arthur proof systems both in terms of quantum Turing machines
and in terms of quantum circuits. From the computational equivalence of polynomial-time quantum
Turing machines and polynomial-time uniform quantum circuits [39], it is obvious that these two
models of quantum Merlin-Arthur proof systems are equivalent in view of computational power. Here
we give both of these two types of definitions. In the rest of this paper we will choose a suitable model
from these two depending on the situations.

3.1 Definition Based on Quantum Turing Machines

A quantum verifier (or a verifier in short) is a multi-tape polynomial-time well-formed quantum
Turing machine V with two special tapes for an input and proofs (the tape for proofs is called the
proof tape). Let x be any input of length n. We say that V accepts an input x with quantum
proofs (|φ1〉, |φ2〉, . . . , |φk(n)〉) with probability p if V starts with the input x and some quantum state
|φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φk(n)〉 set in the proof tape and halts with the output qubit being observed to be
1 with probability exactly p.

Definition 4 Given a polynomially bounded function k : Z+ → N and two functions a, b : Z+ → [0, 1],
a language L is in QMA(k, a, b) if there exist a polynomially bounded function qM : Z+ → N and a
quantum verifier V such that, for every input x of length n,

(i) if x ∈ L, there exists a set of quantum proofs |φ1〉, . . . , |φk(n)〉 of size qM(n) that makes V accept
x with probability at least a(n),

(ii) if x 6∈ L, given any set of quantum proofs |φ1〉, . . . , |φk(n)〉 of size qM(n), V accepts x with
probability at most b(n).

We say that a language L has a (k, a, b)-quantum Merlin-Arthur proof system if and only if L is
in QMA(k, a, b). For simplicity, we write QMA(k) for QMA(k, 2/3, 1/3) for each k.

3.2 Definition Based on Quantum Circuits

For every input x ∈ Σ∗ of length n = |x|, consider quantum proofs |φ1〉, . . . , |φk(n)〉 of size qM(n) for
some polynomially bounded function qM : Z+ → N.

Besides kqM(n) qubits for the proofs, we have qV(n) qubits called private qubits in our quantum
circuit. Hence, the entire system of our quantum circuit consists of qV(n) + kqM(n) qubits. All the
private qubits are initialized to the |0〉 state, and one of the private qubits is designated as the output
qubit.

A (qV , qM)-restricted quantum verifier V is a polynomial-time computable mapping of the form
V : Σ∗ → Σ∗. For every x of length n, V (x) is a description of a polynomial-time uniformly generated
quantum circuit acting on qV(n) + kqM(n) qubits.

The probability that V accepts the input x is defined to be the probability that an observation
of the output qubit (in the {|0〉, |1〉} basis) yields 1, after the circuit V (x) is applied to the state
|0qV (n)〉 ⊗ |φ1〉 ⊗ · · · ⊗ |φk(n)〉.
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Definition 5 Given a polynomially bounded function k : Z+ → N and functions a, b : Z+ → [0, 1], a
language L is in QMA(k, a, b) if there exist polynomially bounded functions qV , qM : Z+ → N and a
(qV , qM)-restricted quantum verifier V such that, for every x of length n,

(i) if x ∈ L, there exists a set of quantum proofs |φ1〉, . . . , |φk(n)〉 of size qM(n) that makes V accept
x with probability at least a(n),

(ii) if x 6∈ L, for any set of quantum proofs |φ1〉, . . . , |φk(n)〉 of size qM(n), V accepts x with probability
at most b(n).

4 Condition under which QMA(k) = QMA(2)

Classically, it is almost trivial to show that classical multi-proof Merlin-Arthur proof systems are
essentially equivalent to single-proof ones. However, it is unclear whether quantum multi-proof Merlin-
Arthur proof systems collapse to quantum single-proof systems. Moreover, it is also unclear whether
there are k1 and k2 of k1 6= k2 such that QMA(k1) = QMA(k2). Towards settling these questions, here
we give a condition under which QMA(k) = QMA(2) for every fixed positive integer k.

Formally, we consider the following condition:

(∗) For every fixed positive integer k ≥ 2 and any two-sided bounded error probability (a, b),
QMA(k, a, b) coincides with QMA(k, 2/3, 1/3),

which is on the possibility of amplifying success probabilities without increasing the number of quan-
tum proofs. Then we have the following theorem and the corollary.

Theorem 6 QMA(k, 2/3, 1/3) = QMA(2, 2/3, 1/3) for every fixed positive integer k ≥ 2, if the con-
dition (∗) is satisfied.

Corollary 7 QMA(k, a, b) = QMA(2, 2/3, 1/3) for every fixed positive integer k ≥ 2 and any two-
sided bounded error probability (a, b), if and only if the condition (∗) is satisfied.

4.1 A Key Lemma for the Proofs of Theorem 6 and Corollary 7

For the proofs of Theorem 6 and Corollary 7, the following lemma plays a key role.

Lemma 8 For any fixed positive integer k, any r ∈ {0, 1, 2}, and any two-sided bounded error prob-
ability (a, b) satisfying a > 1 − (1 − b)2/10 ≥ b, QMA(3k + r, a, b) ⊆ QMA(2k + r, a, 1 − (1 − b)2/10).

First we give proofs of Theorem 6 and Corollary 7, using Lemma 8. The proof of Lemma 8 will
be given in the next subsection.

Proof of Theorem 6. Suppose that the condition (∗) holds.
Then, for every fixed positive integer k = 3l + r, r ∈ {0, 1, 2}, and any two-sided bounded

error probability (a, b), it is immediate from (∗) that QMA(3l + r, a, b) coincides with
QMA(3l + r, 99/100, 1/100).

Now, from Lemma 8, we have QMA(3l + r, 99/100, 1/100) ⊆ QMA(2l + r, 99/100, 90199/100000),
which implies that these two classes coincide with each other. Furthermore, from
(∗) we have QMA(2l + r, 99/100, 90199/100000) = QMA(2l + r, 99/100, 1/100). Thus,
QMA(3l + r, 99/100, 1/100) coincides with QMA(2l + r, 99/100, 1/100).

We repeat the above process c times for some constant c = O(log3/2 k), and finally we obtain that
QMA(3l + r, a, b) = QMA(2, 99/100, 1/100). Again from (∗), QMA(2, 99/100, 1/100) coincides with
QMA(2, a, b) for any two-sided bounded error probability (a, b).

Therefore we have QMA(k, 2/3, 1/3) = QMA(2, 2/3, 1/3) for every fixed positive integer k ≥ 2 as
claimed. �
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As for Corollary 7, the ‘if’ part is directly from the proof of Theorem 6. The
‘only if’ part is quite obvious, because that QMA(k, a, b) = QMA(2, 2/3, 1/3) for every
fixed positive integer k ≥ 2 and any two-sided bounded error probability (a, b) implies
QMA(k, a, b) = QMA(k, 2/3, 1/3) = QMA(2, 2/3, 1/3) for every fixed positive integer k ≥ 2 and any
two-sided bounded error probability (a, b).

4.2 Proof of Lemma 8

Now we give a proof of Lemma 8. The proof uses a special operator called Controlled-Swap. The
Controlled-Swap operator exchanges the contents of two registers S1 and S2 if control register B
contains 1, and does nothing if B contains 0.

Consider the following algorithm described below, which we call the C-SWAP algorithm. A similar
idea was used in [12] for fingerprinting scheme.

Given a pair of mixed states ρ and σ of n qubits of the form ρ⊗ σ, prepare quantum registers B,
R1, and R2. The register B consists of only one qubit that is initially set to the |0〉-state, while the
registers R1 and R2 consist of n qubits and ρ and σ are initially set in R1 and R2, respectively.

C-SWAP Algorithm

1. Apply the Hadamard transformation H to B.

2. Apply the controlled-swap operator on R1 and R2 using B as a control qubit. That is,
swap the contents of R1 and R2 if B contains 1, and do nothing if B contains 0.

3. Apply the Hadamard transformation H to B and accept if B contains 0.

Proposition 9 The probability that the input pair of mixed states ρ and σ is accepted in the C-SWAP
algorithm is exactly 1/2 + tr(ρσ)/2.

Proof. Let B, R1, and R2 denote the Hilbert spaces corresponding to the qubits in B, R1, and R2,
respectively. Let ρ =

∑
i pi|φi〉〈φi| and σ =

∑
j qj|ψj〉〈ψj | be decompositions of ρ and σ with respect

to the orthonormal bases {|φi〉}, {|ψj〉} of R1, R2, respectively.
We introduce the Hilbert spaces S1 = l2(Σ

n) and S2 = l2(Σ
n). Then there exist purifications

|φ〉 ∈ R1 ⊗ S1 and |ψ〉 ∈ R2 ⊗ S2 of ρ and σ, respectively, such that

|φ〉 =
∑

i

√
pi|φi〉|φi〉, |ψ〉 =

∑

j

√
qj|ψj〉|ψj〉.

Now consider the following pure state |ξ〉 ∈ B ⊗R1 ⊗ S1 ⊗R2 ⊗ S2,

|ξ〉 = |0〉|φ〉|ψ〉 =
∑

i,j

√
piqj|0〉|φi〉|φi〉|ψj〉|ψj〉.

The probability that the input pair of ρ and σ is accepted in the C-SWAP algorithm is exactly equal
to the probability of acceptance when the C-SWAP algorithm is applied to |ξ〉 over the Hilbert space
B ⊗R1 ⊗R2.

If the C-SWAP algorithm is applied to |ξ〉, it is easy to see that the state
|η〉 ∈ B ⊗R1 ⊗ S1 ⊗R2 ⊗ S2 before the final measurement of the output qubit is given by

|η〉 =
1

2
|0〉 ⊗




∑

i,j

√
piqj (|φi〉|φi〉|ψj〉|ψj〉 + |ψj〉|φi〉|φi〉|ψj〉)




+
1

2
|1〉 ⊗




∑

i,j

√
piqj (|φi〉|φi〉|ψj〉|ψj〉 − |ψj〉|φi〉|φi〉|ψj〉)


 .
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Thus the probability of acceptance is (1 + t)/2, where t is given by

t =




∑

i,j

√
piqj|φi〉|φi〉|ψj〉|ψj〉,

∑

i,j

√
piqj|ψj〉|φi〉|φi〉|ψj〉


 =

∑

i,j

piqj (|φi〉|ψj〉, |ψj〉|φi〉)

=
∑

i,j

piqj〈φi|ψj〉〈ψj |φi〉 =
∑

i

pi〈φi|σ|φi〉 =
∑

i

pitr(σ|φi〉〈φi|) = tr(ρσ).

Here (·, ·) represents the inner product. Thus we have the assertion. �

Using Proposition 9, we show Lemma 8. In the proof we use the circuit-based definition of QMA.

Proof of Lemma 8. The essence of the proof is the basis case where k = 1 and r = 0. We give the
proof for this particular case below and leave the general case to the reader since it is easy to modify
the following proof to the general case.

Let L be a language in QMA(3, a, b). Given a QMA(3, a, b) protocol for L, we construct a
QMA

(
2, a, 1 − (1 − b)2/10

)
protocol for L in the following way.

Let V be the quantum verifier of the original QMA(3, a, b) protocol. For every input x of length
n, suppose that each of quantum proofs V receives consists of qM(n) qubits and the number of
private qubit of V is qV(n). Let V (x) be the unitary transformation which the original quantum
verifier V applies. Our new quantum verifier W of the QMA

(
2, a, 1 − (1 − b)2/10

)
protocol prepares

quantum registers R1, R2, S1, and S2 for quantum proofs and quantum registers V and B for private
computation. Each of Ri and Si consists of qM(n) qubits, V consists of qV(n) qubits, and B consists
of a single qubit. W receives two quantum proofs |D1〉 and |D2〉 of 2qM(n) qubits, which are expected
to be of the form

|D1〉 = |C1〉 ⊗ |C3〉, |D2〉 = |C2〉 ⊗ |C3〉, (1)

where each |Ci〉 is the ith quantum proof which the original quantum verifier V receives. Of course,
each |Di〉 may not be of the form above and the first and the second qM(n) qubits of |Di〉 may
be entangled. Let V, B, each Ri, and each Si be the Hilbert spaces corresponding to the quantum
registers V, B, Ri, and Si, respectively. W runs the following protocol:

1. Receive the first quantum proof |D1〉 in registers (R1,S1) and the second one |D2〉 in (R2,S2).

2. Do one of the following two tests uniformly at random.

2.1 Separability test:
Apply the C-SWAP algorithm over B ⊗ S1 ⊗ S2, using quantum registers B, S1, and S2.
Accept if B contains 0, otherwise reject.

2.2 Consistency test:
Apply V (x) over V ⊗R1 ⊗R2 ⊗ S1, using quantum registers V, R1, R2, and S1.
Accept iff the result corresponds to the acceptance computation of the original quantum
verifier.

We first show the completeness property with the input x ∈ L of length n. In the original
QMA(3, a, b) protocol for L, there exist quantum proofs |C1〉, |C2〉, and |C3〉 which cause the original
quantum verifier V to accept x with probability at least a(n). In the constructed protocol, let the
quantum proofs |D1〉 and |D2〉 be of the form |D1〉 = |C1〉 ⊗ |C3〉 and |D2〉 = |C2〉 ⊗ |C3〉. Then it is
obvious that the constructed quantum verifier W accepts x with probability at least a(n).

For the soundness property with the input x 6∈ L of length n, consider any pair of quantum
proofs |D′1〉 and |D′2〉, which are set in the pairs of the quantum registers (R1,S1) and (R2,S2),
respectively. Let ρ = trR1 |D′1〉〈D′1| and σ = trR2 |D′2〉〈D′2|. We abbreviate b(n) as b, and let
δ = (−1 + 2b+ 4

√
1 + b− b2)/5. The reason why we set δ at this value will be clear later in the

item (ii).
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(i) In the case tr(ρσ) ≤ δ:
In this case the probability α that the input x is accepted in the Separability test is at most

α ≤ 1

2
+
δ

2
=

2 + b+ 2
√

1 + b− b2

5
≤ 4 + 2b− b2

5
= 1 − (1 − b)2

5
,

where the second inequality is from the fact p+ q ≥ 2
√
pq, p ≥ 0, q ≥ 0. Thus the verifier W

accepts the input x with probability at most

1

2
+
α

2
≤ 1 − (1 − b)2

10
.

(ii) In the case tr(ρσ) > δ:
tr(ρσ) > δ means that the maximum eigenvalue λ of ρ satisfies λ > δ. Thus there exist pure
states |C ′1〉 ∈ R1 and |C ′3〉 ∈ S1 such that

F (|C ′1〉〈C ′1| ⊗ |C ′3〉〈C ′3|, |D′1〉〈D′1|) >
√
δ,

since ρ = trR1 |D′1〉〈D′1|. Similarly, the maximum eigenvalue of σ is more than δ and there exist
pure states |C ′2〉 ∈ R2 and |C ′4〉 ∈ S2 such that

F (|C ′2〉〈C ′2| ⊗ |C ′4〉〈C ′4|, |D′2〉〈D′2|) >
√
δ.

Thus, letting |φ〉 = |C ′1〉 ⊗ |C ′3〉 ⊗ |C ′2〉 ⊗ |C ′4〉 and |ψ〉 = |D′1〉 ⊗ |D′2〉, we have from Theorem 3

F (|φ〉〈φ|, |ψ〉〈ψ|) > δ.

Therefore, from Theorem 2 we have

‖|φ〉〈φ| − |ψ〉〈ψ|‖tr ≤
√

1 − (F (|φ〉〈φ|, |ψ〉〈ψ|))2 <
√

1 − δ2.

With Theorem 1, this implies that, the probability β that the input x is accepted in the Con-

sistency test is bounded by

β < b+
√

1 − δ2,

since given any quantum proofs |C ′1〉, |C ′2〉, and |C ′3〉 the original quantum verifier V accepts the
input x with probability at most b. Noticing that δ satisfies

1

2
+
δ

2
= b+

√
1 − δ2,

one can see that

β < 1 − (1 − b)2

5
.

Thus the verifier W accepts the input x with probability at most

1

2
+
β

2
< 1 − (1 − b)2

10
.

�
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5 One-Sided Bounded Error Cases

5.1 Cases with Perfect Completeness

First we focus on the quantum Merlin-Arthur proof systems of perfect completeness. Together with
the fact that parallel repetition works well for single-proof quantum Merlin-Arthur proof systems,
Lemma 8 implies the following interesting property.

Theorem 10 QMA(k, 1, b) = QMA(1, 1, 1/2) for every fixed positive integer k ≥ 2 and any bounded
error probability b, if and only if QMA(2, 1, b) = QMA(1, 1, b) for any bounded error probability b.

Proof. We only show the ‘if’ part, since the ‘only if’ part is trivial.
For the case of perfect completeness, Lemma 8 implies that QMA(k, 1, b1) ⊆ QMA(⌈2k/3⌉, 1, b2),

for any fixed positive integer k and any bounded error probability functions b1 and b2 satisfying
b2 ≥ 1 − (1 − b1)

2/10.
Therefore, by applying Lemma 8 c = O(log3/2 k) times repeatedly, we can easily obtain that, for

any fixed positive integer k and any bounded error probability b,

QMA(k, 1, b) ⊆ QMA(2, 1, b′)

for some bounded error probability b′.
Now the ‘if’ part immediately follows from the assumption that QMA(2, 1, b) = QMA(1, 1, b) for

any bounded error probability b and the fact that parallel repetition works well for single-proof quan-
tum Merlin-Arthur proof systems. �

5.2 Cases with Perfect Soundness

Now we turn to the cases with perfect soundness. It is shown that QMA(k, a, 0) = QMA(1, a, 0) for
every k and any error probability a. That is, multiple quantum proofs do not increase the computa-
tional power of the quantum Merlin-Arthur proof systems in the case of perfect soundness. It is also
shown that NQP is characterized by the union of QMA(1, a, 0) over all error probability functions a.

Theorem 11 For any fixed positive integer k and any function a : Z+ → (0, 1],
QMA(k, a, 0) = QMA(1, a, 0).

Proof. For a language L in QMA(k, a, 0), we show that L is also in QMA(1, a, 0). Let V be a quantum
verifier of a (k, a, 0)-quantum Merlin-Arthur proof system for L. For every input x of length n, assume
that V receives k quantum proofs of size q(n),

We define a new (1, a, 0)-quantum Merlin-Arthur proof system as follows: on input x of length n,
verifier W receives one quantum proof of size kq(n) and simulates V with this quantum proof.

The completeness property is clearly satisfied, and the acceptance probability of W is exactly that
of V .

For the soundness property, assume that the input x of length n is not in L. Let |D〉 be any
quantum proof of size kq(n). Let ei be the lexicographically ith string in {0, 1}kq(n). Note that, for
each i (1 ≤ i ≤ 2kq(n)), V never accepts x when given a quantum proof |ei〉. Since any |D〉 is expressed
as a linear combination of all |ei〉, 1 ≤ i ≤ 2kq(n), it follows that W rejects x with certainty. �

Let EQMA(k) = QMA(k, 1, 0) and RQMA(k) = QMA(k, 1/2, 0) for every k. From Theorem 11 it
is immediate that EQMA(k) = EQMA(1) and RQMA(k) = RQMA(1).

Furthermore, one can consider the complexity class NQMA(k) which combines two existing con-
cepts of “quantum non-determinism”, QMA(k) and NQP.

Definition 12 A language L is in NQMA(k) iff there exists a function a : Z+ → (0, 1] such that L is
in QMA(k, a, 0).
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Note that NQMA(k) = NQMA(1) is also immediate from Theorem 11. The next theorem shows that
NQMA(1) coincides with the class NQP.

Theorem 13 EQMA(1) ⊆ RQMA(1) ⊆ NQMA(1) = NQP.

Proof. It is sufficient to show that NQMA(1) ⊆ NQP, since EQMA(1) ⊆ RQMA(1) ⊆ NQMA(1) and
NQMA(1) ⊇ NQP hold obviously.

Let L be a language in NQMA(1). Then there are polynomially bounded functions qV , qM : Z+ → N
and a (qV , qM)-restricted quantum verifier V such that, for every input x of length n, (i) if x ∈ L,
there exists a quantum proof |C〉 of size qM(n) that causes V to accept x with non-zero probability,
and (ii) if x 6∈ L, given any quantum proof |C ′〉 of size qM(n), V never accepts x. Let V (x) be the
unitary transformation V applies.

Given every input x of length n, prepare quantum registers R, S1 and S2, where R consists of
qV(n) qubits and each Si consists of qM(n) qubits. Consider the following procedure:

NQP simulation of NQMA protocol

1. Apply the Hadamard transformation H⊗qM(n) to S1.

2. Copy the contents of S1 to those of S2.

3. Apply V (x) to the pair of quantum registers (R,S1) and accept if the contents of R corre-
spond to those that make the original verifier V accept.

(i) In the case the input x of length n is in L:
In the original NQMA protocol for L, there exists a quantum proof |C〉 of size qM(n) that causes
V to accept x with non-zero probability. Suppose that V never accepts x on given any quantum
proof |ej〉 ∈ {|0〉, |1〉}⊗qM(n), 0 ≤ j ≤ 2qM(n) − 1, where ei be the lexicographically ith string in

{0, 1}qM(n). Then with a similar argument to the proof of Theorem 11, V never accepts x on
given any quantum proof |C〉 of size qM(n), which contradicts the assumption. Thus there is at
least one |ej〉 ∈ {|0〉, |1〉}⊗qM(n) that causes V to accept x with non-zero probability. Hence in
the procedure above the probability of acceptance is non-zero, for the procedure simulates with
probability 1/2qM(n) the case that V is given a proof |ej〉 for each j.

(ii) In the case the input x of length n is not in L:
In the original NQMA protocol for L, for any given quantum proof |C〉 of size qM(n), V never
accepts x. In particular, for any quantum proof |ej〉 ∈ {|0〉, |1〉}⊗qM(n) given, V never accepts x.
Hence in the procedure above the probability of acceptance is zero.

�

Corollary 14 NQP =
⋃
a : Z+→(0,1] QMA(1, a, 0).

6 Relativized Separation of QMA(k)

Classically, Fortnow and Sipser [17] exhibited a relativized world in which IP does not include co-NP
(and Fortnow, Rompel, and Sipser [16] extended this to an oracle relative to which even MIP does
not include co-NP). This paper shows another relativized world in which QMA(k) does not include
co-UP. Our proof is different from that of Fortnow and Sipser.

Theorem 15 For every polynomial-time computable function k : Z+ → N, there exists an oracle A
relative to which co-UPA * QMA(k)A.

The following is an immediate corollary of Theorem 15.
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Corollary 16 For every polynomial-time computable function k : Z+ → N, there exists an oracle A
relative to which none of BQP, QMA(k), and co-QMA(k) coincides with each other.

Proof. By Theorem 15, we have an oracle A such that co-NPA * QMA(k)A.

Since co-NPA ⊆ co-QMA(k)A, it follows that co-QMA(k)A * QMA(k)A, and thus

QMA(k)A 6= co-QMA(k)A. That BQPA 6= QMA(k)A follows from QMA(k)A 6= co-QMA(k)A.
�

In what follows, we give the proof of Theorem 15. We use a so-called block sensitivity argument,
whose quantum version was developed in [6]. Let f be any relativizable function from Σ∗ to [0, 1] ∩ R.
If A is an oracle and S ⊆ Σ∗ be a subset of strings, then A(S) is the oracle satisfying that, for every
y, A(y) = A(S)(y) if and only if y 6∈ S. For ε > 0 and an oracle A from an oracle collection A, let the
lower (resp. upper) ε-block sensitivity , bsAε−(f,A, |φ〉) (resp. bsAε+(f,A, |φ〉)), of f with an oracle A on

an input |φ〉 be the maximal integer ℓ such that there are ℓ nonempty, disjoint sets {Si}ℓi=1 such that,

for each i ∈ [1, ℓ]Z, (i) A(Si) ∈ A and (ii) fA
(Si)(|φ〉) ≤ fA(|φ〉) − ε (resp. fA(|φ〉) ≤ fA

(Si)(|φ〉) + ε).
First, we show an upper bound of bsAε−(f,A, |φ〉) and bsAε+(f,A, |φ〉). The notation ηAM (|φ〉) denotes

the acceptance probability of M with an oracle A on an input |φ〉.

Proposition 17 Let A be any set of oracles and let M be any well-formed oracle QTM whose running
time T (n) does not depend on the choice of oracles. Let q : Z+ → N be a polynomially bounded function.
For every x of length n, define fA(x) = max{ηAM (|x〉 ⊗ |φ〉)} and gA(x) = min{ηAM (|x〉 ⊗ |φ〉)}, where
the maximum and minimum are taken over all quantum pure states |φ〉 of q(n) qubits. Then, for any
oracle A ∈ A, any constant ε > 0, and any input x of length n,

bsAε−(f,A, x) ≤ 4T (n)2/ε2,

bsAε+(g,A, x) ≤ 4T (n)2/ε2.

For proving Proposition 17, we need two lemmas. The first lemma below is easy to show.

Lemma 18 Let M and N be two well-formed QTMs. Let UM and UN be the unitary matrices for
the time evolution of M and N , respectively. Then, |ηM (|φ〉) − ηN (|ψ〉)| ≤ ‖UM |φ〉 − UN |ψ〉‖.

The second lemma is a straightforward modification of Theorem 3.3 in [7]. Let qiy(M,A, |φ〉) denote
the sum of the squared amplitudes associated with basis states with a string y in the query tape, for
the superposition of all the configurations of MA on input |φ〉 at time i.

Lemma 19 Let M be a well-formed oracle QTM whose running time T (n) does not depend on the
choice of oracles. For any oracles A and B, and for any two inputs |φ〉 and |ψ〉 of n qubits,

|ηAM (|φ〉) − ηBM (|ψ〉)| ≤ ‖|φ〉 − |ψ〉‖ + 2
√
T (n)



T (n)−1∑

i=1

∑

y∈A△B
qiy(M,A, |φ〉)




1/2

.

Proof. Let |φ0〉 = |φ〉 and |ψ0〉 = |ψ〉. For each i ∈ [1, T (n)]Z, let |φi〉 = UA|φi−1〉 and
|Ei〉 = UA|φi〉 − UB |φi〉.
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Note that |φT (n)〉 = U
T (n)
B |φ0〉 +

∑T (n)−1
i=0 U

T (n)−i−1
B |Ei〉. Thus,

‖|φT (n)〉 − |ψT (n)〉‖ =

∥∥∥∥∥∥
U
T (n)
B (|φ〉 − |ψ〉) +

T (n)−1∑

i=0

U
T (n)−i−1
B |Ei〉

∥∥∥∥∥∥

≤ ‖UT (n)
B (|φ〉 − |ψ〉)‖ +

T (n)−1∑

i=0

‖UT (n)−i−1
B |Ei〉‖

= ‖|φ〉 − |ψ〉‖ +

T (n)−1∑

i=0

‖|Ei〉‖

≤ ‖|φ〉 − |ψ〉‖ +
√
T (n)



T (n)−1∑

i=0

‖|Ei〉‖2




1/2

,

where the last inequality comes from the Cauchy-Schwartz inequality. Since we consider only config-
urations of M in |φi〉 which makes a query from A△B, we have ‖|Ei〉‖2 ≤ 4

∑
y∈A△B q

i
y(M,A, |φ〉),

and thus
T (n)−1∑

i=0

‖|Ei〉‖2 ≤ 4

T (n)∑

i=0

∑

y∈A△B
qiy(M,A, |φ〉).

Now the lemma follows from Lemma 18, which ensures |ηAM (|φ〉) − ηBM (|ψ〉)| ≤ ‖|φT (n)〉 − |ψT (n)〉‖. �

Now we give the proof of Proposition 17.

Proof of Proposition 17. We show only the case of upper ε-block sensitivity. Let l = bsAε−(f,A, x),
which is witnessed by nonempty, disjoint sets {Sj}1≤j≤l. Let |φ〉 and |ψ〉 be quantum pure states of

q(n) qubits such that fA(x) = ηAM (|x〉 ⊗ |φ〉) and fA
(Sj)

(x) = ηA
(Sj )

M (|x〉 ⊗ |ψ〉).
By the choice of Sj, we have

ηAM (|x〉 ⊗ |φ〉) − ηA
(Sj)

M (|x〉 ⊗ |ψ〉) ≥ ε.

Note that ηA
(Sj)

M (|x〉 ⊗ |ψ〉) ≥ ηA
(Sj)

M (|x〉 ⊗ |φ〉) because of the maximality of |ψ〉. Hence,

|ηAM (|x〉 ⊗ |φ〉) − ηA
(Sj )

M (|x〉 ⊗ |φ〉)| ≥ ε.

Since A(Sj)△A = Sj, by Lemma 19, we have, for each j,

ε2 ≤ 4T (n)

T (|x|)−1∑

i=1

∑

y∈Sj

qiy(M,A, |x〉 ⊗ |φ〉).

Combining all j’s, we have

lε2 ≤ 4T (n)
l∑

j=1

T (n)−1∑

i=1

∑

y∈Sj

qiy(M,A, |x〉 ⊗ |φ〉)

≤ 4T (n)

T (n)−1∑

i=1

∑

y∈Σ∗

qiy(M,A, |x〉 ⊗ |φ〉) ≤ 4T (n)

T (n)−1∑

i=1

‖|φi〉‖2 ≤ 4(T (n))2.

Thus we have the assertion. �
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Now, we are ready to show Theorem 15.

Proof of Theorem 15. Let LA = {0n | |A ∩ {0, 1}n| = ∅} for each A ⊆ {0, 1}∗. Let
A = {A | ∀n[|A ∩ {0, 1}n| ≤ 1]}. Obviously, LA ∈ co-UPA for any set A in A, and thus LA ∈ ΠP

1 (A).
We then show that LA 6∈ QMA(k)A for a certain set A in A.

Let {Mi}i∈Z+ be an effective enumeration of all QTMs running in polynomial time. The construc-
tion of A is done by stages. For the base case, let A0 = ∅. In the nth stage for n > 0, An ⊆ {0, 1}n is
to be defined. Our desired A is defined as A =

⋃
iAi.

Now, consider the nth QTM Mn. Let B = ∪i<nAi. Note that 0n ∈ LB. For simplicity, define
fB(x) = max{PrMn [Mn(|x〉 ⊗ |φ1〉 ⊗ · · · ⊗ |φk(|x|)〉) = 1]}, where each |φi〉, 1 ≤ i ≤ k(|x|), runs over
all quantum pure states of q(|x|) qubits for some fixed polynomial q.

Suppose fB(0n) < 2/3. Then we set An to be B and go to the next stage.
Now suppose fB(0n) ≥ 2/3. Let Bi = B ∪ {sni }, where sni is the ith element in {0, 1}n. Clearly,

0n 6∈ LBi for all i’s. We want to show that there exists a number i such that fBi(0n) > 1/3. If so,
force An to be such the Bi. Towards a contradiction, we assume that, for all i, fBi(0n) ≤ 1/3. By our

assumption, fB(0n) − fBi(0n) ≥ 1/3 for all i ∈ [1, 2n]Z. This implies that bs2
Σ∗

1
3
− (f,B, 0n) ≥ 2n, since

{Bi}2n

i=1 is mutually disjoint. This contradicts Proposition 17. �

7 Discussions

Here we show that there is no positive operator value measurement (POVM) that determines whether
a given unknown state is in a tensor product form or even maximally entangled. Thus Arthur cannot
rule out quantum proofs that are far from states of a tensor product of unentangled quantum states.

Suppose we have a quantum subroutine which answers which of the following (a) and (b) is true
for a given proof |Ψ〉 ∈ H⊗2 of 2n qubits, where H is the Hilbert space that consists of n qubits:

(a) |Ψ〉〈Ψ | is in H0 = {|Ψ0〉〈Ψ0| | |Ψ0〉 ∈ H⊗2, ∃|ψ〉, |φ〉 ∈ H, |Ψ0〉 = |ψ〉 ⊗ |φ〉},

(b) |Ψ〉〈Ψ | is in H
ε
1 = {|Ψ1〉〈Ψ1| | |Ψ1〉 ∈ H⊗2, max|ψ〉,|φ〉∈H F (|Ψ1〉〈Ψ1|, |ψ〉〈ψ| ⊗ |φ〉〈φ|) ≤ 1 − ε}.

As for the proof |Ψ〉 which does not satisfy (a) nor (b), this subroutine may answer (a) or (b) at
random. In the rest of this section, it is proved that this kind of subroutines cannot be realized by any
physical method. In fact, we prove a stronger theorem which claims that the set of states in tensor
product form cannot be distinguished even from the set of maximally entangled states by any physical
operation. Here, the state ρ = |Ψ〉〈Ψ | is said to be maximally entangled if |Ψ〉 can be written by

|Ψ〉 =
d∑

i=1

αi|ei〉 ⊗ |fi〉, |αi|2 =
1

d
,

where d = 2n is the dimension of H and each {|e1〉, . . . , |ed〉} and {|f1〉, . . . , |fd〉} is an orthonormal
basis of H [8]. Among all states, maximally entangled states are farthest away from states in tensor
product form, and

min
|Ψ〉∈H⊗2

max
|φ〉,|ψ〉∈H

F (|Ψ〉〈Ψ |, |φ〉〈φ| ⊗ |ψ〉〈ψ|) =
1√
d

= 2−
n
2

is achieved by maximally entangled states.

Theorem 20 Suppose one of the following two is true for a given proof |Ψ〉 ∈ H⊗2 of 2n qubits:

(a) |Ψ〉〈Ψ | is in H0 = {|Ψ0〉〈Ψ0| | |Ψ0〉 ∈ H⊗2, ∃|ψ〉, |φ〉 ∈ H, |Ψ0〉 = |ψ〉 ⊗ |φ〉},

(b) |Ψ〉〈Ψ | is in H1 = {|Ψ1〉〈Ψ1| | |Ψ1〉 ∈ H⊗2 is maximally entangled}.
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Then, in determining which of (a) and (b) is true, no quantum measurement is better than the trivial
strategy where one guesses at random without any operation at all.

Proof. Let M = {M0,M1} be a POVM on a given |Ψ〉〈Ψ |. With M we conclude |Ψ〉〈Ψ | ∈ Hi if M

results in i, i = 0, 1. Let PM

i→j(|Ψ〉〈Ψ |) denote the probability that |Ψ〉〈Ψ | ∈ Hj is concluded by M

while |Ψ〉〈Ψ | ∈ Hi is true. We want to find the measurement which minimizes PM

0→1(|Ψ〉〈Ψ |) keeping
the other side of error small enough. More precisely, we want to evaluate E defined and bounded as
follows.

E def
= min

M

{
max
ρ∈H0

PM

0→1(ρ)

∣∣∣∣ max
ρ∈H1

PM

1→0(ρ) ≤ δ

}

≥ min
M

{∫

ρ∈H0

PM

0→1(ρ)µ0(dρ)

∣∣∣∣
∫

ρ∈H1

PM

1→0(ρ)µ1(dρ) ≤ δ

}

= min
M

{
PM

0→1

(∫

ρ∈H0

ρµ0(dρ)

) ∣∣∣∣ PM

1→0

(∫

ρ∈H1

ρµ1(dρ)

)
≤ δ

}
,

where each µi is an arbitrary probability measure in Hi. This means that E is larger than the error
probability in distinguishing

∫
ρ∈H0

ρµ0(dρ) from
∫
ρ∈H1

ρµ1(dρ).

Take µ0 as a uniform distribution on the set {|ei〉〈ei| ⊗ |ej〉〈ej |}di=1
d
j=1, that is,

µ0(|ei〉〈ei| ⊗ |ej〉〈ej |) = 1/d2 for each i, j, where {|e1〉, . . . , |ed〉} is an orthonormal basis of H, and
take µ1 as a uniform distribution on the set {|gm,n〉〈gm,n|}dm=1

d
n=1, that is, µ1(|gm,n〉〈gm,n|) = 1/d2

for each m and n, where

|gm,n〉 =
1

d

d∑

j=1

(
e2π
√
−1jm/d|ej〉 ⊗ |e(j+n) mod d〉

)
.

This {|g1,1〉, . . . , |gd,d〉} is an orthonormal basis of H⊗2 [9], and we have

∫

ρ∈H0

ρµ0(dρ) =

∫

ρ∈H1

ρµ1(dρ) =
1

d2
IH⊗2 .

Thus we have the assertion. �

From Theorem 20, it is easy to show the following corollary.

Corollary 21 Suppose one of the following two is true for the proof |Ψ〉 ∈ H⊗2 of 2n qubits:

(a) |Ψ〉〈Ψ | is in H0 = {|Ψ0〉〈Ψ0| | |Ψ0〉 ∈ H⊗2, ∃|ψ〉, |φ〉 ∈ H, |Ψ0〉 = |ψ〉 ⊗ |φ〉},

(b) |Ψ〉〈Ψ | is in H
ε
1 = {|Ψ1〉〈Ψ1| | |Ψ1〉 ∈ H⊗2, max|ψ〉,|φ〉∈H F (|Ψ1〉〈Ψ1|, |ψ〉〈ψ| ⊗ |φ〉〈φ|) ≤ 1 − ε}.

Then, for any 0 ≤ ε ≤ 1 − 2−n/2, in determining which of (a) and (b) is true, no quantum measurement
is better than the trivial strategy where one guesses at random without any operation at all.

8 Conclusions

This paper pointed out that it is unclear whether the multi-proof model of quantum Merlin-Arthur
proof systems collapses to the usual single-proof model. To investigate the possibility that quantum
multi-proof systems collapse to quantum single-proof systems, this paper proved several basic proper-
ties such as a necessary and sufficient condition under which the number of quantum proofs is reducible
to two. However, the central question whether multiple quantum proofs are really more helpful to
Arthur still remains open. The authors hope that this paper sheds light on new features of quantum
Merlin-Arthur proof systems and quantum complexity theory.
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[3] László Babai. Trading group theory for randomness. In Proceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing, pages 421–429, 1985.
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