Fully Parallelized Multi Prover Protocols for NEXP-time

(Extended Abstract)

Dror Lapidot

Adi Shamir

Applied Mathematics Dept.
The Weizmann Institute of Science
Rehovot 76100, Israel

email: drorl@wisdom.bitnet, shamir@wisdom.bitnet

Abstract

A major open problem in the theory of multi-prover
protocols is to characterize the languages which can be
accepted by fully parallelized protocols which achieve
an exponentially low probability of cheating in a sin-
gle round. The problem was motivated by the sur-
prising observation that the probability of cheating
in n parallel executions of a multi-prover protocol can
be exponentially higher than the probability of cheat-
ing in n sequential executions of the same protocol.
In this paper we solve this problem by proving that
any language in N EX P-time has a fully parallelized
multi prover protocol. By combining this result with
afully parallelized version of the [BGKW] protocol, we
can obtain a one-round perfect zero-knowledge pro-
tocol (under no cryptographic assumptions) for every
NEX P-time language.

1 Introduction

The model of multi prover interactive proofs was in-
troduced by Ben-Or, Goldwasser, Kilian and Wigder-
son [BGKW]. In these proof systems several un-
bounded provers (who are not allowed to communicate
among themselves, and who can not see the messages
exchanged between the verifier and the other provers)
have to convince a polynomial time verifier that a cer-
tain common input X belongs to some language L. If
X ¢ L, then the probability that the verifier accepts
should be exponentially small. Babai, Fortnow and
Lund [BFL] characterized the class MIP(poly) of all
languages which have sequential multi prover proto-
cols with a polynomial number of rounds by proving
that this class is exactly NEXP-time.
One of the famous open problems in this area is
whether such sequential interactive proofs can be fully
parallelized, namely, whether they can be transformed
into protocols which require just a single round, and
still have an exponentially small probability of cheat-
ing. Many works were devoted to this problem achiev-

13

CH3062-7/91/0000/0013$01.00 © 1991 IEEE

ing many partial results.

One of the preliminary parallelization problems was
whether languages in NP have parallel multi prover
zero-knowledge protocols. Ben-Or, Goldwasser, Kilian
and wigderson, who proved in [BGKW] that NP has
sequential two prover zero-knowledge protocols, with-
out any cryptographic assumptions, remarked that
the parallel execution of their protocol is also a zero-
knowledge proof system with a single round under a
weak definition which requires only a constant proba-
bility of cheating. Fortnow, Rompel and Sipser [FRS]
claimed the same result under the stronger definition
which requires a negligible probability of cheating, but
their proof of soundness was later shown to be faulty
by Fortnow [Fo], and no alternative parallel protocol
was known to be sound in this strong sense. Moreover,
there are some examples of protocols (see [Fo], [LS]
and [Fe]) for which the probability of cheating in their
parallel version is known to be exponentially higher
than in their sequential version.

allelized protocols. Kilian [Ki] proved that anything
provable by two provers can be proven in a constant
number of rounds, but achieving only a constant prob-
ability of error. Independently, Feige [Fe] proved that
NEXP-time languages have one round two prover pro-
tocols with 1 + € probability of cheating. So far, no
one was able to reduce the probability of cheating be-
low a constant.

Our main result in this paper is that the sequential
[BFL] protocol can be fully parallelized into a single
round protocol with an exponentially small probability
of cheating, and thus the multi-prover round hierarchy
collapses to its first level: M IP(poly) = MIP(1). Our
analysis is based on the new notion of a quasi-oracle,
which is a weaker version of the oracle implemented
by the second prover in the [BFL] sequential protocol,

but suffices to prove our result.

In Section 2 we briefly review the sequential [BFL] pro-
tocol and the method developed by Cai, Condon and
Lipton [CCL] to parallelize sequential single prover
protocols. In Section 3 we describe our parallel proto-
col, based on the quasi-oracle approach introduced in
Section 4. Section 5 outlines some of the details of its
proof of soundness. In Section 6 we combine the re-
cent [LS] parallelization of the [BGKW] protocol and
the new parallelization of the [BFL] protocol to obtain
fully parallelized perfect zero-knowledge protocols for
all NEX P-time languages under no cryptographic as-
sumptions.

2 A Review of the [BFL] Two Prover
Sequential Protocol

2.1 Introduction to NEXP-time Proto-
cols

Let L be a language accepted by a non-
deterministic exponential time Turing Machine M,
and consider the 3-CNF formula which represents the
computation of M on some input X (|X| = k) in L.
It contains an exponential number of variables and an
exponential number of clauses, but it is polynomially
definable. We look at the assignment A of boolean
values to all the variables as an arithmetic function
from the set of n-bit indices J = {0,1}" to {0,1}.
We now extend the domain of A from J to I® where
I = {0,...,N — 1} for some large integer N > 2",
defining its values over I" as a multilinear extension
of its values on J, and say that A : I™ — Z satisfies
the 3-CNF formula if A|; consists of 0/1 values which
satisfy this formula.

Lemma 1: (Babai, Fortnow and Lund) There exists
a polynomial Qx in n®() variables such that:

1. An arithmetic expression for Qx of degree n%()

is computable in n°1) time from X.

2. A function A : I" — Z satisfies &, iff
Y Q@x(z,b1,b2,b3, A(b1), A(bz), Abs)) = 0

where the summation extends over all the pos-
sible 0/1 substitutions to the variables

(z € {0,1"°® b; € J).

2.2 The [BFL] Protocol

Given a common input X € {0,1}*, the two in-
finitely powerful provers (P, P;) want to prove to a
random polynomial time verifier V that X € L. Basi-
cally the [BFL] protocol consists of three parts:

14

1. Multilinearity test: In this part V infers
with exponentially high confidence that a cer-
tain function A which the provers use is ap-
proximately multilinear. This is done by send-
ing polynomially many random inputs from each
one of polynomially many random lines in I"
to P;, and receiving his answers about the A
values on these inputs. The verifier then checks
that along each line, the answers are linear and
bounded by B = 2" for some constant ¢ (for
details see [BFL]).

2. Satisfiability test: Usingthe protocol of Lund,
Fortnow, Karloff, Nisan [LFKN] and Shamir [S]
the verifier checks that:

ZQX(Z! bly b2) bS’ A(b1)7 A(bz),A(ba)) = 0

by successively eliminating all the summation
symbols, where z,bq,bs,b3 Eg I™ are randomly
chosen by V.

3. The final substitution: When all the summa-
tion symbols are eliminated, the verifier substi-
tutes the values A(b1), A(bs), A(b3) < B (which
he receives from P,) into the known polynomial
Q@x in order to check its claimed value.

P, is asked just a single query in each round: either
from the first part (the multilinearity test), or from the
third part (the values of A(b,), A(b2) or A(b3)). There-
fore in each sequential round of the [BFL] protocol, P,
can be considered as a deterministic oracle for some
function A. I A is indeed approximately multilinear,
then the probability of cheating in the satisfiability
test is exponentially small due to the soundness of the
[LFKN] and [S] protocol.
2.3 The Parallelization Problem

Cai, Condon and Lipton [CCL] developed a general
methodology for parallelizing certain protocols, which
include Shamir’s single prover sequential protocol for
PSPACE. The parallelized PSPACE protocol requires
a second prover and is executed in one round as fol-
lows: One of the provers receives in one message all
the queries which the verifier sends in Shamir’s sequen-
tial protocol, while the other prover receives a random
length prefix of this sequence. The verifier checks the
answers of the first prover as the sequential verifier
does, but also checks the consistency of the answers
of the two provers in the common prefix. This ba-
sic protocol is carried out polynomially many times in
parallel. The reason that the probability of cheating
decreases exponentially fast is the following: In each
parallel round, the first prover sends a sequence of r

polynomials as a response to r random values in some
field. The second prover receives the first 1 <I—-1<r
random values and replies with the first { polynomials.
If the actual statement proven in the protocol is false
but the proof succeeds, there must be 1 < i < r such
that the i’th polynomial in the sequence sent by the
first prover is incorrect and the next one is correct.
Therefore the same interpolation argument as that in
[LFKN] and [Sh], yields that if the choice of I is equal
to this 4, then with overwhelming probability (due to
the ratio between the degree of the polynomials and
the size of the field) the verifier will catch the provers
in one of the following cases: Either the polynomial
sequence sent by the first prover is incorrect (with re-
spect to V’s queries) or the I’th polynomial sent by
the second prover is different from that of the first
prover. The probability that [= i is 1/r and thus if
this basic protocol is catried out in parallel r2 indepen-
dent executions, then with overwhelming probability
there exists a parallel execution for which ¢ = I, and
this particular execution by itself suffices to make the
probability of cheating exponentially low.

The parallelization technique of [CCL] can be applied
to the satisfiability test (the second part) in the [BFL]
protocol; The main problem is how to parallelize the
multilinearity test. Consider now the following naive
parallel version (P, Py, P3, V) of the [BFL] protocol:

P, receives in parallel all the queries which are sent
to the first prover in the sequential [BFL] protocol.

P, teceives a random length prefix of the satisfiability
test. This basic protocol is carried out poly(n) times
in parallel. P receives in parallel poly(n) queries, one
from each round of the multilinearity test carried out
by P, and V.

This naive approach fails since By receives in this
single-round protocol many queries for the multilinear
function, and thus he can not be considered as an ora-
cle for each such query. Assume for example, that this
protocol is executed twice, where in the first execution
P receives in parallel the pair of queries (a1, az) and in
the other execution he receives (a;,ah) where a3 # a5.

Ps ma.y reply with (b1,5;) in the first execution and
(b},b%) in the second one, where by # b}, and thus V
receives two different answers for the same question
a;, without being able to catch the prover. This con-
trasts the situation in the sequential [BFL], in which
the second sequential prover receives a single query in
each round, and thus implements some oracle in each
round (the fact that this oracle may vary from round
to round is irrelevant in the proof of soundness).

3 A Parallel Protocol for NEXP-time

In this extended abstract, we describe the new pro-

tocol in terms of 4 independent provers. By applying
the same proof technique to a different protocol, Feige
(in a private communication) recently showed that two
provers actually suffice.
P, receives in a single message all the queries which
are directed at the first prover in the sequential [BFL]
protocol, namely, the queries of the multilinearity test
(from I™), the queries of the satisfiability test, and
the triplet by,b3,b3 €g I™. P should reply with the
same answers as those of the sequential prover, and V'
checks Py’s replies in the usual way. V sends to P; a
random length prefix of the satisfiability queries sent
to P;. P, should reply with the same answers as those
of P; on the common queries. This basic protocol is
carried out m times in parallel, where m = poly(n).
V accepts iff all of these m basic protocols succeed, in
addition to the new protocol (Ps, Py, V) described in
the next subsection. The purpose of this new protocol
is to force the provers to behave as consistent oracles
which answer each query z by the same value A(z) re-
gardless of the other queries z’, ”,.. which are asked
in parallel to z.

3.1 The Oraclization Protocol

The participants in the following one-round proto-
col are two independent provers Ps, P4 and the random
polynomial time verifier V.

V randomly and independently chooses a single query
(a vector in I™) from each one of the m parallel sets
of queries for the multilinear function (as part of the
multilinearity test or the final triplet of queries) which
V asks P;. Note that the queries along each line in
the multilinearity tests are not pairwise independent,
but since V chooses only one query from each par-
allel set, he gets m random and independent vectors
Z1,...,2Zm € I*. From now on, all the computations
are carried out over the finite field Z,, for an arbitrary
prime p > B.

V randomly and independently chooses m new vectors
Y1y Ym € Zp.

If there exmts 1 € i < m for which ;1 = ¥
then V sends nothing to P, P4, accepts the execution
and halts. Since this event has exponentially small
probability (1/p < 1/2") we can ignore its negligi-
ble effect and deal just with the case where for each
1 < i< m,z; and y; differ on their first coordinate
(i.e. ;1 # ¥i,1). Then for each coordinate 2 < j < n,
we look at the j’th coordinate z;; (¥ 5, respectwely)
as a linear function of the first coordinate z;; (¥i,1)-
More precisely, we define for each i, a linear func-
tion over Zp: l; j(z) = a; jz + bi 5, whose value is z; ;

at £ = 1, and y; j at z = y;1. Therefore for each
1 < i < m, the choices of z; and y; define a sequence
of linear functions: Li(z) = (I; 2(z), ..., lin(z)).

Due to the linear relations (L;) between the coor-
dinates of each of the vectors z;, y; we can con-
sider the multilinear function A(uy,...,u;), when
(u1,...,u,) € L;, as a single variable polynomial
gi € Zp[] of degree at most n in the variable u;.

V sends y1, .. ., Ym to Py who replies with the multilin-
ear values A(y1),...,A(Ym). V sends z,...,z, and
L,,...,Lny (as linear functions, without revealing the
points y;’s which, together with the z;’s, defined them)
to Ps, and receives from him A(zi),...,A(zm) and
the polynomials ¢i,...,¢m. Now, for each 1 <i < m,
V checks that: (1)Ps’s replies are identical to those of
P; on the common queries (z;’s) (2) ¢; is a polynomial
of degree bounded by n in Z,[z] (3) ¢i(vi,1) = Pa(ws)
(4) gi(xi,1) = Pa(z;). If this is the case he accepts,
otherwise he rejects and halts. As proven in Section
5, acceptance implies that P3 behaves as a weak ora-
cle whose answers (on the z;’s) usually depend on the
input but not on its context. We formalize this notion
in the next section.

4 Quasi-Oracles

In our protocol Ps gets m = poly(n) simultaneous
questions, and we want to prove that he either an-
swers each one of the z;’s independently of the other
zj, j # 1, or gets caught by V' as a cheater with over-
whelming probability. This intuitive notion is cap-
tured by the following definition:
Definition 1: (a quasi-oracle) A protocol
(Ps, P4, V) of the type described in Section 3 is a quasi-
oracle if there exists a family

F= {f!l}l ye {(Z;)ML

where each fy is a vector of functions (fy,1,..., fy,m)
such that: Pr{Ps(zy,...,2n) =
(fya(z1), ..., fym(zm)) or V rejects} >
1—1/25%)

where the probability space is the uniform distri-
bution over the vector of queries z € (I")™ sent to P
and the vector of queries y € (Z;)™ sent to Pj.
Remarks:
(1) To be an oracle, a prover must answer the paral-
lel queries by applying some function f to each one
of them separately. To be a quasi-oracle, we give Ps
an extra degree of freedom: the function f is allowed
to depend (from Vs point of view) on the queries di-
rected at P4. This seems to be essential since we do
not know how to construct a one-round protocol which
can force P3 to use the same f in all possible scenari-
oes. As shown later in this paper, this extra degree of

16

freedom has no effect on the correctness of the whole
N EX P-time protocol.

(2)The usual definition of an oracle requires that P3
answers all the possible parallel queries in a consistent
way. Again, we do not know how to achieve such a
strong condition, and replace it by a weaker condition
of consistency for most random choices of z.

(3) We do not specify the queries L; directed at P3
since they are uniquely defined by z and y.

(4) In the proof of soundness, rejection of fraudulent
provers is a desirable outcome and thus we do not care
to separate between the probability of consistent be-
havior and of failure. The only behavior we want to
exclude is an inconsistent behavior which is not caught
by V.

The technique used in the sequential [BFL] protocol,
is to give the second prover one random query z;,
(1 € i £ m) from those given to the first prover in
the i-th round and to check the consistency of the an-
swers. The vector of queries (24, ..., Zm) is thus ran-
domly chosen with uniform distribution from (I")™.
If in addition to our parallel (Py, Ps, V) subprotocol,
we have a quasi-oracle (Ps, Py, V) with a correspond-
ing family F of functions, then the (parallelized) veri-
fier randomly chooses f, = (fy,1,.-.,fy,m) €Er F and
for every 1 < i < m compares:

Pi(z:) L Si(Ps(z1,...,Zm)), where S; is the selector
function which returns the #’th of the m values in Ps’s
answer. With overwhelming probability V either ac-
cepts the right hand side which is equal to f ;(=;) or
rejects (according to Definition (1)). Therefore, with
exponentially high probability, the parallel verifier ei-
ther rejects or compares P;’s answers with the replies
of m oracles giving the f, ;’s values, and thus the ora-
cle implemented in the sequential [BFL] protocol can
be replaced by a quasi-oracle, achieving a single-round
multi prover protocol for NEXP — time.

5 The Soundness of the Parallel Ora-
clization Protocol

Theorem 1: The protocol (Ps, Py, V) defined in
subsection 3.1 is a quasi-oracle.
Proof: For each 1 < i < m, we define the following
”success matrix” M;: The names of the rows are all
the possible choices of y = (y1,...,ym) € (Z7)™, and
the names of the columns are all the possible choices
of z = (21,...,2m) € (I")™. Asnoted above, for each
entry the queries Ly, ..., L, directed at P; are totally
determined by the names of the corresponding row and
column. An entry is equal to 1 iff S;(Ps(zy,...,2m)),
Si(Ps(y1,-.,Ym)) and S;(Ps(L1,...,Lm)) (which are
defined by this entry) are accepted by V (then we

say that V accepts S;(Ps(21,...,%m))), otherwise it
is 0. For the sake of convenience, we reorganize the
columns of M; in the following order: The v’s block of
columns consists of all the columns whose names are
in I"x,...,xI" x v x I"x,...,xI", ie. whose i’th
coordinate is the value v and whose other coordinates
range over all the possible values.

Each choice of row ¥y = (y1,-..,Ym) in M; de-
fines a function Ay in the following way: For
each possible value of z; consider the correspond-
ing block of columns, rank the accepted values of
Si(Ps(z1,...,%m)) into decreasing order of popular-
ity, and define Ay ;(z;) as the best accepted value (ties
can be broken lexicographically).

For example, if for the particular value v of the ¢-th
query, P3 provides in 1000 contexts the value 5 (900
of which are rejected by V) and provides in 200 con-
texts the value 7 (50 of which are rejected by V) among
all the parallel queries defining the y-th row and v-th
block, then Ay i(v) =T.

Since V randomly chooses ¥y = (y1,...,Ym), he
chooses a random row in the matrix to which we asso-
ciate a function Ay = (Ay1,..., Ay,m). Our goal now
is to prove that our two-prover one-round protocol is a
quasi-oracle with respect to this family 4 of functions,
and thus when V chooses a random function Ay €g A,
and a random parallel query (z1,...,2m) €r (I")™,
with overwhelming probability he either accepts the
correct Ay ; values or rejects the execution.

We denote by #s the number of occurrences of the s-
most frequently accepted answer for z; in the partic-
ular block and row of the matrix M;, and denote by
W the number of columns in that block.

The following Lemma formally states that V' is very
unlikely to accept any value other than the most pop-
ular one:

Lemma 2: For every 1 < i < m and for every value
v of z;, the fraction of rows in the block of columns in
M; associated with v for which:

Z#w% (1)

822

is less than 1/27/4,

Proof: Fix 1 < i < m and consider just the block of
M; associated with v. We now divide the rows (whose
names satisfy yi 1 # v1) of this block of columns, into
disjoint blocks of rows such that in each block of rows,
all the y;, j # i, are fixed, and all the y;’s belong to
a common L; to which v belongs. Thus each block
of rows consists of exactly p — 1 rows, and every two
blocks of rows are disjoint since v is the single inter-
section point of the two corresponding lines L;’s. Note

17

that Ps (who receives the queries z and the lines L;’s)
knows nothing about the actual choice of y; ;. Now,
we prove the Lemma separately for each block of rows
within the v-th block of columns.

Due to the common L; (on which all the y;’s and the
v lie), and the common y;’s (j # ¢), once we fix a col-
umn, the queries L;’s are determined namely, they de-
pend just on the column. Moreover, if V' accepts two
different replies of P; on v in two executions sharing
the same y (which necessarily correspond to two dif-
ferent degrees of popularity s’ # s’) then V receives
two different polynomials (as answers to L;) ¢’ # ¢"
of degree bounded by n.

Assume that (1) is true for at least a fraction 1/2"/4 of
the rows in the block of rows. Consider the probabil-
ity distribution defined by randomly choosing one row
and two columns in this block, which define two exe-
cutions sharing the same y queries. The two columns
define two polynomials ¢’, ¢" of degrees bounded by n
in Z,[z} (provided by P as answers to L;). We derive
a contradiction by trying to compute the probability
of the event

E =7¢"#¢" and V accepts both executions”

in two different ways. An easy upper bound can be
obtained via:

Pr{E} <

Pr{V accepts both exzecutions | ¢ # q"} <

Pr{d (1) =d"(wi1) | & # 4"} <n/p

since the non-zero n-th degree polynomial (¢’ —¢")
can have at most n possible zeroes in the field Z,.
The computation of the lower bound is divided into
two cases: In the first case, at least half of the rows in
the block which satisfy (1) also satisfy:

w
#1> o 2
Then: 1 1 1 1
Pr{E} > 5% 5n7a *5ura * ulE

which is larger than n/p for p > 2", leading to a con-
tradiction. In the second case, at least half of the rows
in the block which satisfy (1) also satisfy:

w
#1<om ®3)

Then for each s > 1, #s < #1 < 2—3",;-, but the sum
of all these #s is much higher (> 5%) and thus for
each row which satisfies (1) and (3), there is a partition
of the set of the s-entries (s-entry is an entry which
corresponds to the s-most frequently accepted answer

in this row) for s > 2, into two disjoint parts, each of
which is greater than % * ﬁv%-,- Therefore,

1 1 1 2

Pr{E} > 5* o *(——3*2"/5)

which is also larger than n/p. Again we get
a contradiction, and the desired result follows
immediately. |

Since m = poly(n) we can combine these results
for all the M; (1 < i < m) and complete the proof of
theorem 1. ||

This yields the main theorem:
Theorem 3: The protocol (Py, Py, P3, P4, V) is a fully
parallelized multi prover protocol for NEXP-time.

6 Zero-Knowledge Aspects

In [LS] we describe a parallelization of the Ben-Or,
Goldwasser, Kilian and Wigderson protocol for NP
which preserves the perfect zero-knowledge nature of
this protocol. As a first step we simplify the [BGKW]
protocol into one which consists of polynomially many
parallel executions of a one-round basic protocol in
which the verifier sends a single random bit to each of
the provers. In order to upper bound the probability
of cheating in this protocol, and to prove that it is ex-
ponentially small, we transform this soundness prob-
lem into an extremal graph theoretic problem. We
consider the 0/1 acceptance matrix (of size 2" x 2")
in which the column names are all the possible queries
to the first prover in n parallel executions, and the row
names are all the possible queries to the second prover.
The value of an entry is 1 iff the verifier accepts all the
answers of both provers. We prove that the existence
of a certain constant size pattern of 1’s in the matrix is
a witness for the common input. Then we prove that
any density of 1’s in the matrix (regardless of their lo-
cations) which is higher than some exponentially low
threshold, implies the existence of such a pattern of
1’s. Consequently, the probability of cheating in this
single round two prover zero-knowledge protocol is ex-
ponentially small.
Ben-Or, Goldwasser, Kilian and Wigderson proved
that every multi prover interactive proof can be trans-
formed into a multi prover perfect zero-knowledge pro-
tocol. Their transformation uses a two prover zero-
knowledge protocol for NP as a subprotocol, and pre-
serves the number of rounds whenever this subproto-
col requires a single round. By combining this con-
struction of [BGKW], the one-round two-prover zero-
knowledge protocol for NP described in [LS], and our
main result NEX P — time = MIP(1), we conclude:

18

Theorem 4: every language in MIP(poly) has a fully
parallelized multi prover perfect zero-knowledge proto-
col under no intractability assumptions.

References

[BFL] L. Babai, L. Fortnow and C. Lund, Non-
Deterministic Ezponential Time has Two
Prover Interactive Protocols, FOCS 90.

M. Ben-Or, S. Goldwasser, J. Kilian and
A. Wigderson, Multi-Prover Interactive
Proofs: How to Remove Intractability As-
sumptions. STOC 88.

J.Y. Cai, A. Condon and R. Lipton,
PSPACE 1is Provable by Two Provers in
One Round, STRUCTURE 91.

[BGKW]

[cCL)

[Fe] U. Feige, On the Success Probability of the
Two Provers in One Round Proof Sys-
tems, STRUCTURE 91.

[Fo] L. Fortnow, Ph.D. Thesis.

[FRS] L. Fortnow, J. Rompel and M. Sipser,
On the Power of Multi Prover Interactive

Protocols, STRUCTURE 88.

[Ki] J. Kilian, Interactive Proofs Based on the
Speed of Light, e-mail announcement.

[LFKN] C. Lund, L. Fortnow, H. Karloff and N.
Nisan, Algebraic Methods for Interactive

Proof System, FOCS 90.

[LS] D. Lapidot and A. Shamir, A One-Round,
Two-Prover, Zero-Knowledge Protocol for
NP, Crypto 91.

[Sh] A. Shamir, IP=PSPACE, FOCS 90.

