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Abstract 

Fortnow, L., J. Rompel, M. Sipser, On the power of multi-prover interactive protocols, Theoretical 

Computer Science 134 (1994) 545-557. 

We look at complexity issues of interactive proof systems with multiple provers separated from each 

other. This model, developed by Ben-Or et al. (1988) allows the verifier to play the provers off each 

other. We show this model equivalent to an alternative interactive proof system model using oracles 

as provers. We also show that every language accepted by these models lies in nondeterministic 

exponential time. We exhibit a relativized world where a co-NP language does not have multiple 

prover interactive proofs. Finally, we show a simple example that one cannot parallelize multiple 

prover protocols as easily as the single prover model. 

1. Introduction 

Interactive proof systems, as described in [23] and [3], are models in which 

a probabilistic polynomial time verifier may interactively ask questions of a prover 

with unbounded computational power in order to decide the truth of a proposition. 
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This is a generalization of the NP type proof system in which the verifier may only 

listen and not speak or toss coins. 

In this paper we consider a further generalization of the proof system model, due to 

Ben-Or et al. [6], where instead of a single prover there may be many. This apparently 

gives the model additional power. The intuition for this may be seen by considering 

the case of two criminal suspects who are under interrogation to see if they are guilty 

of together robbing a bank. Of course they (the provers) are trying to convince 

Scotland Yard (the verifier) of their innocence. Assuming that they are in fact 

innocent, it is clear that their ability to convince the police of this is enhanced if they 

are questioned in separate rooms and can corroborate each other’s stories without 

communicating. We shall see later in this paper that this sort of corroboration is the 

key to the additional power of multiple provers. 

Interactive proof systems have seen a number of important applications to crypto- 

graphy [23,22], algebraic complexity [3], program testing [7,8] and distributed 

computation [16,23]. For example, a chain of results concerning interactive proof 

systems [22, 3,24,9] conclude that if the graph isomorphism problem is NP-complete 

then the polynomial time hierarchy collapses. Multiple-prover interactive proof 

systems have also seen several important applications including the analysis of 

program testing [7,4] and the complexity of approximation algorithms [14,2, 11. 

Brief summary of results: First we give a simple characterization of the power of the 

multi-prover model in terms of probabilistic oracle Turing machines. Then we show 

that every language accepted by multiple prover interactive proof systems can be 

computed in nondeterministic exponential time. Babai et al. [4] have since shown this 

bound is tight. We then show results like the one proved by Babai et al. cannot 

relativize by exhibiting an oracle relative to which there exist co-NP problems that do 

not have multiple prover interactive proof systems. We show, however, that the 

existence of an oracle relative to which there exist languages with multiple prover 

interactive proof systems but cannot be computed in polynomial space would imply 

an unrelativized separation of NP and poly-log space. Finally, we show a simple 

example that illustrates that multiple prover interactive proof systems do not behave 

independently in parallel as previously believed. 

2. Definitions and other results 

Let Pi, PZ, . . . , Pk be infinitely powerful machines and V be a probabilistic poly- 

nomial-time machine, all of which share the same read-only input tape. The verifier 

V shares communication tapes with each Pi, but different provers Pi and Pj have no 

tapes they can both access besides the input tape. We allow k to be as large as 

a polynomial in the size of the input; any larger and I/could not access all the provers. 

Formally, each Pi is a function from the input and the conversation it has seen so 

far to a message. We put no restrictions on the complexity of this function other 

than that the lengths of the messages produced by this function must be bounded by 
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a polynomial in the size of the input. We will assume throughout this paper that the 
inputs are drawn from the set of strings over the alphabet C = (0, l}. 

Pr, . . . ,Pk and V form a multi-prover interactive protocol for a language L if: 
(1) If XEL then Pr(P,, ,.. , Pk and V on x accept)> l-2-“. 
(2) If x#L then for all provers Pi, . . . , P;, Pr(P;, . . . ,P; and V on x accept)<2-“. 

MIP is the class of all languages which have multi-prover interactive protocols. If k 
is one get the class IP of languages accepted by one-prover interactive proof 
systems [23]. 

Note that we require an exponentially small probability of error. We could reduce 
a constant error to a probability of error of less than 2 -p(“) for any polynomial p(n) by 
running the protocols several times serially. Unlike the result of Babai and Moran [S] 
for the one-prover model, it is unknown whether we can decrease the probability of 
error in multi-prover proof systems by running the protocols in parallel (see Section 6). 

A round of a multi-prover interactive protocol consists of messages from the verifier 
to some or all of the provers followed by messages from these provers to the verifier. In 
general, interactive protocols can have a polynomial number of rounds. We let C(ij 
designate a message from prover i to the verifier in round j and aij designate a message 
from the verifier to prover i in round j. 

Ben-Or et al. [6] originally developed multi-prover interactive proof systems 
primarily for cryptographic purposes. They show every language accepted by a two 
prover interactive proof system has a perfect zero-knowledge two prover proof 
system, where even NP does not have perfect zero-knowledge single prover proof 
systems unless the polynomial-time hierarchy collapses [17]. They also show two 
prover systems can simulate any multi-prover system. Along the lines of Furer et al. 
[21], they show any two prover system has an equivalent system that accepts with 
probability one for strings in the language. Complete proofs of these results appeared 
in [25]. 

Subsequent to the results described in this paper, the complexity of interactive proof 
systems have been shown to be much more powerful then previously believed. Lund 
et al. [27] have shown the existence of an interactive proof system for every language 
in the polynomial time hierarchy. Using the techniques of Lund et al. [29] has shown 
that every language computable in polynomial space has an interactive proof system. 
Building on the result of Lund et al. and Theorem 3.1, Babai et al. [4] have shown that 
every language accepted in nondeterministic exponential time has a two-prover 
interactive proof system. 

A series of results due to Cai, Condon, Lipton, Lapidot, Shamir, Feige and Lovasz 
[12, 10, 11, 13,26, 151 have modified the protocol of Babai et al. [4] to show that 
every language in NEXP has a two-prover, one-round proof systems with an expo- 
nentially small error, strengthening the (unproven) claims made in an earlier version 
of this paper [19]. The general question of parallelizing protocols remains open 
(see [15-J). 

Feige et al. [14] use the Babai-Fortnow-Lund [4] result to prove some 
grave consequences of clique approximation. Arora and Safra [2] improved 
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these results and Arora et al. [l] applied these techniques to the MAX-SNP-hard 

problems [28]. 

3. Probabilistic oracle machines 

Suppose a prover in an interactive proof system must set all his possible responses 

before the protocol with the verifier takes place. We can think of the prover as an 

oracle attempting to convince a probabilistic machine whether to accept a certain 

input string. The oracle must be fully specified before the protocol begins. 

Let M be a probabilistic polynomial-time Turing machine with access to an oracle 

0. A language L is accepted by an oracle machine M iff 

(1) For every XGL there is an oracle 0 such that MO accepts x with probability 

> 1-2-n. 

(2) For every x$ L and for all oracles 0’, MO’ accepts with probability < 2-“. 

This model differs from the one-prover interactive protocol model in that the oracle 

must be set ahead of time while in an interactive protocol the prover may let his future 

answers depend on previous ones. 

Theorem 3.1. L is accepted by a probabilistic oracle machine gand only ifL is accepted 
by a multi-prover interactive protocol. 

Proof (t). Suppose L is accepted by a multi-prover interactive proof system V. 

Without loss of generality, we can assume that all messages from the provers to the 

verifier consist of only a single bit. Then define M as follows: M simulates V with 

M remembering all messages. When V sends a message to a prover, M asks the oracle 

the question (x, i, j, /3, 1, . . . , Bij) suitably encoded and uses the response as the jth 

message from prover i on input x where pii, . . , Pij are the first j messages sent from 

the verifier to prover i. M then accepts x if and only if V does. 

(1) Let P1, . . . , Pk be provers which cause V to accept each XEL with probability at 

least 1 - 2-“. If we let 0 be the oracle which encodes in the above manner the messages 

of P Ir . . . , Pk, then MO will accept each XEL with the same probability as V. 

(2) Suppose there were an input x4-L and an oracle 0’ such that MO’ accepts x with 

probability more than 2-“. Then we could construct provers Pi, . . . , P; which cause 

V to accept x with the same probability by just using 0’ to create their messages. 

Since, by definition, no such Pi, . . . , Pi exist, neither does 0’. 

(*). Suppose L is accepted by a probabilistic oracle machine M in nk steps. We will 

define a verifier, V, to simulate M using 4nk+ ’ provers. First the verifier flips two sets 

of coins rl and r2. The verifier uses rl to choose a random ordering of the 4nk+’ 
provers. The verifier then simulates M using r2 and whenever M asks an oracle 

question, V asks the question to each of the next n provers in the chosen ordering. If 

the provers are unanimous in their answer, V uses that answer in its simulation ofM; if 

not, V rejects immediately. If the provers successfully answer in its simulation of M; if 
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not, V rejects immediately. If the provers successfully answer all oracle queries, then 

the verifier accepts if and only if it4 does. There can be at most nk questions so V will 

use at most nk+ ’ provers. There will be at least 3nk+ ’ unused provers. 

(1) Let 0 be an oracle such that MO accepts such XEL. with probability at least 

l-2-“. If we let Pr ,..., Pi, X+I all answer (identically) according to 0, then they will 

cause V to accept each XEL with the same probability as MO. 

(2) Consider x$ L; consider any powers Pi, . . . , P&, k + I. Let oracle 0’ answer queries 

as the majority of Pi, . . . ,Pk, x+1 would. If there is no majority then 0’ answers 

arbitrarily. We know that 0’, like every oracle, cannot cause MO’ to accept x with 

probability greater than 2-“. We need to also show that the provers Pi, . . . , Pbk+l 

cannot do much better in the above defined protocol. 

There are two cases to consider for V accepting x: either all oracle queries in the 

simulation answered consistently with 0’ or some oracle query answered differently 

than 0’ would. By the definition of acceptance for probabilistic oracle machines, we 

know that the probability of accepting given that the first case occurs is bounded by 

2-“, where this probability is over the random coins of M. 

Now consider the second case. For V to accept using an oracle answer inconsistent 

with 0’, it must be the case that, for some i, the ith set of n provers all give an answer 

inconsistent with 0’ on the ith query. Let Si be the event that i is least with this 

property given that V accepts. Fix r2 and all the first i- 1 sets of provers. There are 

4nk+‘-n(i-1)>3nk+’ remaining provers. Of these provers at most 2nk+ ’ can give an 

answers inconsistent with 0’ on the ith query. Thus the probability that Si occurs is 

bounded by 

,< (W)“. 

The probability that Si will occur for some i is at most nk times this. 

We will use the following identity for any two events B and C: 

Pr(BAC)=Pr(BIC)Pr(C),<Pr(BIC). (1) 

Let A be the event that V accepts. Let F be the event that the first case occurs. Let S be 

the event that the second case occurs, By (l), we have: 

Pr(A)= Pr(A A F)+ Pr(A A S),<Pr(A (F)+ Pr(S 1 A)<2-“+nk(2/3)” 

<(nk+ 1)(2/3)“. 

We can reduce the error in the usual way by running this protocol in series several 

times. 0 

Theorem 3.1 gives a natural model equivalent to multiple provers and useful for 

proving theorems about them. In fact the proof that multiple provers can simulate 
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nondeterministic exponential time [4] requires this theorem. We can also make 
connections to program checking. 

Blum and Kannan [7] define function-restricted IP as the set of languages accepted 
by a probabilistic oracle machine with the additional restriction on the first 
requirement: 

(1) For every XEL, ML accepts x with probability > l-2-“. 
In other words, the “honest oracle” must just compute the language but the “dishon- 
est” oracle may still compute any function. 

Blum and Kannan also define an instance checker Cr for a language L and an 
instance XE{O, l}* as a probabilistic polynomial-time oracle Turing machine that 
given a program B claiming to compute L, and an input x: 

(1) If 9 correctly computes L for all inputs then with high probability Cf will 
output “correct”. 

(2) If 9(x) # L(x), with high probability C:(x) will output “9 does not compute L”. 
Blum and Kannan show that a language L has an instance checker if both L and E. 

have function-restricted interactive proof systems. 
The proof of Theorem 3.1 yields the following corollary. 

Corollary 3.2. A language L has a function restricted interactive proof system ifand only 

if there exists a multiple prover interactive proof system for L where the honest provers 

need only answer questions about L. 

Arora and Safra [2] define a hierarchy of complexity classes PCP (probabilistically 
checkable proofs), corresponding to the number of random and query bits required to 
verify a proof of membership in the language, as follows: 

A verifier M is a probabilistic polynomial-time Turing machine with random access 
to a string 17 representing a membership proof; M can query any bit of II. Call M an 
(r(n), q(n))-restricted verifier if, on an input of size n, it is allowed to use at most r(n) 

random bits for its computation, and query at most q(n) bits of the proof. 
A language L is in PCP(r(n), q(n)) if there exists an (r(n), q(n))-restricted verifier 

M such that for every input x: 
(1) If XEL, there is a proof Ii’, which causes M to accept for every random string, 

i.e., with probability 1. 
(2) If x$L, then for all proofs 17, the probability over random strings of length r(n) 

that M using proof II accepts is bounded by f. 
Notice that the role of II is identical to the role of the oracle 0 in our definition 

of probabilistic oracle machines. Thus combining Theorem 3.1 with the fact that 
any multiple-prover interactive proof system has an equivalent system that accepts 
with probability one for strings in the language [6,21] we have the following 
corollary. 

Corollary 3.3. MIP = Uk, 0 PCP(nk, ok). 
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Thus Babai et al. [4] show that NEXP= Ue,o PCP(nk, nk). Arora et al. [l] show 

that NP= U,,,PCP(clog(n), c). 

4. Nondeterministic exponential time suffices 

In this section, we show an upper bound on the complexity of multiple prover 

interactive proof systems. 

Theorem 4.1. If there exists a multiple prover interactive proof system accepting a lan- 
guage L then L can be computed in nondeterministic exponential time. 

By nondeterministic exponential time, we mean Uk, 0 NTIME [2”“]. 

Proof. By Theorem 3.1, we can assume there exists a probabilistic oracle machine 

M accepting L with M using time nk on inputs of length n for some k>O. We create 

a nondeterministic exponential time machine to accept L as follows: On input x of 

length n, guess the value of the oracle 0 on all questions of length at most nk. Note 

M(x) can only ask oracle questions of length no longer than nk. There are exactly 

2”‘+ ’ - 1 such questions. For r a string of length nk, let f(x, 0, r)= 1 if M on input 

x accepts using random coin tosses r and getting the oracle answers from 0 and 

f(x, 0, r) = 0 otherwise. Compute 

S= 1 f(x, 0, r). 
rE{O, 1)“’ 

Accept if S > 2”*/2. 

By the definition of probabilistic oracle machines, for XEL there exists a setting of 

the oracle such that SB(l-2-“)2”“. If x$L then for any setting of the oracle, 

S<2-“2”“. This proves the correctness of the computation above. q 

Babai et al. [4] have shown that any language computable in nondeterministic 

exponential time has a multiple prover interactive proof system. Thus we have an 

equivalence of the class of languages provable by multiple prover proof systems and 

those computable in nondeterministic exponential time. 

Note Theorem 4.1 does not show that any language L with a multiple prover proof 

system can be proven with provers of nondeterministic exponential time complexity. 

The provers must actually find the nondeterministic guesses that would make the 

nondeterministic exponential time machine accept. This would require the second 

level of the exponential time hierarchy to determine, say, the lexicographically first 

such series of nondeterministic guesses. We do not know whether they can be 

improved to have nondeterministic exponential time complexity. Babai et al. [4] show 

any language in deterministic exponential time requires only deterministic exponen- 

tial time provers. 
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5. Relativized limits on multiple provers 

The result of Babai et al. [4] that shows all languages computable in nondeterminis- 

tic exponential time have multiple prover interactive proof systems does not relativize, 

i.e., their proof does not imply that given any oracle A, nondeterministic exponential 

time with access to oracle A has a multiple prover interactive proof with the provers 

and verifiers also having access to oracle A. We show that any proof of this result 

cannot relativize: 

Theorem 5.1. There exists an oracle A and a language LECO-NP* such that L#MIP*. 

Theorem 5.1 extends a result by Fortnow and Sipser [20] that shows the existence 

of an oracle relative to which co-NP does not have single prover interactive proofs. 

Proof. In this proof we will use the oracle machine model. It is easy to verify that the 

proof of Theorem 3.1 holds under relativizations to all oracles. Note that our machin- 

es can ask questions about two oracles, the “prover” oracle 0 and the “relativization” 

oracle A. 

We can enumerate all possible probabilistic polynomial-time machines in the 

standard manner, letting Mj be bounded in time by ni, where n is the size of the input. 

For any oracle A, let 

L(A)= 11”: A contains all strings of length n>. 

It is clear that L(A)Eco-NPA for all oracles A. 

In step i we make L(A) different than any language accepted by oracle machine 

A4f using any prover oracle 0. Then L(A) cannot have a multi-prover interactive 

protocol and we have proved our theorem. 

This idea is as follows: If ~“EL(M*) then MA(l”) must accept with probability at 

least l-2-“. If l”$L(MA) then A4*(1”) accepts with probability at most 2-“. We will 

pick a length n and a string x of length n such that whether XEA will determine 

whether ~“EL(A) but whether XEA will only affect the probability of whether M*(l”) 

accepts by less than 1. This will allow us to diagonalize against MA. 

Step i: Pick Ni large enough so 2Ni > 2(Ni)i and no oracle questions to A of length 

Ni have been asked in any previous step. Let pi = (Ni)i. 

Define a machine M: that simulates M f using a built-in table of the finite locations 

where A has already been defined. When M f queries a string from A, M i will either 

answer correctly if that string has been previously set otherwise M: will answer yes to 

that oracle question. 

If there are not any oracles 0 such that 0 and MI accept on input lN’ with 

probability at least l-2-” then we put in the oracle A all strings of length Ni and 

every other previously unset string that MA asks about for any oracle 0. This 

completes step i. Note that M f can only ask questions of length less than pi SO we will 

always be able to find Ni+ 1 in step i + 1. 
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Otherwise we have some oracle 0 such that 0 and MI will accept lN’ with 

probability at least l-2-“. On any computation path (which is determined by MA’s 
coin tosses), Mf can ask at most pi oracle questions to A of length Ni. There are 2Ni 

questions of length Ni. A counting argument shows that there is some oracle question 

x of length Ni that appears in no more than pi/2Ni ratio of the computation paths of 

MA. By the way we chose Ni this means the oracle question x appears in less than one 

half of the computation paths of Mf. Put all strings of length Ni except for x in the 

oracle A. 41~0 place in the oracle A every string queried of any other length by MA on 

every possible communication with every possible 0. The oracle 0 will convince 

MA to accept with probability greater than 2-” since more than a half of the 

computation paths act the same as the corresponding paths of M:. 

If there exists an oracle 0 that makes MA accept 1 Ni with probability greater than 

l-2-” then L(A) does not contain 1 . Ni Conversely, if no oracles exist that cause 

MA to accept with probability at least 2-” then L(A) does contain 1 N1. By the standard 

diagonalization argument L(A) does not equal the language accepted by My for 

anyj. 0 

This result implies the earlier result of Fortnow and Sipser [20] since the language 

L(A) does not have one-prover interactive proof systems under the oracle A. 

The result of Babai et al. [4] gives us strong evidence that there exist languages not 

computable in polynomial space that have multiple prover interactive proof systems 

since most theoretical computer scientists believe polynomial space is not sufficient to 

accept all languages computable in nondeterministic exponential time. However, an 

oracle to separate MIP and PSPACE would imply a major separation result. 

Theorem 5.2. If there exists an oracle A such that PSPACEA does not contain MIPA 

then there exist languages in NP that cannot be computed in poly-log space. 

Proof. Assume that every language in NP can be accepted in poly-log space. Let A be 

any oracle and L be a language in MIPA accepted by a verifier that runs in time nk. 
From the proof of Theorem 4.1 we know that L is accepted by a nondeterministic 

exponential-time oracle machine M(x) that only looks at the oracle queries of A of 

length no larger than IX/~. Define M’(y) where 

~=(x~b&ob~boobo~ . ..b.l...l) 
- 
I2 

as the machine that simulates M(x) using bit b, as the answer to oracle query z. Since 

lyl=n(2l@), M’ runs in nondeterministic polynomial time in the length of y. Thus 

L(M’)ENP and thus by assumption there exists a polylog space machine N(y) that 

accepts L(M’). We create a new machine N’(x) using oracle A that works as follows: 

Simulate N(y) (without creating y) and whenever N asks about bit b, use A(z). It’s easy 
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to see that L(N’) = L and we can simulate N’ in polynomial (in 1x1) space with access 

to the oracle A. 0 

6. Bounded round protocols 

In an earlier version of this paper [19], we claimed two results about collapsing 

rounds in multi-prover proof systems: Every language provable by a single-prover 

interactive proof system has a two-prover protocol using only one round and every 

language provable by a multi-prover proof system has a three-prover protocol using 

only two rounds. Unfortunately, we have since discovered an error in the “proof” of 

these statements. Our arguments required that we can somehow decrease the error 

probability of certain protocols by running them in parallel. We assumed that if the 

provers can be prevented from communicating among themselves through the proto- 

col then parallel runs of the protocol work independently like parallel runs of one 

prover interactive protocols [S]. Unfortunately, this assumption is fallacious. 

As mentioned in section 2, results of Cai, Condon, Lipton, Feige, Lovasz, Lapidot 

and Shamir [lo-13,15,26] show that we can create a two-prover one-round protocol 

with exponentially small error equivalent to any multi-prover protocol. However, the 

proofs work by looking at special properties of the Babai-Fortnow-Lund [4] proto- 

col instead of showing how to parallelize general multi-prover protocols. 

We show the parallelization assumption faulty in even a simple case with the 

following counterexample. This example first appeared in [lS]. 

Suppose we have the following two-prover protocol: 

V: Pick two bits a and b uniformly and independently at random. 

V+P1 : a 

V-+P2 : b 

P,+ v: c 

P,+V:d 

E Accept if (a V c) # (b V d). 

It is easy to show the best strategy for two provers causes the verifier to accept with 

probability f. Notice neither prover has any notion of what bit the verifier has sent to 

the other prover. 

Now let us examine the two-round version of the same protocol: 

V: Pick bits a,, a, and bl, b2 uniformly and independently at random. 

V-+P1: a,, a, 

V+P2 : bl, b2 
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P2-' V: dl, d2 

V: Accept if (a, Vc,)#(b, Vdi) and (azVc2)#(b2VdZ). 

If the parallel runs of the protocol behave independently we would expect the 

optimum strategy for the provers causes the verifier to accept with probability (f)’ =g. 

However the following strategy for the provers causes the verifier to accept with 

probability i. 

Pi: If a, = a2 =0 respond c1 =c2 =0 otherwise respond c1 =c2 = 1. 

P2: If b1 =bZ=O respond d, =d2=0 otherwise respond dl =d2= 1. 

Note in n rounds the probability of acceptance of this protocol cannot exceed (2)’ 

since the verifier will not accept if ai=bi= 1 for any i. We cannot find any counter- 

example without this type of exponential decrease. However we have not been able to 

prove any such decrease in a general setting. 

7. Further research 

There still remain many open questions including: 

l What effect does running protocols in parallel have? In particular, if a protocol is 

run in parallel for m rounds, is the error necessarily exponentially small in m? 
l A public-coin interactive proof system can accept any language accepted by 

a interactive proof system [24]. What can we say about public-coin multi-prover 

interactive proof systems? How do we even define public-coin proof systems for 

multiple provers? 

l Do there exists multiple prover interactive proof systems for proving co-NP 

questions where the provers need only answer NP questions? A positive result 

would imply an instance checker for NP-complete problems. 
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