
Theoretical Computer Science 134 (1994) 545-557

Elsevier

545

Note

On the power of multi-prover
interactive protocols

Lance Fortnow*, John Rompel**, Michael Sipser***
Laboratory for Camp. Science, MIT, 545 Technology Square. Cambridge, MA 02139, USA

Communicated by P. Young

Received September 1992

Revised November 1993

Abstract

Fortnow, L., J. Rompel, M. Sipser, On the power of multi-prover interactive protocols, Theoretical

Computer Science 134 (1994) 545-557.

We look at complexity issues of interactive proof systems with multiple provers separated from each

other. This model, developed by Ben-Or et al. (1988) allows the verifier to play the provers off each

other. We show this model equivalent to an alternative interactive proof system model using oracles

as provers. We also show that every language accepted by these models lies in nondeterministic

exponential time. We exhibit a relativized world where a co-NP language does not have multiple

prover interactive proofs. Finally, we show a simple example that one cannot parallelize multiple

prover protocols as easily as the single prover model.

1. Introduction

Interactive proof systems, as described in [23] and [3], are models in which

a probabilistic polynomial time verifier may interactively ask questions of a prover

with unbounded computational power in order to decide the truth of a proposition.

Correspondence to: Fortnow, Department of Computer Science, University of Chicago, 1100 E 58th Street,

Chicago, IL 60637, USA. Email: fortnow@cs.uchicago.edu.
*Supported by an Office of Naval Research fellowship.

**Supported by National Science Foundation Fellowship and the third author’s grants. Current
Address: D.E. Shaw & Co., 251 Park Avenue South, New York, NY 10010, USA;

***Supported by NSF Grant DCR-8602062 and Air Force Grant AFOSR-86-0078.

0304-3975/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(94)000077-v

546 L. Fortnow et al.

This is a generalization of the NP type proof system in which the verifier may only

listen and not speak or toss coins.

In this paper we consider a further generalization of the proof system model, due to

Ben-Or et al. [6], where instead of a single prover there may be many. This apparently

gives the model additional power. The intuition for this may be seen by considering

the case of two criminal suspects who are under interrogation to see if they are guilty

of together robbing a bank. Of course they (the provers) are trying to convince

Scotland Yard (the verifier) of their innocence. Assuming that they are in fact

innocent, it is clear that their ability to convince the police of this is enhanced if they

are questioned in separate rooms and can corroborate each other’s stories without

communicating. We shall see later in this paper that this sort of corroboration is the

key to the additional power of multiple provers.

Interactive proof systems have seen a number of important applications to crypto-

graphy [23,22], algebraic complexity [3], program testing [7,8] and distributed

computation [16,23]. For example, a chain of results concerning interactive proof

systems [22, 3,24,9] conclude that if the graph isomorphism problem is NP-complete

then the polynomial time hierarchy collapses. Multiple-prover interactive proof

systems have also seen several important applications including the analysis of

program testing [7,4] and the complexity of approximation algorithms [14,2, 11.

Brief summary of results: First we give a simple characterization of the power of the

multi-prover model in terms of probabilistic oracle Turing machines. Then we show

that every language accepted by multiple prover interactive proof systems can be

computed in nondeterministic exponential time. Babai et al. [4] have since shown this

bound is tight. We then show results like the one proved by Babai et al. cannot

relativize by exhibiting an oracle relative to which there exist co-NP problems that do

not have multiple prover interactive proof systems. We show, however, that the

existence of an oracle relative to which there exist languages with multiple prover

interactive proof systems but cannot be computed in polynomial space would imply

an unrelativized separation of NP and poly-log space. Finally, we show a simple

example that illustrates that multiple prover interactive proof systems do not behave

independently in parallel as previously believed.

2. Definitions and other results

Let Pi, PZ, . . . , Pk be infinitely powerful machines and V be a probabilistic poly-

nomial-time machine, all of which share the same read-only input tape. The verifier

V shares communication tapes with each Pi, but different provers Pi and Pj have no

tapes they can both access besides the input tape. We allow k to be as large as

a polynomial in the size of the input; any larger and I/could not access all the provers.

Formally, each Pi is a function from the input and the conversation it has seen so

far to a message. We put no restrictions on the complexity of this function other

than that the lengths of the messages produced by this function must be bounded by

On the power of multi-prover interactive protocols 547

a polynomial in the size of the input. We will assume throughout this paper that the
inputs are drawn from the set of strings over the alphabet C = (0, l}.

Pr, . . . ,Pk and V form a multi-prover interactive protocol for a language L if:
(1) If XEL then Pr(P,, ,.. , Pk and V on x accept)> l-2-“.
(2) If x#L then for all provers Pi, . . . , P;, Pr(P;, . . . ,P; and V on x accept)<2-“.

MIP is the class of all languages which have multi-prover interactive protocols. If k
is one get the class IP of languages accepted by one-prover interactive proof
systems [23].

Note that we require an exponentially small probability of error. We could reduce
a constant error to a probability of error of less than 2 -p(“) for any polynomial p(n) by
running the protocols several times serially. Unlike the result of Babai and Moran [S]
for the one-prover model, it is unknown whether we can decrease the probability of
error in multi-prover proof systems by running the protocols in parallel (see Section 6).

A round of a multi-prover interactive protocol consists of messages from the verifier
to some or all of the provers followed by messages from these provers to the verifier. In
general, interactive protocols can have a polynomial number of rounds. We let C(ij
designate a message from prover i to the verifier in round j and aij designate a message
from the verifier to prover i in round j.

Ben-Or et al. [6] originally developed multi-prover interactive proof systems
primarily for cryptographic purposes. They show every language accepted by a two
prover interactive proof system has a perfect zero-knowledge two prover proof
system, where even NP does not have perfect zero-knowledge single prover proof
systems unless the polynomial-time hierarchy collapses [17]. They also show two
prover systems can simulate any multi-prover system. Along the lines of Furer et al.
[21], they show any two prover system has an equivalent system that accepts with
probability one for strings in the language. Complete proofs of these results appeared
in [25].

Subsequent to the results described in this paper, the complexity of interactive proof
systems have been shown to be much more powerful then previously believed. Lund
et al. [27] have shown the existence of an interactive proof system for every language
in the polynomial time hierarchy. Using the techniques of Lund et al. [29] has shown
that every language computable in polynomial space has an interactive proof system.
Building on the result of Lund et al. and Theorem 3.1, Babai et al. [4] have shown that
every language accepted in nondeterministic exponential time has a two-prover
interactive proof system.

A series of results due to Cai, Condon, Lipton, Lapidot, Shamir, Feige and Lovasz
[12, 10, 11, 13,26, 151 have modified the protocol of Babai et al. [4] to show that
every language in NEXP has a two-prover, one-round proof systems with an expo-
nentially small error, strengthening the (unproven) claims made in an earlier version
of this paper [19]. The general question of parallelizing protocols remains open
(see [15-J).

Feige et al. [14] use the Babai-Fortnow-Lund [4] result to prove some
grave consequences of clique approximation. Arora and Safra [2] improved

548 L. Fortnow et al.

these results and Arora et al. [l] applied these techniques to the MAX-SNP-hard

problems [28].

3. Probabilistic oracle machines

Suppose a prover in an interactive proof system must set all his possible responses

before the protocol with the verifier takes place. We can think of the prover as an

oracle attempting to convince a probabilistic machine whether to accept a certain

input string. The oracle must be fully specified before the protocol begins.

Let M be a probabilistic polynomial-time Turing machine with access to an oracle

0. A language L is accepted by an oracle machine M iff

(1) For every XGL there is an oracle 0 such that MO accepts x with probability

> 1-2-n.

(2) For every x$ L and for all oracles 0’, MO’ accepts with probability < 2-“.

This model differs from the one-prover interactive protocol model in that the oracle

must be set ahead of time while in an interactive protocol the prover may let his future

answers depend on previous ones.

Theorem 3.1. L is accepted by a probabilistic oracle machine gand only ifL is accepted
by a multi-prover interactive protocol.

Proof (t). Suppose L is accepted by a multi-prover interactive proof system V.

Without loss of generality, we can assume that all messages from the provers to the

verifier consist of only a single bit. Then define M as follows: M simulates V with

M remembering all messages. When V sends a message to a prover, M asks the oracle

the question (x, i, j, /3, 1, . . . , Bij) suitably encoded and uses the response as the jth

message from prover i on input x where pii, . . , Pij are the first j messages sent from

the verifier to prover i. M then accepts x if and only if V does.

(1) Let P1, . . . , Pk be provers which cause V to accept each XEL with probability at

least 1 - 2-“. If we let 0 be the oracle which encodes in the above manner the messages

of P Ir . . . , Pk, then MO will accept each XEL with the same probability as V.

(2) Suppose there were an input x4-L and an oracle 0’ such that MO’ accepts x with

probability more than 2-“. Then we could construct provers Pi, . . . , P; which cause

V to accept x with the same probability by just using 0’ to create their messages.

Since, by definition, no such Pi, . . . , Pi exist, neither does 0’.

(*). Suppose L is accepted by a probabilistic oracle machine M in nk steps. We will

define a verifier, V, to simulate M using 4nk+ ’ provers. First the verifier flips two sets

of coins rl and r2. The verifier uses rl to choose a random ordering of the 4nk+’
provers. The verifier then simulates M using r2 and whenever M asks an oracle

question, V asks the question to each of the next n provers in the chosen ordering. If

the provers are unanimous in their answer, V uses that answer in its simulation ofM; if

not, V rejects immediately. If the provers successfully answer in its simulation of M; if

On the power of multi-prover interactive protocols 549

not, V rejects immediately. If the provers successfully answer all oracle queries, then

the verifier accepts if and only if it4 does. There can be at most nk questions so V will

use at most nk+ ’ provers. There will be at least 3nk+ ’ unused provers.

(1) Let 0 be an oracle such that MO accepts such XEL. with probability at least

l-2-“. If we let Pr ,..., Pi, X+I all answer (identically) according to 0, then they will

cause V to accept each XEL with the same probability as MO.

(2) Consider x$ L; consider any powers Pi, . . . , P&, k + I. Let oracle 0’ answer queries

as the majority of Pi, . . . ,Pk, x+1 would. If there is no majority then 0’ answers

arbitrarily. We know that 0’, like every oracle, cannot cause MO’ to accept x with

probability greater than 2-“. We need to also show that the provers Pi, . . . , Pbk+l

cannot do much better in the above defined protocol.

There are two cases to consider for V accepting x: either all oracle queries in the

simulation answered consistently with 0’ or some oracle query answered differently

than 0’ would. By the definition of acceptance for probabilistic oracle machines, we

know that the probability of accepting given that the first case occurs is bounded by

2-“, where this probability is over the random coins of M.

Now consider the second case. For V to accept using an oracle answer inconsistent

with 0’, it must be the case that, for some i, the ith set of n provers all give an answer

inconsistent with 0’ on the ith query. Let Si be the event that i is least with this

property given that V accepts. Fix r2 and all the first i- 1 sets of provers. There are

4nk+‘-n(i-1)>3nk+’ remaining provers. Of these provers at most 2nk+ ’ can give an

answers inconsistent with 0’ on the ith query. Thus the probability that Si occurs is

bounded by

,< (W)“.

The probability that Si will occur for some i is at most nk times this.

We will use the following identity for any two events B and C:

Pr(BAC)=Pr(BIC)Pr(C),<Pr(BIC). (1)

Let A be the event that V accepts. Let F be the event that the first case occurs. Let S be

the event that the second case occurs, By (l), we have:

Pr(A)= Pr(A A F)+ Pr(A A S),<Pr(A (F)+ Pr(S 1 A)<2-“+nk(2/3)”

<(nk+ 1)(2/3)“.

We can reduce the error in the usual way by running this protocol in series several

times. 0

Theorem 3.1 gives a natural model equivalent to multiple provers and useful for

proving theorems about them. In fact the proof that multiple provers can simulate

550 L. Fortnow et al.

nondeterministic exponential time [4] requires this theorem. We can also make
connections to program checking.

Blum and Kannan [7] define function-restricted IP as the set of languages accepted
by a probabilistic oracle machine with the additional restriction on the first
requirement:

(1) For every XEL, ML accepts x with probability > l-2-“.
In other words, the “honest oracle” must just compute the language but the “dishon-
est” oracle may still compute any function.

Blum and Kannan also define an instance checker Cr for a language L and an
instance XE{O, l}* as a probabilistic polynomial-time oracle Turing machine that
given a program B claiming to compute L, and an input x:

(1) If 9 correctly computes L for all inputs then with high probability Cf will
output “correct”.

(2) If 9(x) # L(x), with high probability C:(x) will output “9 does not compute L”.
Blum and Kannan show that a language L has an instance checker if both L and E.

have function-restricted interactive proof systems.
The proof of Theorem 3.1 yields the following corollary.

Corollary 3.2. A language L has a function restricted interactive proof system ifand only

if there exists a multiple prover interactive proof system for L where the honest provers

need only answer questions about L.

Arora and Safra [2] define a hierarchy of complexity classes PCP (probabilistically
checkable proofs), corresponding to the number of random and query bits required to
verify a proof of membership in the language, as follows:

A verifier M is a probabilistic polynomial-time Turing machine with random access
to a string 17 representing a membership proof; M can query any bit of II. Call M an
(r(n), q(n))-restricted verifier if, on an input of size n, it is allowed to use at most r(n)

random bits for its computation, and query at most q(n) bits of the proof.
A language L is in PCP(r(n), q(n)) if there exists an (r(n), q(n))-restricted verifier

M such that for every input x:
(1) If XEL, there is a proof Ii’, which causes M to accept for every random string,

i.e., with probability 1.
(2) If x$L, then for all proofs 17, the probability over random strings of length r(n)

that M using proof II accepts is bounded by f.
Notice that the role of II is identical to the role of the oracle 0 in our definition

of probabilistic oracle machines. Thus combining Theorem 3.1 with the fact that
any multiple-prover interactive proof system has an equivalent system that accepts
with probability one for strings in the language [6,21] we have the following
corollary.

Corollary 3.3. MIP = Uk, 0 PCP(nk, ok).

On the power of multi-prover interactive protocols 551

Thus Babai et al. [4] show that NEXP= Ue,o PCP(nk, nk). Arora et al. [l] show

that NP= U,,,PCP(clog(n), c).

4. Nondeterministic exponential time suffices

In this section, we show an upper bound on the complexity of multiple prover

interactive proof systems.

Theorem 4.1. If there exists a multiple prover interactive proof system accepting a lan-
guage L then L can be computed in nondeterministic exponential time.

By nondeterministic exponential time, we mean Uk, 0 NTIME [2”“].

Proof. By Theorem 3.1, we can assume there exists a probabilistic oracle machine

M accepting L with M using time nk on inputs of length n for some k>O. We create

a nondeterministic exponential time machine to accept L as follows: On input x of

length n, guess the value of the oracle 0 on all questions of length at most nk. Note

M(x) can only ask oracle questions of length no longer than nk. There are exactly

2”‘+ ’ - 1 such questions. For r a string of length nk, let f(x, 0, r)= 1 if M on input

x accepts using random coin tosses r and getting the oracle answers from 0 and

f(x, 0, r) = 0 otherwise. Compute

S= 1 f(x, 0, r).
rE{O, 1)“’

Accept if S > 2”*/2.

By the definition of probabilistic oracle machines, for XEL there exists a setting of

the oracle such that SB(l-2-“)2”“. If x$L then for any setting of the oracle,

S<2-“2”“. This proves the correctness of the computation above. q

Babai et al. [4] have shown that any language computable in nondeterministic

exponential time has a multiple prover interactive proof system. Thus we have an

equivalence of the class of languages provable by multiple prover proof systems and

those computable in nondeterministic exponential time.

Note Theorem 4.1 does not show that any language L with a multiple prover proof

system can be proven with provers of nondeterministic exponential time complexity.

The provers must actually find the nondeterministic guesses that would make the

nondeterministic exponential time machine accept. This would require the second

level of the exponential time hierarchy to determine, say, the lexicographically first

such series of nondeterministic guesses. We do not know whether they can be

improved to have nondeterministic exponential time complexity. Babai et al. [4] show

any language in deterministic exponential time requires only deterministic exponen-

tial time provers.

552 L. Fortnow et al.

5. Relativized limits on multiple provers

The result of Babai et al. [4] that shows all languages computable in nondeterminis-

tic exponential time have multiple prover interactive proof systems does not relativize,

i.e., their proof does not imply that given any oracle A, nondeterministic exponential

time with access to oracle A has a multiple prover interactive proof with the provers

and verifiers also having access to oracle A. We show that any proof of this result

cannot relativize:

Theorem 5.1. There exists an oracle A and a language LECO-NP* such that L#MIP*.

Theorem 5.1 extends a result by Fortnow and Sipser [20] that shows the existence

of an oracle relative to which co-NP does not have single prover interactive proofs.

Proof. In this proof we will use the oracle machine model. It is easy to verify that the

proof of Theorem 3.1 holds under relativizations to all oracles. Note that our machin-

es can ask questions about two oracles, the “prover” oracle 0 and the “relativization”

oracle A.

We can enumerate all possible probabilistic polynomial-time machines in the

standard manner, letting Mj be bounded in time by ni, where n is the size of the input.

For any oracle A, let

L(A)= 11”: A contains all strings of length n>.

It is clear that L(A)Eco-NPA for all oracles A.

In step i we make L(A) different than any language accepted by oracle machine

A4f using any prover oracle 0. Then L(A) cannot have a multi-prover interactive

protocol and we have proved our theorem.

This idea is as follows: If ~“EL(M*) then MA(l”) must accept with probability at

least l-2-“. If l”$L(MA) then A4*(1”) accepts with probability at most 2-“. We will

pick a length n and a string x of length n such that whether XEA will determine

whether ~“EL(A) but whether XEA will only affect the probability of whether M*(l”)

accepts by less than 1. This will allow us to diagonalize against MA.

Step i: Pick Ni large enough so 2Ni > 2(Ni)i and no oracle questions to A of length

Ni have been asked in any previous step. Let pi = (Ni)i.

Define a machine M: that simulates M f using a built-in table of the finite locations

where A has already been defined. When M f queries a string from A, M i will either

answer correctly if that string has been previously set otherwise M: will answer yes to

that oracle question.

If there are not any oracles 0 such that 0 and MI accept on input lN’ with

probability at least l-2-” then we put in the oracle A all strings of length Ni and

every other previously unset string that MA asks about for any oracle 0. This

completes step i. Note that M f can only ask questions of length less than pi SO we will

always be able to find Ni+ 1 in step i + 1.

On the power of multi-prover interactive protocols 553

Otherwise we have some oracle 0 such that 0 and MI will accept lN’ with

probability at least l-2-“. On any computation path (which is determined by MA’s
coin tosses), Mf can ask at most pi oracle questions to A of length Ni. There are 2Ni

questions of length Ni. A counting argument shows that there is some oracle question

x of length Ni that appears in no more than pi/2Ni ratio of the computation paths of

MA. By the way we chose Ni this means the oracle question x appears in less than one

half of the computation paths of Mf. Put all strings of length Ni except for x in the

oracle A. 41~0 place in the oracle A every string queried of any other length by MA on

every possible communication with every possible 0. The oracle 0 will convince

MA to accept with probability greater than 2-” since more than a half of the

computation paths act the same as the corresponding paths of M:.

If there exists an oracle 0 that makes MA accept 1 Ni with probability greater than

l-2-” then L(A) does not contain 1 . Ni Conversely, if no oracles exist that cause

MA to accept with probability at least 2-” then L(A) does contain 1 N1. By the standard

diagonalization argument L(A) does not equal the language accepted by My for

anyj. 0

This result implies the earlier result of Fortnow and Sipser [20] since the language

L(A) does not have one-prover interactive proof systems under the oracle A.

The result of Babai et al. [4] gives us strong evidence that there exist languages not

computable in polynomial space that have multiple prover interactive proof systems

since most theoretical computer scientists believe polynomial space is not sufficient to

accept all languages computable in nondeterministic exponential time. However, an

oracle to separate MIP and PSPACE would imply a major separation result.

Theorem 5.2. If there exists an oracle A such that PSPACEA does not contain MIPA

then there exist languages in NP that cannot be computed in poly-log space.

Proof. Assume that every language in NP can be accepted in poly-log space. Let A be

any oracle and L be a language in MIPA accepted by a verifier that runs in time nk.
From the proof of Theorem 4.1 we know that L is accepted by a nondeterministic

exponential-time oracle machine M(x) that only looks at the oracle queries of A of

length no larger than IX/~. Define M’(y) where

~=(x~b&ob~boobo~ . ..b.l...l)
-
I2

as the machine that simulates M(x) using bit b, as the answer to oracle query z. Since

lyl=n(2l@), M’ runs in nondeterministic polynomial time in the length of y. Thus

L(M’)ENP and thus by assumption there exists a polylog space machine N(y) that

accepts L(M’). We create a new machine N’(x) using oracle A that works as follows:

Simulate N(y) (without creating y) and whenever N asks about bit b, use A(z). It’s easy

554 L. Fortnow et al.

to see that L(N’) = L and we can simulate N’ in polynomial (in 1x1) space with access

to the oracle A. 0

6. Bounded round protocols

In an earlier version of this paper [19], we claimed two results about collapsing

rounds in multi-prover proof systems: Every language provable by a single-prover

interactive proof system has a two-prover protocol using only one round and every

language provable by a multi-prover proof system has a three-prover protocol using

only two rounds. Unfortunately, we have since discovered an error in the “proof” of

these statements. Our arguments required that we can somehow decrease the error

probability of certain protocols by running them in parallel. We assumed that if the

provers can be prevented from communicating among themselves through the proto-

col then parallel runs of the protocol work independently like parallel runs of one

prover interactive protocols [S]. Unfortunately, this assumption is fallacious.

As mentioned in section 2, results of Cai, Condon, Lipton, Feige, Lovasz, Lapidot

and Shamir [lo-13,15,26] show that we can create a two-prover one-round protocol

with exponentially small error equivalent to any multi-prover protocol. However, the

proofs work by looking at special properties of the Babai-Fortnow-Lund [4] proto-

col instead of showing how to parallelize general multi-prover protocols.

We show the parallelization assumption faulty in even a simple case with the

following counterexample. This example first appeared in [lS].

Suppose we have the following two-prover protocol:

V: Pick two bits a and b uniformly and independently at random.

V+P1 : a

V-+P2 : b

P,+ v: c

P,+V:d

E Accept if (a V c) # (b V d).

It is easy to show the best strategy for two provers causes the verifier to accept with

probability f. Notice neither prover has any notion of what bit the verifier has sent to

the other prover.

Now let us examine the two-round version of the same protocol:

V: Pick bits a,, a, and bl, b2 uniformly and independently at random.

V-+P1: a,, a,

V+P2 : bl, b2

On the power of multi-prover interactive protocols 555

P2-' V: dl, d2

V: Accept if (a, Vc,)#(b, Vdi) and (azVc2)#(b2VdZ).

If the parallel runs of the protocol behave independently we would expect the

optimum strategy for the provers causes the verifier to accept with probability (f)’ =g.

However the following strategy for the provers causes the verifier to accept with

probability i.

Pi: If a, = a2 =0 respond c1 =c2 =0 otherwise respond c1 =c2 = 1.

P2: If b1 =bZ=O respond d, =d2=0 otherwise respond dl =d2= 1.

Note in n rounds the probability of acceptance of this protocol cannot exceed (2)’

since the verifier will not accept if ai=bi= 1 for any i. We cannot find any counter-

example without this type of exponential decrease. However we have not been able to

prove any such decrease in a general setting.

7. Further research

There still remain many open questions including:

l What effect does running protocols in parallel have? In particular, if a protocol is

run in parallel for m rounds, is the error necessarily exponentially small in m?
l A public-coin interactive proof system can accept any language accepted by

a interactive proof system [24]. What can we say about public-coin multi-prover

interactive proof systems? How do we even define public-coin proof systems for

multiple provers?

l Do there exists multiple prover interactive proof systems for proving co-NP

questions where the provers need only answer NP questions? A positive result

would imply an instance checker for NP-complete problems.

Acknowledgment

We would like to thank Yishay Mansour for his help with Theorem 5.2. We would

also like to thank the anonymous referees for their various helpful suggestions.

References

[l] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof verification and hardness of
approximation problems, in: Proc. 33rd IEEE Symposium on Foundations ofcomputer Science (IEEE,
New York, 1992) 14-23.

556 L. Fortnow et al.

[2] S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, in: Proc. 33rd
IEEE Symposium on Foundations of Computer Science (IEEE, New York, 1992) 2-13.

[3] L. Babai, Trading group theory for randomness, in: Proc. 17th ACM Symposium on the Theory af
Computing (ACM, New York, 1985) 421-429.

[4] L. Babai, L. Fortnow and C. Lund, Non-deterministic exponential time has two-prover interactive

protocols, Computational Complexity l(1) (1991) 3-40.
[S] L. Babai and S. Moran, Arthur-Merlin games: A randomized proof system, and a hierarchy of

complexity classes, J. Comput. System Sci. 36(2) (1988) 2544276.
[6] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson, Multi-prover interactive proofs: How to

remove intractability assumptions, in: Proc. 20th ACM Symposium on the Theory ofcomputing (ACM,
New York, 1988) 1133131.

[7] M. Blum and S. Kannan, Designing programs that check their work, in: Proc. Zlst ACM Symposium
on the Theory of Computing (ACM, New York, 1989) 86-97.

[S] M. Blum, M. Luby and R. Rubinfeld, Self-testing and self-correcting programs, with applications to

numerical programs, in: Proc. 22nd ACM Symposium on the Theory ofcomputing (ACM, New York,
1990) 73-83.

[9] R. Boppana, J. H&ad and S. Zachos, Does co-NP have short interactive proofs? Inform. Process.

Lett. 25(2) (1987) 127-132.

[lo] J. Cai, A. Condon and R. Lipton, On bounded round multi-prover interactive proof systems, in: Proc.
5th IEEE Structure in Complexity Theory Conference (IEEE, New York, 1990) 45-54.

[1 l] J. Cai, A. Condon and R. Lipton, PSPACE is provable by two provers in one round, in: Proc. 6th
IEEE Structure in Complexity Theory Conference (IEEE, New York, 1991) 110-115.

[12] J. Cai, A. Condon and R. Lipton, On games of incomplete information, Theoret. Comput. Sci. 103(l)
(1992) 25-38.

[13] U. Feige, On the success probability of the two provers in one round proof systems, in: Proc. 6th IEEE
Structure in Complexity Theory Conference (IEEE, New York, 1991) 116-123.

1141 U. Feige, S. Goldwasser, L. Lovisz, S. Safra and M. Szegedy, Approximating clique is almost

NP-complete, in: Proc. 32nd IEEE Symposium on Foundations of Computer Science (IEEE, New York,

1991) 2-12.

[15] U. Feige and L. Lo&z, Two-prover one-round proof systems: Their power and their problems, in:

Proc. 24th ACM Symposium on the Theory qf Computing (ACM, New York, 1992) 733-744.

[16] P. Feldman and S. Micah, From scratch to byzantine agreement in constant expected time, in: Proc.
20th ACM Symposium an the Theory of Computing (ACM, New York, 1988) 148-161.

1171 L. Fortnow, The complexity of perfect zero-knowledge, in: S. Micah, ed., Randomness and Computa-
tion, Vol. 5 Advances in Computing Research (JAI Press, Greenwich, 1989) 327-343.

1181 L. Fortnow, Complexity~-theoretic, aspects of interactive proof systems, Ph.D. thesis, Massachusetts

Institute of Technology, May 1989, Tech Report MIT/LCS/TR-447.

1191 L. Fortnow, J. Rompel and M. Sipser, On the power of multi-prover interactive protocols, in: Proc.
3rd IEEE Structure in Complexity Theory Conference (IEEE, New York, 1988) 156-161.

[ZO] L. Fortnow and M. Sipser, Are there interactive protocols for co-NP languages? Inform. Process. Lett.
28 (1988) 2499251.

[Zl] M. Furer, 0. Goldreich, Y. Mansour, M. Sipser and S. Zachos, On completeness and soundness in

interactive proof systems, in: S. Micah, ed., Randomness and Computation, Vol. 5 Advances in
Computing Research (JAI Press, Greenwich, 1989) 4299442.

[22] 0. Goldreich, S. Micah and A. Wigderson, Proofs that yield nothing but their validity or all languages

in NP have zero-knowledge proof systems, J. ACM 38(3) (1991) 691-729.

[23] S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of interactive proof-systems,

SZAM J. Comput. 18(l) (1989) 186-208.

[24] S. Goldwasser and M. Sipser, Private coins versus public coins in interactive proof systems, in:
S. Micali, ed., Randomness and Computation, Vol. 5, Advances in Computing Research (JAI Press,

Greenwich, 1989) 73-90. I
[25] J. Kilian, Uses of Randomness in’Aigorithms and Protocols, ACM Distiizised Dissertation (MIT

Press, Cambridge, MA, 1990).

[26] D. Lapidot and A. Shamir, Fully parallelized multi prover protocols for NEXP-time, in: Proc. 32nd

IEEE Symposium on Foundations of Computer Science (IEEE, New York, 1991) 13-18.

On the power of multi-prover interactive protocols 551

[27] C. Lund, L. Fortnow, H. Karloff and N. Nisan, Algebraic methods for interactive proof systems,

J. ACM 39(4) (1992) 859-868.

[28] C. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes,

J. Comput. System Sci. 43 (1991) 425-440.

[29] A. Shamir, IP = PSPACE, J. ACM 39(4) (1992) 869-877.

