Theoretical Computer Science 134 (1994) 545-557 545
Elsevier

n“ LI‘ L 2 Vatterfat o /\'p 1»\/\1‘1 ‘: E 2 % o B O od
On the power of multi-prover
interactive protocols

Lance Fortnow*, John Rompel**, Michael Sipser***
Laboratory for Comp. Science, MIT, 545 Technology Square, Cambridge, MA 02139, USA

Communicated by P. Young
Received September 1992
Revised November 1993

Abstract

Fortnow, L. I. Romnel

now, 1., J. Kompe,

Computer Science 134 (1994) 545-557.

R | PO . £ oot cmtadd

We look at complexity issues of interactive proof systems with multiple provers separated from each
other. This model, developed by Ben-Or et al. (1988) allows the verifier to play the provers off each
other. We show this model equivalent to an alternative interactive proof system model using oracles
as provers. We aiso show that every language accepted by these models lies in nondeterministic
exponential time. We exhibit a relativized world where a co-NP language does not have multiple
prover interactive proofs. Finally, we show a simple example that one cannot parallelize multiple
prover protocols as easily as the singie prover model.

1. Introduction

Interactive proof systems, as described in [23] and [3

E
a nrobabilistic nolvnomial time verifier mav interactivelv ask aguestions of a nrover
a probabilistic polynomial ime veriier may interactively ask questions of a prover
with unbounded computational power in order to decide the truth of a proposition.

Correspondence to: Fortnow, Department of Computer Science, University of Chicago, 1100 E 58th Street,
Chicago, IL 60637, USA. Email: fortnow@cs.uchicago.edu.
*Supported by an Office of Naval Research fellowship.
**Supported by National Science Foundation Fellowship and the third author’s grants. Current
Address: D.E. Shaw & Co., 251 Park Avenue South, New York, NY 10010, USA;
**+* Supported by NSF Grant DCR-8602062 and Air Force Grant AFOSR-86-0078.

546 L. Fortnow et al.

This 1s a generalization of the NP type proof system in which the verifier may only
listen and not speak or toss coins.

In this paper we consider a further generalization of the proof system model, due to
Ben-Or et al. [6], where instead of a single prover there may be many. This apparently
gives the model additional power. The intuition for this may be seen by considering
the case of two criminal suspects who are under interrogation to see if they are guilty
of together robbing a bank. Of course they (the provers) are trying to convince
Scotland Yard (the verifier) of their innocence. Assuming that they are in fact
innocent, it is clear that their ability to convince the police of this is enhanced if they
are questioned in separate rooms and can corroborate each other’s stories without
communicating. We shall see later in this paper that this sort of corroboration is the
key to the additional power of multiple provers.

Interactive proof systems have seen a number of important applications to crypto-
graphy [23, 22], algebraic complexity [3], program testing [7, 8] and distributed
computation [16, 23]. For example, a chain of results concerning interactive proof
systems [22, 3, 24, 9] conclude that if the graph isomorphism problem is NP-complete
then the polynomial time hierarchy collapses. Multiple-prover interactive proof
systems have also seen several important applications including the analysis of
program testing [7, 4] and the complexity of approximation algorithms [14, 2, 1].

Brief summary of results: First we give a simple characterization of the power of the
multi-prover model in terms of probabilistic oracle Turing machines. Then we show
that every language accepted by multiple prover interactive proof systems can be
computed in nondeterministic exponential time. Babai et al. [4] have since shown this
bound is tight. We then show results like the one proved by Babai et al. cannot
relativize by exhibiting an oracle relative to which there exist co-NP problems that do
not have multiple prover interactive proof systems. We show, however, that the
existence of an oracle relative to which there exist languages with multiple prover
interactive proof systems but cannot be computed in polynomial space would imply
an unrelativized separation of NP and poly-log space. Finally, we show a simple
example that illustrates that multiple prover interactive proof systems do not behave
independently in parallel as previously believed.

2. Definitions and other results

Let Py, P,, ..., P, be infinitely powerful machines and ¥ be a probabilistic poly-
nomial-time machine, all of which share the same read-only input tape. The verifier
V shares communication tapes with each P;, but different provers P; and P; have no
tapes they can both access besides the input tape. We allow k to be as large as
a polynomial in the size of the input; any larger and ¥ could not access all the provers.

Formally, each P; is a function from the input and the conversation it has seen so
far to a message. We put no restrictions on the complexity of this function other
than that the lengths of the messages produced by this function must be bounded by

On the power of multi-prover interactive protocols 547

a polynomial in the size of the input. We will assume throughout this paper that the

inputs are drawn from the set of strings over the alphabet ~={0, 1}.

P,,..., P, and ¥V form a multi-prover interactive protocol for a language L if:

(1) If xeL then Pr(Py,..., P, and V on x accept)>1-—-27"

(2) If x¢ L then for all provers Pi,..., Pi, Pr(P%,...,P;and V on x accept)<2™™
MIP is the class of all languages which have multi-prover interactive protocols. If k
is one get the class IP of languages accepted by one-prover interactive proof

systems [23].

Note that we require an exponeiiti ally small probability of error. We could reduce
a constant error to a probability of er of ess than 27 P® for any polynomial p(n) by
running the protocols several times serially. Unlike the result of Babai and Moran [5]

for the one-prover model, it is unknown whether we can decrease the probability of
error in multi-prover proof systems by running the protocols in parallel (see Section 6).

A round of a multi-prover interactive protocol consists of messages from the verifier
to some or all of the provers followed by messages from these provers to the verifier. In
general, interactive protocols can have a polynomial number of rounds. We let «;
designate a message from prover i to the verifier in round j and f;; designate a message
from the verifier to prover i in round j.

Ben-Or et al. [6] originally developed multi-prover interactive proof systems
primarily for cryptographic purposes. They show every language accepted by a two
prover interactive proof system has a perfect zero-knowledge two prover proof
system, where even NP does not have perfect zero-knowledge single prover proof
systems unless the polynomial-time hierarchy collapses [17]. They also show two
prover systems can simulate any multi-prover system. Along the lines of Furer et al.
[21], they show any two prover system has an equivalent system that accepts with
probability one for strings in the language. Complete proofs of these results appeared
in [25].

Subsequent to the results described in this paper, the complexity of interactive proof
systems have been shown to be much more powerful then previously believed. Lund
et al. [27] have shown the existence of an interactive proof system for every language

in the polynomial time hierarchy. Using the techniques of Lund et al. [29] has shown
that every language computable in polynomial space has an interactive proof system.
Building on the result of Lund et al. and Theorem 3.1, Babai et al. [4] have shown that
every language accepted in nondeterministic exponential time has a two-prover

interactive proof system.

A series of results due to Cai, Condon, Lipton, Lapidot, Shamir, Feige and Lovasz
(12,10, 11, 13, 26, 15] have modified the protocol of Babai et al. [4] to show that
every language in NEXP has a two-prover, one-round proof systems with an expo-

nentially small error, strengthening the (unproven) claims made in an earlier version
of this paper [19]. The general question of parallelizing protocols remains open
(see [15]).

Feige et al. [14] use the Babai—Fortnow-Lund [4] result to prove some
grave consequences of clique approximation. Arora and Safra [2] improved

548 L. Fortnow et al.

these results and Arora et al. [1] applied these techniques to the MAX-SNP-hard
problems [28].

3. Probabilistic oracle machines

Suppose a prover in an inieractive proof system must set all his possibie responses
before the protocol with the verifier takes place. We can think of the prover as an

oracle attemnting to convince a nrnhav istic machine whether to accent a certain

LIaLIC AR IpAls COLIVILILC & 10O0a MaCIg 2D 0 QALY @ i

input string. The oracle must be fully specified before the protocol begins.

Let M be a probabilistic polynomial-time Turing machine with access to an oracle
0. A language L is accepted by an oracle machine M iff

(1) For every xeL there is an oracle O such that M© accepts x with probability
>1-2"

(2) For every x¢ L and for all oracles O’, M? accepts with probability <27".

This model differs from the one-prover interactive protocol model in that the oracle
must be set ahead of time while in an interactive protocol the prover may let his future

answers denend on previous ones

alls LOpLiic OLL PIc OILICS.

Theorem 3.1. L is accepted by a probabilistic oracle machine if and only if L is accepted
by a multi-prover interactive protocol.

Proof (<=). Suppose L is accepted by a multi-prover interactive proof system V.
Without loss of generality, we can assume that all messages from the provers to the
verifier consist of only a singie bit. Then define M as follows: M simulates ¥ with
M remembering all messages. When V' sends a message to a prover, M asks the oracle

the guestion (x.i.j. 8; A..) suitablyv encoded and uses the resnonse as the 1th

the quesiion VL Py -, Py SUMADIY encoeged ang uses the response as in i

message from prover i on input x where f;, ..., f;; are the first j messages sent fro
the verifier to prover i. M then accepts x if and only if V does.

(1) Let Py, ..., P, be provers which cause ¥ to accept each xe L with probability at
least 1 — 27" If we let O be the oracle which encodes in the above manner the messages
of Py, ..., P, then M? will accept each xe L with the same probability as V.

(2) Suppose there were an input x¢ L and an oracle O’ such that M accepts x with

probability more than 27" Then we couid construct provers P1,..., P; which cause
V to accept x with the same probability by just using O’ to create their messages.
Since, by definition, no such P, ..., P; exist, neither does 0.

{=). Suppose L is accepted by a probabilistic oracle machine M in n* steps. We will
define a verifier, V, to simulate M using 4n** ! provers. First the verifier flips two sets
of coins r, and r,. The verifier uses r; to choose a random ordering of the 4n**!
provers. The verifier then simulates M using r, and whenever M asks an oracle
question, V asks the question to each of the next n provers in the chosen ordering. If
the provers are unanimous in their answer, V uses that answer in its simulation ofM; if

sfully answer in its simulation of M; if

On the power of multi-prover interactive protocols 549

not, V rejects immediately. If the provers successfully answer all oracle queries, then
the verifier accepts if and only if M does. There can be at most n* questions so ¥ will
use at most n**! provers. There will be at least 3n*** unused provers.

(1) Let O be an oracle such that M© accepts such xeL with probability at least
1-27"1f we let Py,..., P4+ all answer (identically} according to O, then they will
cause V to accept each xe L with the same probability as M°.

(2) Consider x¢L; consider any powers P, ..., Py,«+:. Let oracle O’ answer queries
as the majority of P1,..., P4+ would. If there is no majority then O’ answers
arbitrarily. We know that O’, like every oracle, cannot cause M2 to accept x with

n

probability greater than 27". We need to also show tha
cannot do much better in the above defined protocol.

There are two cases to consider for V" accepting x: either all oracle queries in the
simulation answered consistently with O’ or some oracle query answered differently
than O" would. By the definition of acceptance for probabilistic oracle machines, we
know that the probability of accepting given that the first case occurs is bounded by
27" where this probability is over the random coins of M.

Now consider the second case. For V' to accept using an oracle answer inconsistent

-
o
=
o

el
=
Q
<
s}
~
w
..q
g

S»\

JH

sth) it qt th that i tha jth t+ Af 1
witn U, it must be the case t that, Ior some i, the ith set oi n 1 provers a

inconsistent with O’ on the ith query. Let S; be the event that i is least with this
property given that V accepts. Fix r, and all the first i—1 sets of provers. There are
4n**! —pn(i—1)>3n**! remaining provers. Of these provers at most 2n** ! can give an
answers inconsistent with O’ on the ith query. Thus the probability that S; occurs is

bounded by
[2n*+ 1N

\ n)

[3nk* 1N

=
]
b
)
3
3

=t

<(2/3)".

B B S o L e Tl U is at -~
1Ly Uiat 0,’ Wil Ol Ul Ul SUIIIC ¢ b dal 1o
e y tw S

Pr(BA C)=Pt(B| C)Pr(C)<Pr(B| C). 1)

Let 4 be the event that } accepts. Let F be the event that the first case occurs. Let S be
the event that the second case occurs. By (1), we have:

<(n*+1)(2/3)".

We can reduce the error in the usual way by running this protocol in series several
times. O

Theorem 3.1 gives a natural model equivalent to multiple provers and useful for
proving theorems about them. in fact the proof that muitipie provers can simulate

550 L. Fortnow et al.

nondeterministic exponential time [4] requires this theorem. We can also make
connections to program checking.

Blum and Kannan [7] define function-restricted IP as the set of languages accepted
by a probabilistic oracle machine with the additional restriction on the first
requirement:

(1) For every xeL, M* accepts x with probability >1-—2"".

In other words, the “honest oracie” must just compute the ianguage but the “dishon-
est” oracle may still compute any function.

Rluim and Kannan also define an instance ¢

ockor C? for a lanonase 7 and an
m ang sannan a:s¢ Gelne an mstance caecker L i

for a language L and an
instance xe{0, 1}* as a probabilistic polynomial-time oracle Turing machine that
given a program £ claiming to compute L, and an input x:

(1) If & correctly computes L for all inputs then with high probability CZ will
output “correct”.

(2) If 2(x) # L(x), with high probability C7 (x) will output “2 does not compute L”.

Blum and Kannan show that a language L has an instance checker if both L and L.
have function-restricted interactive proof systems.

The proof of Theorem 3.1 yields the following corollary.

Corollary 3.2. Alanguage L has a function restricted interactive proof system if and onl

ovatom far T volhiows tho liamodt nuassoug
DY JUI L, WHETT Lhie nunest provery

thows oyvia 3l s nas e

if there exists a multiple prover interactive pro
need only answer questions about L.

Arora and Safra [2] define a hierarchy of complexity classes PCP (p
checkable proofs), corresponding to the number of random and query bits required to
verify a proof of membership in the language, as follows:

A verifier M is a probabilistic polynomial-time Turing machine with random access
to a string IT representing a membership proof; M can query any bit of I1. Call M an
(r(n), g(n))-restricted verifier if, on an input of size n, it is allowed to use at most r(n)
random bits for its computation, and query at most g(n) bits of the proof.

A language L is in PCP(r(n), q(n)) if there exists an (r(n), g(n))-restricted verifier
M such that for every 1ﬁpUl X:

(1) If xeL, there is a proof I, which causes M to accept for every random string,
ie., with probability 1.

(2) If x¢ L, then for all proofs II, the probability over random strings of length r(n)
that M using proof IT accepts is bounded by %

Notice that the role of IT is identical to the role of the oracle O in our definition
of probabilistic oracle machines. Thus combining Theorem 3.1 with the fact that
any multiple-prover interactive proof system has an equivalent system that accepts

with probabxhty one for strings in the language [6,21] we have the following

_______ Q R\

On the power of multi-prover interactive protocols 551

Thus Babai et al. [4] show that NEXP=| J,. ,PCP(n* n*). Arora et al. [1] show
that NP=|{ J., ,PCP(clog(n), c).

4. Nondeterministic exponential time suffices

In this section, we show an upper bound on the complexity of multiple prover
interactive proof systems.

Theorem 4.1. If there exists a multiple prover interactive proof system accepting a lan-
guage L then L can be computed in nondeterministic exponential time.

By nondeterministic exponential time, we mean Uk>0NTIME [27].

Proof. By Theorem 3.1, we can assume there exists a probabilistic oracle machine
M accepting L with M using time n* on inputs of length n for some k>0. We create
a nondeterministic exponential time machine to accept L as follows: On input x of
length n, guess the value of the oracle O on all questions of length at most n*. Note
M(x) can only ask oracle questions of length no longer than n*. There are exactly
2"“*1_1 such questions. For r a string of length n*, let f(x, 0,r)=1 if M on input
x accepts using random coin tosses r and getting the oracle answers from O and
f(x, 0, r)=0 otherwise. Compute

S= Y fix,0,r).
ref0, 13™
Accept if §>2"/2.
By the definition of probabilistic oracle machines, for xe L there exists a setting of
the oracle such that S>(1—2"")2" If x¢L then for any setting of the oracle,
§<27"2" This proves the correctness of the computation above. [J

Babai et al. [4] have shown that any language computable in nondeterministic
exponential time has a multiple prover interactive proof system. Thus we have an
equivalence of the class of languages provable by multiple prover proof systems and
those computable in nondeterministic exponential time.

Note Theorem 4.1 does not show that any language L with a multiple prover proof
system can be proven with provers of nondeterministic exponential time complexity.
The provers must actually find the nondeterministic guesses that would make the
nondeterministic exponential time machine accept. This would require the second
level of the exponential time hierarchy to determine, say, the lexicographically first
such series of nondeterministic guesses. We do not know whether they can be
improved to have nondeterministic exponential time complexity. Babai et al. [4] show
any language in deterministic exponential time requires only deterministic exponen-
tial time provers.

552 L. Fortnow et al.
5. Relativized limits on multiple provers

The result of Babai et al. [4] that shows all languages computable in nondeterminis-
tic exponential time have multiple prover interactive proof systems does not relativize,
i.e., their proof does not imply that given any oracle A, nondeterministic exponential
time with access to oracle 4 has a multiple prover interactive proof with the provers
and verifiers also having access to oracle A. We show that any proof of this result
cannot relativize:

Theorem 5.1. There exists an oracle A and a language Leco-NP* such that Lé MIP4,

Theorem 5.1 extends a result by Fortnow and Sipser [20] that shows the existence
of an oracle relative to which co-NP does not have single prover interactive proofs.

Proof. In this proof we will use the oracle machine model. It is easy to verify that the
proof of Theorem 3.1 holds under relativizations to all oracles. Note that our machin-
es can ask questions about two oracles, the “prover” oracle O and the “relativization”
oracle A.
We can enumerate all possible probabilistic polynomial-time machines in the
standard manner, letting M; be bounded in time by n’, where n is the size of the input.
For any oracle A, let

L(A)={1" A contains all strings of length n}.

It is clear that L(A)eco-NP“ for all oracles A.

In step i we make L(A) different than any language accepted by oracle machine
M# using any prover oracle 0. Then L(A) cannot have a multi-prover interactive
protocol and we have proved our theorem.

This idea is as follows: If 1"e L(M4) then M“(1") must accept with probability at
least 1 —27" If 1"¢ L(M“) then M “(1") accepts with probability at most 27". We will
pick a length n and a string x of length n such that whether xeA will determine
whether 1" L(A) but whether xe 4 will only affect the probability of whether M 4(1")
accepts by less than 3. This will allow us to diagonalize against M*.

Step i: Pick N; large enough so 2% > 2(N;)' and no oracle questions to 4 of length
N; have been asked in any previous step. Let p;=(N;)".

Define a machine M that simulates M {! using a built-in table of the finite locations
where A has already been defined. When M queries a string from 4, M will either
answer correctly if that string has been previously set otherwise M ; will answer yes to
that oracle question.

If there are not any oracles O such that O and M/ accept on input 1 with
probability at least 1—27" then we put in the oracle A all strings of length N; and
every other previously unset string that M# asks about for any oracle O. This
completes step i. Note that M 4 can only ask questions of length less than p; so we will
always be able to find N;,, in step i+ 1.

On the power of multi-prover interactive protocols 553

Otherwise we have some oracle O such that O and M| will accept 1% with
probability at least 1 —27" On any computation path (which is determined by M ;s
coin tosses), M { can ask at most p; oracle questions to 4 of length N;. There are 2"
questions of length N;. A counting argument shows that there is some oracle question
x of length N; that appears in no more than p;/2¥ ratio of the computation paths of
M{. By the way we chose N; this means the oracle question x appears in less than one
half of the computation paths of M. Put all strings of length N; except for x in the
oracle A. Also place in the oracle 4 every string queried of any other length by M# on

avary nacgihle communicatian with osvary nacgihla £} Tha aracle) unll canvinea
Cvery POSSioiC CoOmmunicalion wiul Svery possioie U, 118 Orddi® U wiu COnvince

M3 to accept with probability greater than 27" since more than a hall of the
computation paths act the same as the corresponding paths of M.

If there exists an oracle O that makes M accept 1V with probability greater than
1—27" then L(A) does not contain 1. Conversely, if no oracles exist that cause
M # to accept with probability at least 2~" then L(A4) does contain 1%, By the standard
diagonalization argument L(4) does not equal the language accepted by M¢ for
anyj [

This resuit implies the earlier result of Fortnow and Sipser [20] since the language
L{A) does not have one-prover interactive proof systems under the oracle 4.

Tha vraciilt AfDRalai at al TAT vag 11q etrang avidanas thaot thara avig langiiaong nat

1 1nc résuit 01 paovai €t ai. L'?J 51 V\ab ud sl Ulls DVlUbllb\o lllal lllbl(r bAlDl. 1ausua5bb ot

computable in polynomial space that have multiple prover interactive proof systems

since most theoretical computer scientists believe polynomial space is not sufficient to

accept all languages computable in nondeterministic exponential time. However, an

oracle to separate MIP and PSPACE would imply a major separation result.

Theorem 5.2. If there exists an oracle A such that PSPACE“ does not contain MIP4
then there exist languages in NP that cannot be computed in poly-log space.

Proof. Assume that every language in NP can be accepted in poly-log space. Let A be

any oracle and L be a language in MIP“ accepted by a verifier that runs in time n*.

From the proof of Theorem 4.1 we know that L is accepted by a nondeterministic

exponential-time oracle machine M (x) that only looks at the oracle queries of A of
y &4

langth
1ICHELR

nn larogan P [PN { LA
11V lalgel uilall JA . Lol 1V _y) WIlICiT

y=(x, b;bob1boobo;s ... b11 .. 1)
\w_/

| x*

as the machine that simulates M (x) using bit b, as the answer to oracle query z. Since
| y|=Q(2"‘|k), M’ runs in nondeterministic polynomial time in the length of y. Thus
L(M’")eNP and thus by assumption there exists a polylog space machine N(y) that
accepts L(M'). We create a new machine N'(x) using oracle 4 that works as follows:
Simulate N(y) (without creating y) and whenever N asks about bit b, use A(z). It’s easy

554 L. Fortnow et al.

to see that L(N')=L and we can simulate N’ in polynomial (in | x|) space with access
to the oracle A. [

6. Bounded round protocols

In an earlier version of this paper [19], we claimed two resuits about collapsing
rounds in multi-prover proof systems: Every language provable by a single-prover
int tive proof system has a two-prover protocol using only one round and every
language provable by a multi-prover proof system has a three-prover protocol using
only two rounds. Unfortunately, we have since discovered an error in the “proof” of
these statements. Our arguments required that we can somehow decrease the error
probability of certain protocols by running them in parallel. We assumed that if the
provers can be prevented from communicating among themselves through the proto-
col then parallel runs of the protocol work independently like parallel runs of one
prover interactive protocols [5]. Unfortunately, this assumption is fallacious.

As mentioned in section 2, results of Cai, Condon, Lipton, Feige, Lovasz, Lapidot
and Shamir [10-13, 15, 267 show that we can create a two-prover one-round protocol
with exponentially small error equivalent to any multi-prover protocol. However, the
proofs work by looking at special properties of the Babai-Fortnow-Lund [4] proto-
col instead of showing how to parallelize general multi-prover protocols.

We show the parallelization assumption faulty in even a simple case with the
following counterexample. This example first appeared in [18].

Suppose we have the following two-prover protocol:

V: Pick two bits a and b uniformly and independently at random.

V—oPi:a

It is easy to show the best strategy for two provers causes the verifier to accept with
probability 3. Notice neither prover has any notion of what bit the verifier has sent to
the other prover.

Now let us examine the two-rot
V: Pick bits a,, a, and by, b, uniformly and independently at random.
V—‘)Pl tay, Ads

1 94 D .1 1

V—=I,5.04,0;

On the power of multi-prover interactive protocols 555

Pl‘*V:Cl,CZ
PZ—)V:dl, dz
V: Accept if (a; Ve)#(by Vdy) and (a; V ¢,y)#(by V d;y).

If the parallel runs of the protocol behave independently we would expect the
ontimum strategy for the provers causes the verifier to accept with nrobabili Lfy (%}2 =—‘1.;_

Cp sl sliailey 01T % [1880 [R8 Jr- 180 1A Proballl

However the following strategy for the provers causes the verifier to accept with
probability 2

Pi:If a;=a,=0 respond ¢, =c, =0 otherwise respond ¢; =¢,=1.
P,: If by =b,=0 respond d; =d, =0 otherwise respond d; =d,=1.

Note in n rounds the probability of acceptance of this protocol cannot exceed (3)"
since the verifier will not accept if a;=b;=1 for any i. We cannot find any counter-
example without this type of exponential decrease. However we have not been able to
prove any such decrease in a general setting.

7. Further research

There still remain many open questions including:

e What effect does running protocols in parallel have? In particular, if a protocol is
run in parallel for m rounds, is the error necessarily exponentially small in m?

o A public-coin interactive proof system can accept any language accepted by
a interactive proof system [24]. What can we say about public-coin multi-prover
interactive proof systems? How do we even define public-coin proof systems for
multiple provers?

e Do there exists multiple prover interactive proof systems for proving co-NP

ISP Spapvey -I.. v tha rove wmand ~nle amoigran NI ~srnctinmee? A sanoitiva oo

qucauuﬁa WiCIT tnc lJlUVCID 11Ieed Uuly alnpwel 1‘1 qucauuua 1"\ PUDILIVC ICbulL

would imply an instance checker for NP-complete problems.
Acknowledgment

We would like to thank Yishay Mansour for his help with Theorem 5.2. We would
also like to thank the anonymous referees for their various helpful suggestions.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof verification and hardness of
approximation problems, in: Proc. 33rd IEEE Symposium on Foundations of Computer Science (IEEE,

New York, 1992) 14-23.

556

(21
(3]
[4]
£s]
fel

L. Fortnow et al.

S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, in: Proc. 33rd
[EEE Symposium on Foundations of Computer Science (IEEE, New York, 1992) 2-13,

L. Babai, Trading group theory for randomness, in: Proc. 17th ACM Symposium on the Theory of
Computing (ACM, New York, 1985) 421-429,

L. Babai, L. Fortnow and C. Lund, Non-deterministic exponential time has two-prover interactive
protocols, Computational Complexity 1(1) (1991) 3-40.

L. Babai and 8. Moran, Arthur-Merlin games: A randomized proof system, and a hierarchy of
complexity classes, J. Comput. System Sci. 36(2) (1988) 254-276.

M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson, Multi-prover interactive proofs: How to
remove intractability assumptions, in: Proc. 20th ACM Symposium on the Theory of Computing (ACM,
New York, 1988) 113-131.

M. Blum and S. Kannan, Designing programs that check their work, in: Proc. 21st ACM Symposium
on the Theory of Computing (ACM, New York, 1989) 86-97.

M. Blum, M. Luby and R. Rubinfeld, Self-testing and self-correcting programs, with applications to

Yot Ehid

numerical programs, in: Proc. 22nd ACM Symposium on the Theory of Computing (ACM, New York,
1990) 73-83.
R. Boppana, J. Héstad and 8. Zachos, Does co-NP have short interactive proofs? Inform. Process

an
Lert. 25(2) (1987) 127-132.
J. Cai, A. Condon and R. Lipton, On bounded round multi-prover interactive proof systems, in: Proc.
Sth IEEE Structure in Complexity Theory Conference (IEEE, New York, 1990) 45-54.
J. Cai, A. Condon and R. Lipton, PSPACE is provable by two provers in one round, in: Proc. 6th
IEEE Structure in Complexity Theory Conference (IEEE, New York, 1991) 110-115.
J.

oA i1

Ldl A, bUIlUUIl dllu l\ Llpl.UIl UIl gdmcs o1 iIlbU[llplClC lIllUIH]dllUll l neurm L Umpu[D(,l n3\l)
(1992) 25-38.
U. Feige, On the success probability of the two provers in one round proof systems, in: Proc. 6th IEEE
Structure in Compiexity Theory Conference (IEEE, New York, 1991) 116-~123.
U. Feige, S. Goldwasser, L. Lovasz, S. Safra and M. Szegedy, Approximating clique is almost
NP-complete, in: Proc. 32nd IEEE Symposium on Foundations of Computer Science (IEEE, New York,
1991) 2-12.
U. Feige and L. Lovasz, Two-prover one-round proof systems: Their power and their problems, in:
Proc. 24th ACM Symposium on the Theory of Computing (ACM, New York, 1992) 733-744.
P. Feldman and S. Micali, From scratch to byzantine agreement in constant expected time, in: Proc.
20th ACM Symposium on the Theory of Computing (ACM, New York, 1988) 148-161.
L. Fortnow, The complexity of perfect zero-knowledge, in: S. Micali, ed., Randomness and Computa-
tion, Vol. S Advances in Computing Research (JAI Press, Greenwich, 1989) 327-343.
L. Fortnow, Complexity-theoretic aspects of interactive proof systems, Ph.D. thesis, Massachusetts
Institute of Technology, May 1989, Tech Report MIT/LCS/TR-447.
L. Fortnow, J. Rompel and M. Sipser, On the power of multi-prover interactive protocols, in: Proc.
3rd IEEE Structure in Complexity Theory Conference (IEEE, New York, 1988) 156-161.

1 L. Fortnow and M. Sipser, Are there interactive protocols for co-NP languages? Inform. Process. Lett.

28 (1988) 249-251.
M. Furer, O. Goldreich, Y. Mansour, M. Sipser and S. Zachos, On completeness and soundness in

interactive nrnnf systems, in: S. Micali ed., Randomness and Computation Vol, 5 Advances in

aclly sigms, 11call, ed, LANaomne. ang Lomputal N 1 14v

Computing Research (JAI Press, Greenwich, 1989) 429-442.
O. Goldreich, S. Micali and A. Wigderson, Proofs that yield nothing but their validity or all languages

in ND have zarag-knaowledos nroof gystems. J ACM 28N {1001\ 6£01-729,

in NP have zero-knowledge proof systems, J. ACM 38(3) (1991) 691
S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of interactive proof-systems,
SIAM J. Comput. 18(1) (1989) 186-208.

C MaAldincone e d RA Qlemcan DPhelindba nolec vangiie sass Li: A P sa smmnnf cvctaran tne

(> N \JUIUW‘\bbCl auu lVl oxpacx, rllVﬂlC bUlllb YULOUD puuu\. COINns lll illlcla\, vE PIUUA D_yht(/lllb, lll
S. Micali, ed., Randomness and Computation, Vol. 5, Advances in Computing Research (JA1 Press,
Greenwich, 1989) 73-90. Ve Y

J. Kilian, Uses of Rundomness in Algorithms and Protocols, ACM Disti
Press, Cambridge, MA, 1990).
D. Lapidot and A. Shamir, Fully parallelized multi prover protocols for NEXP-time, in: Proc. 32nd

IERL oymposlum on Foundations 0] u)mpuler Science (i\CEL, New York, 199‘1) 13-18.

1
PSRN MI
guiscu UlbbCl ldllUll {ivl

On the power of multi-prover interactive protocols 557

[27] C. Lund, L. Fortnow, H. Karloff and N. Nisan, Algebraic methods for interactive proof systems,
J. ACM 39(4) (1992) 859-868.

[28] C. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes,
J. Comput. System Sci. 43 (1991) 425-440.

[29] A. Shamir, IP=PSPACE, J. ACM 39(4) (1992) 869-877.

