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Abstract

We characterize the power of two-prover one-round

(MI’P(2, 1)) proof systems, showing that M1P(2, 1) =

NEXPTIME. However, the following intriguing

question remains open: Does parallel repetition de-

crease the error probability y of MlP(2, 1) proof sys-
tems?

We use techniques based on quadratic program-

ming to study this problem, and prove the parallel

repetition conjecture in some special cases. Interest-

ingly, our work leads to a general polynomial time

heuristic for any NP-problem. We prove the effec-

tiveness of this heuristic for several problems, such as

computing the chromatic number of perfect graphs.

1

1.1

Introduction

The Power of A41P(2, 1)

In a multiple-prover interactive proof system, several

computationally unbounded provers, PI, Pz, . . . . try

to convince a probabilistic polynomial time verifier

V that a common input z belongs to a language L

[5]. The verifier follows a prespecified protocol which

proceeds in rounds. In each round, the verifier sends

to each prover in private a polynomial size query

and receives a polynomial size answer. Each prover
is restricted to seeing only the queries addressed to
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him, without the ability to communicate with other

provers. When the protocol ends, the verifier evalu-

ates a polynomial time predicate on his coin tosses

and on the messages exchanged and decides whether

to accept or reject.

Definition 1.1 A k-prover r-round protocol is an

MIP(k,r) proof system \or language L ij;

1. Completeness:

VZ < L 2(P1, . . . . Pk) s.t. (V, P1, . . . . Pk) accepts z.

2. Soundness:

~Z f! L VP1, . . . . Pk

Prob((V, Pl, . . . . Pk) accepts z) < 2-n.

(n denotes the length of the input s.)

Babai, Fortnow and Lund established that

MIF’(2, ~0/~(7t)) = NEXPTIME.

(MIP(po/y(n),po/IJ(Tz)) c NEXPTIME is simple,

see [21].)

Fortnow, Rompel and Sipser [13] initiated the char-

acterization of one round protocols. They claimed

that MIP(l, poly(n)) c MIP(2, 1). However,

Fortnow [12] demonstrated that parallel repetition

of MIP(2,1) protocols does not decrease the er-

ror probability in the same way as sequential rep-
etition (or parallel repetition of MIP(l,l) proto-

cols), invalidating [13]’s proof. A correct proof of

MIP(l, poly(n)) c MIP(2, 1) was eventually given

by Cai, Condon and Lipton ([7], [9]). Kllian [19]

proved that M1P(2, poly(n)) has two-prover two-

round proof systems with constant error probability,

and Feige [10] proved that M1P(2, poly(n)) has two-

prover one-round proof systems with constant error
probability. However, in view of our failure to anal-

yse parallel repetition of protocols, it was not known

how to obtain exponentially small error probability

in M1P(2, 1) proof systems.
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Recent work of Lapidot and Shamir [16] is the key

to solving this question. They introduce the con-

cept of a “quasi-oracle”, and use it to prove that

NEXPTIME c MIP(4, 1). Using the same con-
cept (our Lemma 2.7 is based on Lemma 2 in [16]),

we establish:

Theorem 1.2 NEXPTIME = MIP(2, 1).

Unlike [9]’s kf1P(2, 1) protocol for PSPACE (which

uses the particular structure of [22]’s protocol) and

[16]’s i141P(4, 1) protocol for NEXPTIME (which

uses the particular structure of the [3] protocol), our

&f1P(2, 1) protocol treats BFL’s protocol for NEX-

PTIME as a blackbox.

1.2 The Parallel Repetition Conjec-

ture

Our exact characterization of iW1P(2, 1) is obtained

without resolving the deceptive question of parallel

repetition of ikf1P(2, 1). In fact, even though our

NEXPTIME protocol has exponentially small error

probability, we do not know whether parallel repeti-

tion decreases its error probability further.

The second part of our paper suggests a new ap-

proach in studying this difficult problem. As in

[8, 10], we model this problem as a problem on games.

(The reader may view this as proofs of membership

for the empty language).

Let S and T be finite sets. Let T be a probability

distribution over S x T. Let V be a predicate. Then

G = G(V, m) is the following two person cooperative
game of incomplete information: A pair of messages

(s, t) c 5’ x T is chosen at random according to prob-

ability distribution z. The message s is sent to one

player (which we call Left) and t is sent to the other

player (Right). A strategy of a player is a function

from messages to replies. The players’ objective is to

choose strategies PI and Pz which maximize the prob-

ability (over z) that V(s, t, PI(s), P2(t)) = 1. Let the

value of a game G, denoted by w(G), be the probabil-

ity of success of the players’ optimal strategy in the

game G. A game G is trivial if w(G) = 1. Otherwise

it is nontrivial.

If the probability distribution T of the verifier’s

question is a product distribution, T = T, x 2rf, where

m~ is the distribution of questions to Left player and
~t is a distribution of questions to Right player, then

we say that G is a no-information game. 1 (By receiv-

ing a question, a player does not gain any information

about which question the other player received). Oth-

erwise, the game is said to be of partial information.

1‘This is ~ssentially [8]’s notion of ~Tee games.

341P(2, 1) proof systems can be modeled as farni-

Iies of games (indexed by the input x), where each

player corresponds to a prover. If z 6 L, then

W(G=) = 1, whereas if z ~ L, then W(G=) < 1. By

playing the game of incomplete information, the ver-

ifier can gather statistical evidence to the claim that

z 6 L. The smaller W(G=) is in cases z g L, the

higher the confidence of the verifier that he is not

mistakenly accepting a false input.

Parallel repetition of i141P(2, 1) protocols was sug-

gested in [13] as a means of decreasing the error prob-

ability. In our games terminology, thk corresponds

to a product game G“. That is, G is carried out n

times in parallel, the predicate V is evaluated inde-

pendently on each of the n coordinates, and the play-
ers succeed whenever all n evaluations are ‘1’. If the

n copies of G are played sequentially, the probabHity
of winning all n games is (w(G))n (thk can be proven

by induction on n). It was erroneously claimed by

Fortnow, Rompel and Sipser [13] that this is also the

case for parallel execution. However, Fortnow [12]

later constructed an example of a game for which

w(G” ) > (w(G))n (see Section 3).

Let the amortized value of a game G, denoted as

u(G), be sup&( (w(G~ ))l/& ). We address the following

parallel repetition conjecture:

Parallel repetition reduces the value of nontrivial

games in an exponential rate, Formally, w(G) < 1

implies u(G) <1.

Previous results on the parallel repetition

conjecture: Cai, Condon and Lipton [8] proved

the parallel repetition conjecture for no-information

games. The actual bounds that [8] obtained for u(G)

were greatly improved in [15, 20, 10, 2], and there still

is room for further improvements. [8] also claimed to

have proved the conjecture for arbitrary games (i.e.,

partial information games).

Our results: We construct an explicit example

that falsifies [8]’s proof for the partial information

case .2 We then study an alternative approach of prov-

ing the conjecture, motivated by an approach used to

study the Shannon Capacity of graphs [17]. Thk ap-

proach is based on quadratic programming. We de-

rive our quadratic bound, denoted by 6(G), which is

an upper bound on the amortized value of games.

Theorem 1.3 For any game G, c2(G) s 6(G) ~ 1.

We use the quadratic bound to prove the paral-

lel repetition conjecture for certain classes of games.
Previously, the parallel repetition conjecture was not

proved even for a single game of partial information.

zThe authors of [8] admitted their error before seeing this

explicit example.
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1.3 Algorithmic Implications of the

Quadratic Bound

Proposition 1.4 1. NP decision problems have nat-

ural representations as games, where triviality of

the game corresponds to membership in the NP

language.

2. The quadratic bound is computable in polynomial

time, via the ellipsoid method.

The above proposition suggests a hueristic for tack-

ling any NP problem: Represent the input instance

x as a game G=, and compute its quadratic bound.

If 6(G= ) < 1, conclude that z is not in the NP-

language. Obviously, one would expect that ti(G) = 1

at least for some of the no instances, as otherwise

P= NP. Moreover, by the first part of our paper

(I141P(2, 1) = NEXPZ’IME), we expect 5(G) = 1

even for games with w(G) which is arbitrarily close

to O, unless NEXPTIME = EXPTIME.

We characterize some of the languages for which

the above heuristic never errs. It turns out that com-

put ationally simple graph properties, such as con-

nectivit y and two- CO1Orabilit y, are always recognized

by our procedure. Perhaps more surprisingly, also

some complex graph properties, such as the chromatic

number of perfect graphs, are always computed cor-

rectly by our procedure.

2 ~IP(2, 1) = NEXPTIME

In [10] it was observed that [3]’s proof system for

NEXPTIME is nonadaptive (i.e., the verifier can pre-

pare all his questions based only on his coin tosses,

and not on the provers’ previous answers), and thus

it can be carried out by polynomially many provers in

one round. Thus to prove Theorem 1.2, it is sufficient

to prove the following:

Theorem 2.5 lj L 6 MIP(polY(n), 1), then L e

MIP(2, 1).

Proof. Consider any MIP(poly(n),l ) proof system.

By doubling the number of provers, we can decrease

the error probability to 2-2”. So our starting point is

(w PI, . . . . Pm ), a MIP(m,l) proof system with 2-2’

one sided error probability, where m < n=, for some

constant c. W! t;ans$orm it into a new MIP(2,1)

proof system (V, PI, Pz) (with 2-’ one sided error

probability y).

In the new protocol, V executes all of the original

protocol in one step with ~1. V sends the rn queries

Q = (m,..., q~), P1 replies with (u1, -t G) Of his

choice, and ~ checks that V would have accepted the

conversation (ql, al; 92, az; . . . . qm, am).

The obvious problem in this approach is that for
any j, P1’s answer to qj may depend on the whole

vector Q, unlike the case we are trying to simulate,

in which each prover does not see the messages re-

ceived by other provers. In order to solve this prob-

lem, V performs a consistency check involving ~2,

which forces P1 to display functional behavio~ For

any coordinate of the tuple of queries, ~1’s reply to

any query is a function of the query itself, but inde-

pendent of the queries on other coordinates.

Let 1 denote an upper bound on the length of any

single message that is exchanged in the original pro-

tocol (V, PI, . . . . Pm). Let k = maz(l, n, log(4m)). V

chooses a large arbitrary prime IV, where IV > 29k.

(To choose IV, V may use a probabilist~c algorithm,

and in the extremely unlikely case that V fails to find

such a prime, he accepts the protocol outright). All

subsequent computations are performed over the fi-

nite field ZN.

We now describe the consistency check on an arbi-

trary coordinate j. V performs this check indepen-

dently (but in parallel) on each of the m queries sent

to PI. In square brackets we denote what the good

provers should do in order to successfully follow the

protocol. We remark that a very similar construction,

was already used in [19].

[View each of them original provers as a function

from {O, 1}1 (the queries g) to ZN (the answers a).
For a function gj, representing the optimal strategy

of Pj, break the 1 lit arguments into 1 variables U1,
u2, .,., Ul, and consider ~j(al, U2, .... ul), the unique

muIti-finear represent at ion of gj over Z~. Formd.1 y,

let Q(u1, U2, .... UI ) be the I-bit binary string (query

q) obtained by concatenating Ul E {0, 1}, uz E {0, 1},
.... Ur c {O, 1}. Let s(u) be a shorthand representa-

tion which means a when u = 1, and 1 – u when

u = O. Then

1

jj = E gj(Q(ul, w27 ..., w)) ~ S(uj)

lJl, $$2,...,*l G{o,l} j=l

~j is a multinornial which is linear in each one of

its variables. ]

In addition to the query qj, V chooses a point Yj

(# qj) uniformly at random from {[0, IV - 1]}’. Let
L(gj, Yj ) denote the line joining qj and yj. To fix a
canonical representation of lines, let ~j be the lexico-
graphically first value such that any point on L(qj, ~j)

can be represented as qj + tzj, for O ~ t < ~. (xj can

be computed in polynomial time from q~ and ~j.) v

sends qj and xj to P1, and yj to P2. PI is requested
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to reply with an 1 degree polynomial F’(t).

[P(t) agrees with the values of ~j for any value of
t.]

V extracts g(gj ) = P(O) for use in the simulation

of the original protocol.

[~z has to reply with dj(~j).]

V checks that P2’s answer agrees with P(t), for t
satisfying qj + iZj = ~j.

The conaplet eness property of (~, PI, ~z) follows

from the c~mpleten~ss of the original iWIP(m, 1) pro-

tocol. If F’l and P2 follow the strategy outlined in

square brackets, ~ accepts whenever V would accept

the m-prover protocol.

The proof of soundness is more involved, since

cheating provers might not follow the strategy out-

lined in square brackets, and then there is no di-

rect correspondence between executions of the orig-

inal m-prover protocol and the new two-prover pro-

tocol. We highlight a property of the transformation

which plays an important role in the proof of sound-

ness.

LOW degree polynomials: PI’s answer to qj and

P2’s answer to yj have to be related by a low degree

polynomial. Since two different l-degree polynomi-

als agree on at most I points, different answers to

the same (qj, ~j ) induce dHferent values for almost

all arguments 7Jj. Thus P2 cannot adapt himself to

inconsistent behavior on the part of ~1.

We now give a detailed proof of soundness:

Fix the optimal strategies for ~1 and P2. With any

tuple of queries Y = (yl, .... ym ) to Pz we associate

m functions (~1, .,., ~m ), each operating on a single

coordinate of the tuple (gl, .. .. gn ). Each function $j

is defined in the following way: ~J (v) is the most suc-

cessful contents of the jth coordinate in PI’s reply

tO (91, .... qj-lt ~t 9j+lt . . . . qm), where the probability
is taken over the distribution of the vectors Q, con-

ditioned on v being the jih coordinate and on the

prespecified value of Y. (Note that once Q and Y are
specified, the vector X, specifying the choice of lines

through Q, is uniquely determined, and thus there is

no need to consider X in computing the probability.)

In determining which reply is most successful, wet ake
the reply with the highest record of successfully psss-

ing the consistency check against yj, ignoring failures,

and breaking ties arbitrarily.

Definition 2.6 For a tuple (yl, . . . . yin), prover pl

displays functional behavior on gj = v, if the event

that P1 replies differently than fj(v) and still passes

the consistency check has probability at most 2-2~

(over the other queries to PI).

W.1.o.g., we consider the first coordinate of Q.

Consider any value v for gl. We shti prove that
almost any query sequence (y~, .... ym ) to Pz in-

duces functional behavior. In fact, we prove an even
stronger condition:

Lemma 2.7 For any v, for any values Of (Y2, . . . . yin),

for any line L through v, for all but at most a 2-3k -

fraction of the points yl c L, the prover PI displays

functional behavior. (Note that lines through v are

disjoint and cover all of Z~.)

Proof. Assume the contrary and consider the follow-

ing experiment: Select a random value for yl (from

L\ {v}) and two random and independent sequences,

Q1 and Q2, each according to the probability distri-
bution induced by the condition that gl = V. con-

sider the event E that PI’s reply on v in the two

cases differ, but the consistency check against yl is

passed successfully (in both cases). We analyse the
probability of E in two different ways, reaching a con-

tradiction and proving the lemma.

Pick yl at random. By our assumption, with prob-

‘3k the resulting Y does notability greater than 2

induce functional behavior. Not having functions,l

behavior, combined with the fact that 1 is a bound

on the reply size, implies that the probability of ~1’s

most likely answer is at least 2-2k 2-1 ~ 2-3k. Now

if two query sequences to PI are completed indepen-

dently at random, the probability that PI successfully

gives the most successful answer for v on Q1 is at least

2-3k, and the probability that PI successfully gives a

different answer for v on Q2 is at least 2–2k. This

gives a lower bound of 2-8k on the probability of E.

Alternatively, pick Q1 and Q2 at random, and as-.
sume that P1 gives two conflicting answers for v.

Since these answers are accompanied by 1degree poly-

nomials through v, they can lead to simultaneous suc-

cesses on at most 1 values of yl. Our choice of J/

implies that Prob(E) ~ 12-9k, leading to a contra-

diction. 1

Lemma 2.8 The fraction of Y tuples which induce

functional behavior for any possible query on any pos-

sible coordinate of Q is at least 1 – m2-2k.

Proof. There are m coordinates and 1 bits in a query,
implying at most m2~ different cases to take care of.

Now the proof follows from Lemma 2.7. m

We are ready to complete the proof of Theo-

rem 2.5. Assume that z @ L but the protocol

(v, Pl, F2)(z) succeeds with probability greater than

2-”. On at least 2-(’+1) of the choices of Y the proto-
col (~, ~1, ~2)(z) succeeds with probability 2-(n+l).
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From Lemma 2.8 it follows that at least one of these

Ys induces functional behavior (~1, .... .fm ). Use these

functions as the strategies for (F’l, ,.., Pm ) in the orig-

inal MIP(m, 1) protocol. The probalil.it y of success is

now at least 2-(m+l) — m2-2k ~ 2- fn+2). This con-
trrdcts our assumption that th~ error probability

at most 2-2” (for n > 2).

3 Counter-Intuitive Effects

is

m

Cai, Condon and Lipton [8] proved the parallel repe-
tition conjecture for games of no-information. Then

they argued that any nontrivial game G of partizl

information can be extended to a game G of no infor-

mation, such that w(G) < w(~) < 1 (this argument

is correct). Then they claimed the parallel repetition

conjecture for games of partial information (Theo-

rem 2.2 in [8]), by implicitly sssuming that for any

k, w(G~ ) < w(G~ ). We present a counter exam-

ple to this assumption. Our example is a variation

on Fortnow’s example wKlch first demonstrated that

W(G2) = (W(G))2 does not always hold [12].

Protocol F’: We describe the game F(V, m). S =

T = {O, 1}. m is uniform over (O, O), (O, 1), and (1, O)

(excluding the pair of queries (1, l)). On any query,

each player must answer either O or 1. V is satisfied

iff (s V PI(s)) + (t V ~z(t)).

Proposition 3.9 w(F) = w(~)= 2/3.

Proof. We present only the players’ strategy on ~.

Both players follow the same strategy: If a player

receives (O; O), he replies with (O; O). Otherwise he

replies with (1; 1). 9

Remark: The first example of a game satisfying

w(G) = W(G2), the noninteractive agreement proto-

co~ was presented and analysed in [10].

J’ is a game of partial information. We use the

procedure described in [8] to extend it to a game F

of no information. This is done by making T uniform

over S x T (allowing the pair of queries (lA, l)), but

modifying the acceptance condition to V(F) = (s A
f) V ((s V ~1($)) # (t V l’2(i))), giving the players

automatic success whenever (1, 1) is asked.

Proposition 3.10 w(~) = 3/4. w(@)= 10/16.

Proof. The lower bound on w(~2) follows from the

following strategy: Each player always replies (O; O),
except for the following two cases: l’1 ((O; O)) = (O; 1)

and 15((O; O)) = (1; O). The upper bound on w(~2)

requires detailed case analysis, and is omitted. H

Since ~ is [8]’s notion of a no information extension

of the partial information game F, then the combi-

nation of Propositions 3.9 and 3.10 falsifies the proof

of Theorem 2.2 in [8].

4 The Quadratic Programming

Bound

Previously, there was not even a single game of partial

information (in contrast to no information) for w~lch

a nontrivial upper bound on its amortized value was

known. We proceed to give such bounds, showing in

particular that Q(F) < I.

Consider a game G(V, x). We can formulate the

problem of finding the best strategy for the provers

m a quadratic program as follows. Recall that S and

T are the sets of possible questions to the Left and

Right prover and let U and W be the sets of answers

they can give. The strategy of the Left prover is a

mapping L : S ~ lJ, and it can be encoded in the

vector 1 = (1.*) c {o, 1} ‘x’, defined by

i
{

1, if the prover answers u to question s,
au =

O, otherwise.

The strategy R of the Right prover can be encoded

in a vector r = (r~W) similarly.

Represent the acceptance condition (V’s predicate)

as a matrix V = {v~.,ttu}, whose rows are indexed by
pairs su (s G S, u c U) and whose columns are in-

dexed by pairs tw (tG T, w c W). Let v,W,tW = 1 if

V(s, u, t, w) accepts, and O otherwise. Define the cost
matrix C = (C,W,,W), as c,~,tW = VSe,,W*,,~. Partition

C’ into submatrices of size IUl x IVI, indexed by pairs
d of questions, and every entry in the submatrix cor-

responding to d is either O or r~t. For Protocol F’,

the corresponding matrix 6’F i=

()

()$$$

LO O(-J

iooo

$000

Lemma 4.11 w(G) is the maximum of the follo wing

quadratic program:

Maximize

Tx Cy, (1)

Subject to

X20, Y20, (2)

~z..=l (jor all s ~ S). (3)

Scu

Xytw=l (Jor all tG T). (4)
Wcw
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Proof. Let (L, R) be an optimum strategy for the

provers, then x = 1 and y = r satisfy the constraints

in the lemma and

ZTCV = ~ u.,,wm,te.=,,w
S,t,it,w

So the maximum is the quadratic program is at least

w(G).

Conversely, consider an optimum solution of the

quadratic program (1) –(4). Fixing x, the program

is linear in y. Hence the optimum is attained at a

vertex of the feasible domain for y, which is trivially

a O-1 vector. Similarly, we may assume that z is a O-1

vector. But then the constraints imply that for every

s there is exactly one u with x$= = 1, i.e., z encodes

a strategy for the Left prover. Similarly, y encodes a

strategy for the Right prover. This pair of strategies

shows that w(G) is at least as large as the optimum

of the (l)-(4). m

In passing, we obtain the following corollary:

Corollary 4.12 If there is a polynomial time algo-

rithm that approximates the maximum of quadratic

programs to within some constant multiplicative fac-

tor, then EXPTIME = NEXPTIME.

Proof. Consider an arbitrary NEXPTIME language

L and an input z. By Theorem 1.2, there is a

two-prover one-round proof system such that the ac-

ceptance probability reflects membership of x in L.

By Lemma 4.11, this acceptance probability is the

maximum of a quadratic program with exponentially
many constraints. Applying the polynomial time

approximation algorithm to thk quadratic program

would give an exponential time decision procedure

for L. 1

For more details on the relation between interactive

proof systems and approximation problems see [11].

Lemma 4.11 and Corollary 4.12 were independently

discovered in [4].

Next we apply the method of “linearizing” this

quadratic program (see [6, 23, 18]).

Let us introduce a new variable p.g,*W for all s ~ S,

u ~ U, t c T and w g W. These variables will

“correspond” to the products X*8 ytW. We can arrange
these new variables as a matrix P = (p,.,~~), with

rows indexed by pairs su (s 6 S, u c U) and columns

indexed by pairs tw (t 6 T, w c W). So P is of the

same shape as C’ and has the same natural way of

partitioning into submatrices.

Unfortunately, generally we also have to introduce
.

new variables for products z~~z,~~~ and ytWy~lWl.

we consider the set J = (S XU)U(TX W) (this index~

the “old” variables; we assume that (S x U) and (T x

W) are disjoint, unless emphasized otherwise), and
introduce new variables pjh for all j, k c J. Each

new variable will correspond to the product of two

old variables. We can arrange the new variables in a

IJI x IJI matrix ~. There is a natural way to partition

P into submatrices, indexed by pairs d, where s, t c

S UT. We call these submatrices “blocks”. We also

“extend” C to the matrix

()
~=~ ~T: ,

which is of the same shape as P. We may denote the.
entries of 6’ dso by Cjk.

Consider the following optimization problem

Maximize

z Cjkpjk t
j,kc J

Subject to

(5)

P~o, (6)

E pjk = 1, ( for each block B,t), (7)

jkeB.,

P is symmetric, (8)

P is positive semidefinite. (9)

We can write the objective function as &’. P, where

“.” denotes the entry-wise inner product of two ma-

trices. Also we can write (7) as Q.t. P = 1, where Q,t

is the matrix that is 1 on block B,t and O elsewhere.

Also note that (9) can be viewed as an (infinite) fam-

ily of linear constraints, since it is equivalent to saying

that zT~z z O for all x c IRJ.
Every feasible O-1 solution of (1 )-(4) (representing

a strategy for the provers), defines a feasible solution

of (5)–(9) by taking the products of the variables,

and the objective value for this problem is the same.

This does not hold conversely. A feasible solution of

(6)-(9) is called a pseudostrategy for the provers. We

denote the optimum value of (5)-(9) by c(G), and
call it the guadratic bound on the game.

Since (5)-(9) defines a convex program with a lin-

ear objective function, it is natural to write up its

dual program. This turns out the following.
Minimize

(lo)

Subject to
.

AZ = (mjk ) is positive semidefinite. (11)
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Lemma 4.13 The optimum oj (10)-(11) is u(G).

Proof. Let a = u(G) and let (for this proof) a’ de-

note the optimum ~value of (10)-(11). Consider any

optimum solution P of (5)–(9), and any optimum so-

lution M of (10)-(11). Both of these matrices are

positive semidefinite, hence

P.itl>o.

‘s,tzUTj,~,,p’k(c’k ‘m”)

To show the converse, let z be a new variable and let

{< denot~ the convex cone in IRJX J x R, ~fined by

P ~ O, P positive semidefinite, and Q,t . P – z = O

(for all s, t 6 S U 2’). By the defnition of c, every

pair (P, z) satisfying these constraints also satisfies

az – C. P z O. This means that (–C’, a) is in the po-

lar cone of K. Now K was defined m the intersection

of cones (the non-negative cone, the positive semidef-.
inite cone, and the hyperplanes QS~ . P – z = O),

and hence its polar is generated by the polars of

these. Now the polar of the non-negative cone is it-

self, and the same holds for the positive semidefinite

con% the polar of QS# . P – z = O is the line spanned

by (Q,t, – 1). So we have a non-negative matrix N,

a positive semidefinite matrix ikf, and red numbers

w~~ such that

and

-u = x w*t.
#i

Now (4) is equivalent to saying that

and hence

Since the left-hand side is a feasible solution value for
(10)-(11), this shows that a’ <a. m

Our main motivation for introducing the quadratic

bound is to obtain an upper bound u’(G) on w(G)

which would satisfy

O’(G1 X Gz) < u’(G1)u’(Gz);

such an upper bound would then automatically be

also an upper bound on ti(G). The quadratic bound

c(G) introduced in the previous section does not have

this property: it is in fact supermultiplicative, i.e.

a(G1 x G2) ~ U(G1 )U(G2). To prove submultiplica-

tivity for some version of a, we want to be able to

“multiply” dual solutions.

So we consider the following relaxation of (5)-(9):
itfazirnize

(12)

Subject to

z lPs%twl s 1 ( for each s, t c S), (14)

U,WEU

~ lPs.,tuJ <1 ( for each s, tc T), (15)

*,WEW

P is symmetric, (16)

P is positive semidefinite. (17)

The relaxation consists of omitting about haJf of

(6) and (7), and modifying the rest of (7). We denote

by 5(G) the optimum value of thk program. It is

clear that 6(G) ~ a(G).

The dual of this optimization problem is

iMinimize

Subject to

,.
M = (mj~ ) is positive semidefinite, (19)

man,tw2 c~w,tw (20)

foralls 6S, t6T, u~U, w6W.

Equivalently, we can replace (20) by:

m.~,twS —h,tw (21)

since scaling the rows and columns corresponding to

the Left player by – 1 preserves positive semidefinite-

ness. We shall use these two forms interchangeably.
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If we scale the rows and columns of M correspond-

ing to the Left player by any positive J, and scale

those corresponding to the Right player by I/J, we

get another feasible solution of (19)-(20)). For the

optimum solution, this cannot improve the objective

function, and hence we see that every optimum solu-

tion must satisfy

Thus in (18), we could replace the sum by either

the maximum or twice the geometric mean of

two terms.

The optimum value of this program is also

(proof given in the full paper). It satisfies:

Lemma 4.14 For every game, ti(G) s 1.

twice

these

F(G)

Proof. Let c,t denote the maximum entry of ~ in

the block 13,f. Consider the following matrix Mo:

If we eliminate identical rows and columns from Mo,

we get a matrix in which the diagonaJ entry is the sum

of all other entries in each row. This implies that M.

is positive semidefinite. Moreover, M. satisfies (20)
trivially and the value of the objective function is 1. I

All these complications have been introduced to

allow the proof of the following lemma.

Lemma 4.15 For any two games,

6(G1 X Gz) = 5( G1)5(G2).

Proof. Let C’i be the cost matrix for game i. Then

the cost matrix of the product game is C = Cl o C’2,

and

Let Mi be an op~imunrn solution of (18)–(20) for game

i. Write M; = (~~ ~), where the rows and columns
.!

of Ai correspond “to the question-answer pairs of the
Left player, and consider the matrix

(A1OA2 DIOD2

)‘= D~oD~ B10B2 “

This is a submatrix of the Kronecker product Ml OMZ

in symmetric position, and hence it is symmetric and

positive semidefinite. Moreover, 2D1 o D2 ~ Cl o

Cz, so 2M satisfies (20) (the factor of 2 is needed to

compensate for the factor of 1/2 in the definition of

~). Let us determine the first term of the objective
function:

The other term in the objective function is the same,

hence

F(G1 X G2) < 5(G1)7(G2).

The opposite inequality follows by a similar argument

applied to the optimum primal solutions. H

This Lemma implies:

Theorem 4.16 For every game G, we have

For investigating the parallel repetition conjecture,

the crucial test is whether 6(G) = 1, or in our ter-

minology, whether the provers have a perfect pseu-

dostrategy. Luckily, the following lemma simplifies

matters:

Lemma 4.17 For any game, 5(G) = 1 i/ and only

if u(G) = 1.

Proof. The “if”. part is obvious. Assume that

6(G) = 1, and let P be an optimal solution of (12)–

(17). We may assume that every block B,$ in P is

diagon~ for if it has an entry p,,,,w which is non-

zero, then we can consider the matrix P’ defined by

{

—Psu,aw, if j =su, k=sw

orj=sw, k=su,

(~’)jk = IP,.,,wI, if j = k = su

orj=k=sw,

o, otherwise.
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This matrix is clearly positive semidefinite and hence

P + ~’ is an~ther ~ptimal solution of (12)-(17). We

can replace P by P + ~ and repeat until all diago-

nal blocks are themselves diagonal mat rices. Since P

is positive semidefinite, its diagonal entries are non-

negative. We may also assume that the sum of entries

in each diagonal block is exactly 1, since raising diag-

onal entries to achieve this only improves the solution.

Next, note that the matrix fio constructed in the

proof of lemma 4.14 is an optimal solution of the dual.

By the appropriate complementary slackness condl-

tion, this implies that

P.ilk)=o. (22)

Now notice that the matrix &f. can be written as

follows. Let, fors 6 S and t E T, the vector v,~ E IRJ

be defined by

{

1, if j = su for some u ~ U,

(’V~*)j = ~1, HJe==+wefor some W 6 TV,

?

(We choose the dual satisfying (21), and hence the

-1 term in the case j = tw). Then we have

Ml = ~ C$tvst d,

s6S,tET

and hence

Thus it follows from (22) that for everys, twith c.t >

0, we must have

Since ~ is positive semidefinite, this implies that

P.v.t=o. (23)

This means in particular that for everys E S, t E T

and u G U, we have

E Psu,tw = Pss,m.

Wcw

So foralls 6Sandt~T we have

So P satisfies (7). Equation (23) also implies that P
sums to 1 on each block. But by (14, 15), the sum of
absolute values of entries is at most one in each block

B,t with s, t c S or s, t c T, itfollows that these

blocks are also non-negative. Thus P is non-negative

and it is a feasible solution of (6)-(9). This proves

that a(G) = 1. 1

Having developed some machinery, we can use the

quadratic bound to prove the parallel repetition con-

jecture for several protocols, including Protocol F.

One such class of protocols is that of games with the
uniqueness property, that is, games such that for all

s, t, u there is at most one w such that V(s, t, u, w)

holds, and for all s, t, w there is at most one u such

that V(s, t, u, w) holds. These games were first de-

fined by [8].

Theorem 4.18 For any game G with the uniqueness

property, w(G) = 1 if and only if 5(G) = 1.

Proof. w(G) = 1 =+ 6(G) = 1 is trivial. We prove

ti(G) = 1 ~ w(G) = 1. By Lemma 4.17, it is suffi-

cient to prove that a(G) = 1 ~ *w(G) = 1.

Consider any pseudo-strategy P ~hich satisfies (6)

- (9), for which G . P = 1, where C corresponds to

a game G which has the uniqueness property. We

construct a perfect strategy for G.

We eliminate from P any row (and column) which
is all O. As in the proof of Lemma 4.17, we may

assume that all diagonal blocks of P are themselves

diagonal matrices, and the sum of the entries in each

diagonal block is exactly 1. Consider any block B,i,

where s 6 S, t c T, and (s, t) is in the support of

G. Since P represe~ts a perfect pseudo-strategy, then
P~%tW >0 implies C,%iW >0. Since G has the unique-
ness property, then for any u 6 U, there exist at most

one w E W for which P$tilW > 0. By (7) and (9), it

follows that the nonzero entries of block Bft are equal

to the corresponding diagonal entries of P, and they

form a permutation matrix.

Consider any nonzero entry Pij in a support block

of G. Let v be a vector such that vi = 1, Vj = – 11 and

‘Vk = O for k # i, j. Then by the above discussion it

follows that VTPV = O. Since P is positive semidef-

inite, Pv = O. Thus columns i and j are equal in

P.

Now we describe a greedy algorithm for extract-

ing a perfect true strategy (Pl, P2 ) from the perfect

pseudo-strategy P. If the game G can be partitioned

into k components (disjoint sets Si C S and Ti C T,

1 < i < k, such that if (s, t) is in the support of G,

then there exists j such that s c Sj and t c Tj ), the

greedy algorithm should be repeated for each of the

components.

Consider an arbitrary q~ery s G S and an arbitrary

answer u E U such that P..,. > 0. Set PI (s) = u.

Consider all queries t c T such that (s, t) is in the

support of G. For each such t there exists a unique

w g W such that P~WiW= P,=,.. Set P2(t) = w. Now

the crucial point to notice is that each such column tw
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is equal to column sw Now we can continue the pro-

cess of defining answers to queries s’ for which (s’, t)

is in the support of G without fear of contlict between

the different columns (i.e., there is one u’ such that

V(s’, u’, t, w) accepts for any of the previous (t, w)).

Continuing this process, each s 6 S and each t c T

are visited exactly once, and so we extract a perfect

strategy for PI and P2. n

If a game with the uniqueness property is also a

game of no-information, then a stronger statement is
nrovable:

Theorem 4.19 For any no-information game G
with the uniqueness property, ti(G) ~ (W(G) )114.

The proof will be given in the full version of the

paper. It is not based on the quadratic bound.

5 The Quadratic Bound as an

Algorithm

Theorem 5.20 The value u(G) is polynomial time

computable.

This follows from the ellipsoid method, since (6)-

(9) define a convex region for which the separation

problem is polynomisJ time solvable. See [14]. Let us

add that to determine the optimum of the quadratic

program ( l)–(4) is NP-hard.

As noted earlier, games represent language recog-

nition problems in a natural way, where triviality

of a game corresponds to membership in the lan-

guage. It is natural to investigate how o(G) performs

as a language recognition procedure, independently

of the issue of parallel repetition. Theorem 4.18

can be interpreted as evidence that o(G) is sensitive

enough to serve as a polynomkd time (though ineffi-

cient in practice) language recognition procedure for

languages whose containment problem can be repre-

sented as games with the uniqueness property. These

languages seem to be related to the class random-

ized LOGSPA CE. On the one hand, there exists a

randomized LOGSPACE procedure which determines
whether the players in such a game have a perfect

strategy. On the other hand, the classical random-

LOGSPACE language of undirected connectivity [1]

has a two-prover one-round proof systems with the

uniqueness property:

s-t Cut: Can the nodes of a graph z be colored

with two colors such that s is colored white, t is col-

ored black, and adjacent nodes have the same color?

The following game has a perfect strategy if and

only if z has an s-t cut: Construct self loops on each

of the nodes of z. V selects an edge (s’, t’)c z at

random, and requests the color of s’ from Left player
and the color of t’ from Right player. V accepts if

the player’s answers match, and do not contradict

the colors of s and t.It is easy to see that this game

has the uniqueness property.

We note that also two-colorability (which is in ran-

domized LOGSPACE) has a MIP(2, 1) proof system

with the uniqueness property.

We now develop additional machinery to show the

effectiveness of our algorithm to more complex prob-

lems.

Let G1 and G2 be two graphs. We write that

G1 e Gz if there is a homomorphism of G1 into

G2, i.e. a mapping of V(G1) into V(GZ) which maps

adjacent nodes to adjacent nodes. Special cases of

this notion are: G1 is k-colorable (choose G2 the com-

plete k-graph), or G2 has a k-clique (choose G1 the

complete k-graph).

Suppose that the true Provers want to convince the

Verifier that such a mapping exists. There is a simple

protocol for this: the two Provers (are supposed to)

agree on a mapping. The Verifier asks each of them to

name the image of a node of GI, uniformly distributed

over all pairs. His criteria of acceptance are: if he

asks the same node, he should get the same node of

Gz; if he asks adjacent nodes of Gl, he should get

adjacent nodes of Gz. It is clear that if the there is

no homomorphism from G1 to G2, then the provers

fail with probability at least l/lV(Gl )12.

The above game is symmetric S = T, U = W,

%,,t~ = u~,a, and r,t = ~t,. In addition, if both
players get the same question, the verifier only ac-

cepts the same answer. We call such a game strongly

symmetric. In thki case the existence of a perfect

pseudostrategy can be characterized in a simpler way.

Note that to define the pseudostrategy, we have to

artifiall y make T’ and S as well as U and W disjoint;

but we have natural bljections ~ : S + T and ~ :
U+w.

We define a reduced pseudostrategy as matrix P c
~(sxu)x(sxu) with the following properties:

P>o, (24)

~ ~jk = I ( for each Mock B,t), (25)
jkCB.,

P is symmetric, (26)

P is positive semidefinite. (27)

For each reduced pseudostrategy, we consider the

objective function

E cjk Pjk Y

j,k6(Sx U)
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We say that the reduced pseudostrategy is perfect,

if this value is 1. Just as above, we obtain that a

reduced pseudostrategy is perfect if and only if

P@, = O whenever V~w,it= O and Z,t # O.

We will call a perfect reduced pseudostrategy a hoax.

Lemma 5.21 A strongly symmetric game has a hoax

if and only if it has a perfect pseudostrategy.

Proof. If P is a hoax then P = (~ ~) is a perfect

pseudostrategy.

Conversely, letp~ b;, a perfect pseudostrategy. We

can write P = (PT ~,)” We claim that PI = p, =
2

Pa.

By our assumption on the verifier, the block B,4(,)

of P2 is diagonal and hence by property (23) of perfect

pseudostrategies, it must be the same as the block
B.. in PI as well as the block l?+($)+ (,) is P3. So the

diagonals of the Pi are the same. Since P is positive

semidefinite, we can write it as a Gram matrix, i.e.,

there exist vectors ~j (~ c ~) such that ~jk = Vyvk.

Now Comparing the diagonal entries of PI, P2 and

P3, we see that

T T T
vswv#($)* = vslt~su = v#(s)uw$)tl!

which is only possible if VSW = v~(~)~. But then

PI = P2 = P3 follows. Let P denote this matrix.

S:nce P = PI, P is positive semidefinite. Since
P = P2, itsatisfies conditions (5) of perfect pseu-

dostrategies. So P is a hoax. H

One more transformation of the condition is the

following. Assume that P is a hoax for a symmetric

game. We can write P as a Gram matrix:

P.%,tw = v~vtw

for appropriate vectors v,. E IRN for some iV. Now

equation (23) implies that for every s c S, tl, t2 6 T,

and u c U, we have

or

VT
S*

(

E Ut, w —

O

ut2w = o.
Wcu Wcu

Appropriate linear combination of these equations

yields

(
2

x Vt, w —

~)

vi2w = o,
Wcu Ulcv

and hence

(E vt, ~ = ~)vt2w .

w@r Wcu

So we get that

(28)

is independent of t.

It follows from the strong symmetry and condition

(5) that p~a,,W = O for u # w, and hence the vectors
v~~, u 6 U are mutually orthogonal for each s. This

implies that

(29)

and

IOTI = 1. (30)

Moreover, we must have that

v~vtW = O if z~t > 0 but V5~,iw= O (31)

Conversely, any system of vectors satisfying condi-

tions (28)-(31) yields a hoax.

Let us write G1 ~ G2 if there is a hoax for the

homomorphism game. We need the following lemmw

Lemma 5.22 If G1 ~ G2 and G2 ~ G3, then

G1 ~ G3.

Proof. If P is a hoax for G1 ~ G2 and P’ is a hoax

for G’ += G3, then define P“ by

P:u,tw = z Psa,tbPa* ,bw

o,bGv(Uz)

(S, t c V(G1), U, W ~ V(G3)).

It is easy to verify that this is a hoax for G1 ~ G3. ~

Every pair of graphs G1 and G’ with G1 ~ Gz

defines two classes of finite graphs:

which are trivially disjoint, and both are in NP. An

outstanding open problem in complexity theory asks

if any two such classes can be separated in P, i.e.,

if there is a polynomial time decidable clam K“ of

graphs such that

K ~ K“, K’ n K“ = (1.

While we do not know the answer to this general ques-

tion, we can show that it is in the affirmative if we

make the stronger assumption that G1 j+ G2.
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Theorem 5.23 Let G1 and G2 be two graph8 such

that Gl ~ G2. Then the class

K“={H: G1~H}

M in P and separates K and K’.

The proof is obvious. To apply thk theorem, we

have to find interesting pairs of graphs with HI #
H2. One example is given by the following:

Lemma 5.24 I<h #= I<h.1

The proof is based on characterization (28)-(31).

This lemma implies that the class of graphs con-

taining a k-cliques can be separated from the class of

(k – I)-colorable graphs by a class in P (in particu-

lar, giving the chromatic number of perfect graphs).

This has been known [17], and in fact the methods

obtaining it served as a motivation for our quadratic

bound.

It is a challenging research problem to find other

applications of Theorem 5.23.
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