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Abstract

This paper investigates various aspects of the nonlocal ef-
fects that can arise when entangled quantum information is
shared between two parties. A natural framework for study-
ing nonlocality is that of cooperative games with incomplete
information, where two cooperating players may share en-
tanglement. Here nonlocality can be quantified in terms of
the values of such games. We review some examples of non-
locality and show that it can profoundly affect the sound-
ness of two-prover interactive proof systems. We then es-
tablish limits on nonlocal behavior by upper-bounding the
values of several of these games. These upper bounds can
be regarded as generalizations of the so-called Tsirelson in-
equality. We also investigate the amount of entanglement re-
quired by optimal and nearly optimal quantum strategies.

1. Introduction

In this paper, we develop methods for establishing limits
on the kinds of nonlocal strategies that are possible with
quantum entanglement. For example, we obtain some new
Tsirelson-type inequalities, that bound the amount by which
entanglement can be used to violate Bell-type inequalities.

Nonlocality can be naturally expressed within the frame-
work of cooperative games of incomplete information—
which we will refer to as nonlocal games. In this frame-
work, there are two cooperating players and a verifier. The
verifier sends a classical message to each player separately.
Then each player, without communicating with the other,
sends a classical response to the verifier, who evaluates a
predicate to determine whether the players won or not. The
players may share a priori information, but cannot commu-
nicate with each other once the game starts. In a classical
strategy, the players can only share classical information;
whereas, in a quantum strategy, the players are permitted to
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share quantum information. The value of such a game is the
maximum possible success probability of the players. Bell
inequalities can be expressed as upper bounds on the values
of these games when the players are restricted to classical
strategies. Bell inequality violations correspond to quantum
strategies that exceed the classical value of games. Tsirelson
inequalities are upper bounds on the values of these games
when the players may employ quantum strategies.

One motive for investigating this subject is to better
understand the expressive power of two-prover interactive
proof systems when the provers share entanglement, which
correspond closely to these games when the interaction is
restricted to one round. One striking observation is that
entanglement can affect the soundness of these proof sys-
tems. Based on Bell inequality violations, we give exam-
ples of such proof systems that are classically sound, but be-
come unsound when the provers can utilize entanglement.
One motive for investigating Tsirelson inequalities is that
they arise as necessary conditions for the soundness of such
proof systems when the provers share entanglement.

In Section 2 we provide some formal definitions and
background information. In Section 3 we present four ex-
amples of nonlocal games for which quantum strategies
outperform classical strategies, including nonlocal games
for which there exist perfect quantum strategies (meaning
that the strategies win with probability one), but for which
there do not exist perfect classical strategies. The examples
are not new, but for the most part have been presented in
the theoretical physics literature as hypothetical physics ex-
periments, and their connections with our games or with
multi-prover interactive proofs are obscure. The simplicity
of some of our presentations (particularly our fourth exam-
ple) may help elucidate some of the features of nonlocal-
ity. In Section 4, we exhibit two natural two-prover interac-
tive proof systems that are classically sound but become un-
sound when the provers may employ quantum strategies. In
Section 5, we provide the beginnings of a systematic un-
derstanding of the limits of nonlocal strategies for two re-
stricted classes of games: binary games and XOR games.
The results proved in this section include generalizations of
Tsirelson’s inequality. We also prove upper bounds on the
amount of entanglement needed to play XOR games opti-
mally or nearly optimally.
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2. Definitions

Nonlocal games

Let be a predicate on , for finite sets ,
, , and , and let a probability distribution on .

Then and define a nonlocal game as follows.
A pair of questions is randomly chosen ac-
cording to the distribution , and is sent to player 1 and
is sent to player 2. Hereafter we will refer to player 1 as Al-
ice and player 2 as Bob. Alice must respond with an answer

and Bob with an answer . Alice and Bob are
not permitted to communicate after receiving and , but
they may agree on whatever sort of strategy they like prior
to receiving their questions. They win if evaluates to on

and lose otherwise. To stess the fact that is
correct or incorrect given questions we will denote the
value of the predicate on as .

Verifier

BobAlice

Figure 1. The communication structure of a
nonlocal game.

Classical values of nonlocal games

The classical value of a game is the maximum
probability with which Alice and Bob can win the game, as-
suming they use purely classical strategies. Denote the clas-
sical value of a game by . A deter-
ministic strategy, is a restricted type of classical strategy in
which and are simply functions of and , respectively.
It is not hard to see that the classical value of a game is ob-
tained on some deterministic strategy, and thus

Quantum strategies and quantum values of games

We will assume for this discussion and throughout the rest
of the paper that the reader is familiar with the basics of
quantum information, which is discussed in detail in the
book by Nielsen and Chuang [35].

A quantum strategy for a game consists of an initial bi-
partite state shared by Alice and Bob, a quantum mea-
surement for Alice for each , and a quantum measure-
ment for Bob for each . On input , Alice performs
her measurement corresponding to on her portion of ,
yielding an outcome . Similarly, Bob performs his mea-
surement corresponding to on his portion of , yielding
outcome . The results and are sent back to the veri-
fier.

The most general type of measurement allowed by quan-
tum physics is called a positive operator valued measure, or
POVM for short. Any such measurement of a system hav-
ing classical state set can be described by some collec-
tion of positive semidefinite matrices in

, where is a finite set that corresponds to the pos-
sible outcomes of the measurement. These matrices must
satisfy (the identity operator on ). If
the measurement described by is applied
to a system in state , the outcome is with probabil-
ity for each . These probabilities are all
non-negative because each is positive semidefinite, and
the probabilities sum to 1 because .

With the definition of POVMs in mind, a more precise
description of a quantum strategy may be given as fol-
lows. Alice and Bob share some bipartite quantum state

. For each , Alice has a POVM described
by

and for each , Bob has a POVM described by

On input , Alice applies her POVM corre-
sponding to to the portion of in her possession and
Bob does likewise. Then Alice and Bob each return the re-
sult of their measurement to the verifier. The probability that
Alice and Bob answer is given by

where denotes the Kronecker product.
The quantum value of a game , denoted ,

is the maximum probability with which Alice and Bob can
win over all possible quantum strategies.

3. Examples of nonlocal games

The fact that entanglement can cause non-classical correla-
tions is a familiar idea in quantum physics, introduced in
a seminal 1964 paper by Bell [5]. In the following subsec-
tions, we give four examples of this. The first is a slight vari-
ant of Bell’s original result, which is simple and included as
an introduction. The remaining ones can be viewed as gen-
eralizations or improvements, in various respects, to the first
one.
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3.1. The CHSH game

Our first example of a game for which a quantum strategy
outperforms any classical strategy is a well-known example
in quantum physics based on the CHSH inequality, named
for its discoverers Clauser, Horne, Shimony, and Holt [13].
Rephrased in terms of two-player cooperative games, the
example is as follows. Let , let
be the uniform distribution on , and let be the pred-
icate

if
otherwise.

The classical value of the game is
, which is easily verified by considering all determin-

istic strategies. Using a quantum strategy, however, Alice
and Bob can win this game with probability

, and this quantum strategy is optimal, so we have
. We next describe a quantum strat-

egy that achieves this probability of success; the fact that
it is optimal follows from Tsirelson’s Inequality [28, 39].

First, let the entangled state shared by Alice and Bob be
. Then, define

and let Alice and Bob’s measurements be given as

for . It is now clear that each matrix is posi-
tive semidefinite. (Each matrix is actually a projection, so
the measurements Alice and Bob are making are examples
of projective measurements.) Given our particular choice of

, we have for arbitrary and
. Thus, as each of the matrices and is real and sym-

metric, the probability that Alice and Bob answer with
is . It is now routine to check that in every

case, the correct answer is given with probability
and the incorrect answer with probability .

3.2. The Odd Cycle game

For the following game, imagine that Alice and Bob are try-
ing to convince the verifier that an odd cycle of length is
2-colorable (which it is not, as is odd). The verifier sends
the name of a vertex to each of Alice and Bob such that the
two vertices are either the same or adjacent. Alice and Bob
each send one of two colors back to the verifier. The ver-
ifier’s requirement is that, when the vertices are the same,

the two colors should agree, and when the vertices are adja-
cent, the colors should be different.

Formally, let be an odd integer,
and . Let be uniform over the set

or mod and let
be defined as

if mod
otherwise.

This is a variation on a game based on the Chained Bell In-
equalities of Braunstein and Caves [10] that generalize the
CHSH inequality. It is also discussed by Vaidman [41].

It is easy to see that for this game.
Any deterministic strategy must fail for at least one of the
possible pairs , as an odd cycle cannot be 2-colored,
while a strategy achieving success probability is
that Alice and Bob let mod and mod .

On the other hand, a quantum strategy can attain a suc-
cess probability quadratically closer to 1. The following
quantum strategy [10] wins with probability

The entanglement is a single EPR pair

Define

where and are as defined in the previ-
ous section. Given questions , the probability that Al-
ice and Bob answer the same bit may be calculated to be

, which implies they answer different bits with
probability . In case we have

, so they answer correctly (i.e., with ) with prob-
ability , and in case we have

, so they answer correctly (i.e., with
) with probability .

Therefore this strategy answers correctly with probability
on every pair of questions. In fact this quan-

tum strategy is optimal, as we shall show in Corollary 5.11
below.

3.3. The Magic Square game

The next game we consider is based on the fact that there
does not exist a binary matrix with the property that
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each row has even parity and each column has odd parity. It
is a slight variation of an example presented by Aravind [3],
which builds on work by Mermin [33, 34]. The idea is to
ask Alice to fill in the values in either a row or a column
of the matrix (randomly selected) and to ask Bob to fill in
a single entry of the matrix, that is randomly chosen among
the three entries given to Alice. The requirement is that the
parity conditions are met by Alice’s answers (even for rows,
odd for columns) and that Bob’s answer is consistent with
Alice’s answers.

Formally, let index the six possible queries to
Alice (three rows plus three columns) and let
index the nine possible queries to Bob (one for each en-
try of the matrix). Let and .
The predicate is defined to take value 1 if and
only if has the appropriate parity (0 for a row and 1
for a column) and the entry of corresponding to has
value . The distribution is the uniform distribution over

entry is in triple . It is not hard to see
that for this game. It should be noted that,
although it is convenient to set for this game,
we could take , because the third bit of Alice’s
output is determined by the first two bits and the parity con-
straints.

Remarkably, for this game—there exists a
quantum strategy for Alice and Bob that wins every time.
The essential ideas for such a strategy are discussed in [3]
(where a slight variant of this game is presented).

3.4. The Kochen-Specker game

This game is based on the Kochen-Specker Theorem, which
can be stated as follows.

Theorem 3.1 (Kochen and Specker [30]). There exists an
explicit set of vectors in that cannot be

-colored so that both of the following conditions hold:
1. For every orthogonal pair of vectors and , they are
not both colored 1.
2. For every mutually orthogonal triple of vectors , ,
and , at least one of them is colored 1.

The original theorem in [30] used 117 vectors, but this
has subsequently been reduced to 31 vectors [36]. We will
assume that every orthogonal pair of vectors in the set is part
of an orthogonal triple—which is easily achieved by adding
a few more vectors to the set—and that the vectors are nor-
malized. Connections between the Kochen-Specker Theo-
rem and nonlocality have previously been made in [26].

The Kochen-Specker game is defined relative to the
above set of vectors. Alice receives a random triple of or-
thogonal vectors as her input and Bob receives a single vec-
tor randomly chosen from the triple as his input. Alice out-
puts a trit indicating which of her three vectors is assigned

color 1 (implicitly, the other two vectors are assigned color
0). Bob outputs a bit assigning a color to his vector. The re-
quirement is that Alice and Bob assign the same color to the
vector that they receive in common.

It is straightforward to show that the existence of a
perfect classical strategy for this game would violate the
Kochen-Specker Theorem, so for this game. On
the other hand there is a perfect quantum strategy, using en-
tanglement . Alice’s projec-
tors (for input ) are , and
Bob’s projectors (for input ) are and .

4. Connections with multi-prover interactive
proof systems

The two-prover interactive proof system model was defined
by Ben-Or, Goldwasser, Kilian, and Wigderson [7], and has
been the focus of a great deal of study. Babai, Fortnow, and
Lund [4] proved that every language in NEXP has a two-
prover interactive proof system. Several refinements to this
result were made [12, 16, 32], leading to a proof by Feige
and Lovász [17] that a language is in NEXP if and only if it
has a two-prover one-round proof system with perfect com-
pleteness and exponentially small soundness error.

In essentially all work on multi-prover interactive proof
systems, the provers are computationally unbounded, sub-
ject to the restriction that they cannot communicate with
each other during the course of the protocol. Because the
spirit of the interactive proof system paradigm is to bound
the capabilities of the verifier rather than the prover(s), it is
natural to consider prover strategies that entail sharing en-
tangled quantum information prior to the execution of the
proof system. Note that such a strategy does not necessar-
ily require the computationally bounded verifier to manipu-
late (or know anything about) quantum information. How-
ever, much of the study of multi-prover interactive proof
systems occurred prior to the mid 1990s, when quantum in-
formation was not well-known within the theoretical com-
puter science community, and quantum strategies were gen-
erally not considered. In fact, the methodologies for analyz-
ing these proof systems usually make the implicit assump-
tion that provers are restricted to classical strategies.

In this section, we consider what happens when the
provers can employ quantum strategies. We do not make
any change to the verifier, who remains classical, and all
communication between the verifier and the provers re-
mains classical.1 A natural question is: What is the expres-
sive power of such proof systems?

1 Kobayashi and Matsumoto [29] consider a related but different model,
where the provers and the verifier manipulate quantum information
and quantum communication occurs between the verifier and the
provers.
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Let us use MIP and MIP to distinguish between the
cases of no shared entanglement and shared entanglement,
respectively. That is, MIP denotes the class of languages
recognized by multi-prover interactive proof systems where
all communication between the provers and verifier is clas-
sical and the provers do not share entanglement (as has been
implicitly assumed in previous contexts). The definition of
MIP is identical to that of MIP, except that the provers may
share an arbitrary entangled quantum state at the beginning
of the protocol. Furthermore, let MIP and MIP de-
note the same classes, but with the number of provers fixed
to . It is known that MIP MIP NEXP. We do not
know any relationships between MIP , MIP and NEXP,
except the trivial containment MIP MIP .

A one-round two-party interactive proof system is one
where the interaction is restricted to two stages: a query
stage where the verifier sends information to the provers,
and a response stage where the provers send information to
the verifier. Note that such a proof system associates a non-
local game to each string with the following property.
For all , the value of is close to one, and, for
all , the value of is close to zero.

We give two examples of natural two-prover one-round
proof systems that are classically sound, but become un-
sound when the provers use quantum strategies: one is for
languages that express graph chromatic numbers and the
other is for 3-SAT. These examples are related to the ex-
amples in Section 2. We also explain why the existing
proofs that equate MIP with NEXP break down in terms
of their methodology in the case of MIP . It is possible that
MIP NEXP, but a different proof would be required for
it. Results in [29] imply that, if the amount of entanglement
between the provers is polynomially bounded, then any lan-
guage recognized by such a proof system is contained in
NEXP; however, without this polynomial restriction, we do
not know if this holds.

4.1. Graph Coloring proof system

The Odd Cycle game in Section 3.2 can be regarded as a
protocol where two provers are trying to convince a veri-
fier that a particular graph is two-colorable. This idea gen-
eralizes to any graph and number of colors . The veri-
fier asks each prover for the color (among possibilities) of
a vertex and requires that the colors be the same whenever
each prover gets the same vertex and different whenever the
provers get adjacent vertices. Formally, the game for and

is as follows. Let , let , let

if ( and ) or
( and )

otherwise,

and be the uniform distribution on

If is -colorable then the provers can satisfy by bas-
ing their answers on a valid coloring of . Therefore, the
value of the associated game is . If is not -colorable
then, for any classical strategy on the part of the provers,
there must be an inconsistency for some value of ,
so the classical value of the associated game is at most

. The verifier can amplify the
difference between the two cases ( -colorable and not -
colorable) by repeating this game a polynomial number of
times (in parallel [37]). Thus this is a classical two-prover
interactive proof system for the language consisting of all

-colorable graphs.
This proof system breaks down in the case of entangled

provers. Based on a protocol in [9], there exists a sequence
of graphs (where ranges over all powers of two) with
the following properties. First, for any , there is a perfect
quantum strategy for the Graph Coloring proof system with
graph and colors. Second, for sufficiently large

, is not -colorable.
For any , is simple to describe: it has vertices

and two vertices are adjacent if and only if the Ham-
ming distance between them is . However, results in [9]
show that there exists an such that is not -colorable,
without giving an explicit for which this holds. (The proof
is based on a related result in [11], which makes use of a
combinatorial result in [21].) The result is made explicit in
[22], where it is shown that is not 16-colorable. Thus,
the resulting graph for which the Graph Coloring proof sys-
tem breaks down has vertices, and it can be simplified
by taking only half of its vertices, resulting in a graph of
32,768 vertices.

4.2. 3-SAT proof system

We begin by describing a commonly-used two-prover inter-
active proof system for proving that 3-CNF formulas are
satisfiable. Call the provers Alice and Bob. The verifier
sends Alice a clause and Bob a variable from that clause.
Alice must assign each variable from the clause so as to sat-
isfy the clause and Bob must assign a value for the vari-
able that he receives that is consistent with Alice’s assign-
ment. More, formally, let be a 3-CNF boolean formula
over variables with clauses .
For each clause, every induces an assignment
to each variable that occurs in the clause in a natural way.
The game for is as follows. Let and ,
let and , and let take
the value 1 if and only if the assignment for the variables
in induced by satisfies and is consistent with the
assignment . Let be the uniform distribution on
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clause contains variable . If is
satisfiable then by the two provers returning val-
ues corresponding to a specific truth assignment. If is un-
satisfiable then , as then at least one of
the possible queries must violate the predicate.

However, this proof system breaks down in the case of
entangled provers. Upon seeing the aforementioned coun-
terexample for the Graph Coloring proof system, Ambai-
nis [2] showed that a counterexample for 3-SAT could be
based on it. Intuitively, the idea is to construct a 3-CNF for-
mula that, for truth assignment , expresses the statement
“ is a -coloring of ”. Based on the above counterex-
ample graph with 32,768 vertices (the smallest that we are
aware of), the resulting 3-SAT formula consists of roughly

clauses.
We now provide a much simpler counterexample based

on the Magic Square game in Section 3.3 that consists of
24 clauses. We will construct an instance of 3-SAT, where
the resulting formula is not satisfiable but for which there is
a perfect quantum strategy for the above two-prover proof
system. Let the variables be , , , , , ,

, , , which intuitively correspond to a
boolean matrix. There are six parity conditions in the Magic
Square game: each row has even parity and each column has
odd parity. Each parity condition can be expressed with four
clauses. For example, for the first row,

is satisfied if and only if . Thus 24
clauses suffice to express all six parity conditions. This for-
mula is unsatisfiable, but the perfect quantum strategy for
the Magic Square game in Section 3.3 defeats the 3-SAT
game for this formula with certainty.

4.3. Oracularization paradigm

The above example also constitutes a counterexample to a
commonly-used primitive that enables a two-prover system
to simulate an oracle machine. An oracle machine is a one-
prover interactive system where the prover’s responses to a
series of questions are required to be non-adaptive. Non-
adaptive means that when the prover receives a series of
queries , his response to must be a func-
tion of alone, not depending on any for . There
is a simple oracle machine proof system for 3-SAT, where a
random clause is selected and its three variables are sent as
three queries to the prover, who must return a value for each
one. The verifier accepts if and only if the responses satisfy
the clause. The prover’s success probability is less than one
whenever the formula is unsatisfiable.

Fortnow, Rompel, and Sipser [20] showed that, with a
second prover, who is sent a single randomly chosen query

from those of the first prover, the first prover must behave
as an oracle or be detected with positive probability. Nev-
ertheless, the above quantum strategy for the magic square
game is a counterexample to this result for the case of en-
tangled provers. Since this is a component in the proof that
MIP NEXP, this proof does not carry over to the case of
MIP .

5. Binary games and XOR games

In this section we focus our attention on simple types of
games that we call binary games and XOR games. Binary
games are games in which Alice and Bob’s answers are bits:

. XOR games are binary games that are fur-
ther restricted in that the value of the predicate may de-
pend only on and not on and independently. (The
CHSH and Odd Cycle games are examples of XOR games.)

We begin by pointing out connections between these
games and multi-prover interactive proof systems. Then we
establish some basic properties of binary games and XOR
games. Next, we prove upper bounds on the quantum val-
ues of these games. Finally, we prove upper bounds on the
amount of entanglement required for Alice and Bob to play
XOR games optimally and nearly optimally.

5.1. Further connections with multi-prover inter-
active proof systems

One motive for considering upper bounds on the quantum
values of games in general is due to their connections with
multi-prover interactive proof systems. For example, recall
that the Odd Cycle game can be regarded as a simple proof
system for the two-colorability of odd cycles—for which
the correct response of the verifier is to reject. Although this
is valid as a classical two-prover interactive proof system,
if the quantum value of the game were one (or exponen-
tially close to one) then it would not be valid as a quantum
proof system. The upper bound on the value of the Odd Cy-
cle game proved in this section (Corollary 5.11) implies that
it is a valid quantum proof system, and with a polynomial
number of repetitions2, the probability of the verifier incor-
rectly accepting can be made arbitrarily close to zero. For
any one-round two-prover quantum interactive proof sys-
tem, the soundness condition will correspond to a nontrivial
upper bound of the quantum value of a nonlocality game.
Therefore upper bounds are important tools for analyzing
such proof systems.

Regarding upper bounds on entanglement required by an
optimal quantum strategy, we note that results in [29] imply
that if a polynomial upper bound can be established then

2 In the absence of a quantum analogue of Raz’s Parallel Repetition The-
orem [37], the repetitions can be applied sequentially.
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MIP NEXP. This indicates that upper bounds on en-
tanglement are also relevant for analyzing such proof sys-
tems.

Definition 5.1. For , let MIP de-
note the class of all languages recognized by classical
two-prover interactive proof systems of the following form:

They operate in one round, each prover sends a single
bit in response to the verifier’s question, and the veri-
fier’s decision is a function of the parity of those two
bits.

If then, whatever strategy Alice and Bob fol-
low, the Prover’s acceptance probability is at most
(the soundness probability).

If then there exists a strategy for Alice and
Bob for which the Prover’s acceptance probability is
at least (the completeness probability).

Definition 5.2. For , let MIP denote
the class corresponding to the previous definition, where
all communication remains classical, but where the provers
may share prior quantum entanglement.

The following result is implicit in the work of
Håstad [25], with the application of methods in [6].

Theorem 5.3. For all , if and
then MIP NEXP.

Proof sketch. We refer the reader to [6, 25] for all de-
tailed information about probabilistically checkable proof
systems (PCPs). Let PCP denote the class of lan-
guages recognized by PCPs that makes queries on the ba-
sis of random bits, and have completeness and sound-
ness probabilities and respectively. That is, a verifier
can query bits of a purported proof, selected on the ba-
sis of random bits, and makes a determination of lan-
guage membership on the basis of those values. A lan-
guage is in PCP if: (a) for all , there ex-
ists a proof for which the verifier’s acceptance probabil-
ity is at least ; and (b) for all , the verifier’s ac-
ceptance never exceeds . Håstad [25] essentially shows
that, for all , if , and
then PCP NP using PCPs where the veri-
fier’s determination is based on the XOR of the two queried
bits. This can be scaled up one exponential in along the
lines discussed in [6] to yield PCP NEXP
with the same XOR property. Moreover, the proof system
has the feature that, if each possible pair of queries is taken
as an edge of a graph then the resulting graph is bipartite.
This means that the PCP can be converted into a two-prover
interactive proof system with the same completeness and
soundness probabilities ( and ) as follows. The verifier
randomly chooses an edge, just as in the PCP, and sends

one query to Alice and one to Bob, according to the bipar-
tite structure of the graph.

An obvious question is: Do there exist and (with
) such that MIP NEXP? One natu-

ral candidate for this is the actual protocol implicit in [25].
Unfortunately, our generic upper bounds, such as Theo-
rem 5.10, are not sufficiently strong to achieve this—at least
not directly, since they result in a larger value of , which
exceeds the original . Perhaps an analysis that is tailored
to the specific constructions in [25] will show that the re-
quired and exist.

5.2. Basic properties of binary and XOR games

In this section it is proved that for any binary game, Al-
ice and Bob always have an optimal strategy in which their
measurements are projective measurements, even when re-
stricted to the support of their respective parts of the shared
entangled state. Alice and Bob’s strategy for a binary game
consists of a shared entangled state , together
with POVMs and
for each and , respectively. By the support of
Alice’s part of the entangled state, we mean the subspace of

spanned by the eigenvectors of the density matrix ob-
tained by tracing out Bob’s part of , and similar for the
support of Bob’s part. It follows from the Schmidt decom-
position that these two subspaces will necessarily have the
same dimension.

It is well known that POVM-type measurements can be
simulated by projective measurements. In general this re-
quires that one performs a projective measurement on the
system under consideration together with some auxiliary
system, and in the present situation this auxiliary system
may be considered part of the shared entangled state. How-
ever, the fact we are claiming is a stronger statement than
this—even if the measurements and

describe projective measurements, they
may no longer be projections when restricted to the sup-
port of Alice’s part and of Bob’s part of .

Theorem 5.4. Let be a binary game. Then there exists an
optimal strategy for Alice and Bob that satisfies the follow-
ing:

1. The entangled state shared by Alice and Bob is
, where and both

and are invertible. (I.e., is the support of
Alice’s part of and is the support of Bob’s part of

.)

2. Alice’s measurements and Bob’s measure-
ments , for and , are projective
measurements on and , respectively.

Proceedings of the 19th IEEE Annual Conference on Computational Complexity (CCC’04) 

1093-0159/04 $20.00 © 2004 IEEE 



The proof of Theorem 5.4 relies on the following simple
lemma.

Lemma 5.5. Let , , and be finite sets and let
. Let be Hermitian ma-

trices, let be real
numbers, and let be an positive semidefinite ma-
trix. Then the maximum value of

for positive semidefinite
matrices subject to the constraint for all

is achieved by some choice of for which
for all .

Proof. The fact that there exists a maximum follows from
the observation that the set of all valid choices for

is a compact set. Fix some choice for that achieves
the maximum. Because each is positive semidefinite,
we may write

for some orthonormal basis for each
. As and are both positive semidefi-

nite, we have for each
and . Now, if we fix the bases but

view as being variables, we
see that the quantity

is a multi-linear function in these variables. It therefore
achieves its maximum value for some choice of these vari-
ables with . For such a choice of these vari-
ables, the matrices and satisfy as
required.

Proof of Theorem 5.4. The fact that the first condition
holds for some optimal strategy follows immediately from
the Schmidt decomposition together with the fact that any
POVM restricted to a subspace is still a valid POVM. So,
we will assume that we have an optimal strategy satisfying
the first condition, but not necessarily satisfying the second.

The probability that Alice and Bob’s strategy wins is

Alice and Bob win

where

for each and . It follows from Lemma 5.5
that Alice may substitute her measurements

with projective measurements on while still achieving the
maximum probability of winning. The same argument ap-
plies to Bob’s measurements.

We will make use of Theorem 5.4 several times below.
Next, we consider XOR games, which are binary games

where the predicate depends only on
and not and independently. It will be convenient to view
the predicate as taking only three inputs in this case—
we write rather than . It will be
particularly helpful for XOR games to describe Alice and
Bob’s measurements in terms of observables. Because of
Theorem 5.4, it will only be necessary to do this in the
case that Alice and Bob’s measurements are projective mea-
surements. If and are orthogonal projections with

, we can describe this measurement by an
observable . It follows that the observable
corresponding to a two-outcome projective measurement is
a Hermitian matrix with eigenvalues and , and the

eigenspace corresponds to the outcome 0 and the
eigenspace corresponds to the outcome .

The following theorem due to Tsirelson [40] will play a
key role in our results on XOR games.

Theorem 5.6 (Tsirelson [40]). Let and be finite sets,
and let be a pure quantum state with support on a bipar-
tite Hilbert space for which

. For each , let be an observable on with eigen-
values , and for each , let be an observable on

with eigenvalues . Then there exist real unit vectors
and in such that

for all and all .
Conversely, suppose that and are finite sets, and

and are unit vectors in for each and .
Let and be Hilbert spaces of dimension , let

, and let be any maximally entangled state
on . Then there exist observables on and on
with eigenvalues such that

for all and all .

To state some upper bounds on for XOR games, it
will be helpful to define the trivial random strategy for Al-
ice and Bob as one where they ignore their inputs and an-
swer uniformly generated random bits. If denotes the
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success probability of game when Alice and Bob are
restricted to this trivial strategy, then

Proposition 5.7. Let be an XOR game and let
. Then

(1)

where the maximum is over unit vectors

Proof. By Theorem 5.4, it is sufficient to restrict to the case
where Alice and Bob make projective measurements on
the support of their component of a shared pure entangled
state. Therefore, suppose that Alice and Bob share the en-
tangled state in some bipartite Hilbert space with

. For each , let be
the observable corresponding to Alice’s measurement on in-
put , and for each , let be the observ-
able corresponding to Bob’s measurement on input . We
now associate with each a real unit vector and with
each a real unit vector , according to Theorem 5.6. On
input , the probability that is

It follows that with probability .
Hence the probability that Alice and Bob win using this
strategy is

The vectors and are unit vectors in where
is a priori unbounded. The win-

ning probability, however, depends only on the dot prod-
ucts of the unit vectors, so we may project onto the span
of . This space has di-
mension . Indeed, it is sufficient to project
the vectors onto the span of the vec-
tors (or vice versa). The dimension of
this space is at most . Without loss of
generality, let us assume . Although the vectors

will not necessarily remain unit vectors

after orthogonal projection, the maximum over all vectors
is achieved by points

on the boundary—unit vectors—and so it is sufficient to re-
strict to this case.

We now show this strategy can be realized as a quan-
tum protocol. The maximization in Eq. 1 is over a com-
pact set, so the maximum is achieved by some vectors

in . Let be a maximally
entangled state on qubits. By Theorem 5.6, there are
observables and such that

for all and . Thus the strategy can be realized
as a quantum protocol.

The maximization in Proposition 5.7 can be cast as a
semidefinite program, which can be approximated to within
an additive error of in time polynomial in and
in . (See Ref. [8] for an introduction to semidefi-
nite programming.)

It is trivial to write an expression similar to Eq. 1 for the
classical value of an XOR game, viz.,

where the maximum is over functions
and . This integer quadratic program
is MAXSNP hard [1]. Unless P NP, finding the quan-
tum value of an XOR game is easier than finding the classi-
cal value.

5.3. Upper bounds on values of binary and XOR
games

In this section, we give some upper bounds on the quantum
values of binary nonlocal games. We give two bounds for
XOR games: the first is most useful when the optimal clas-
sical strategy is poor and the second when the optimal clas-
sical strategy is almost perfect. We also consider general bi-
nary games, where we obtain a qualitative upper bound for
games with no perfect classical strategy.

5.3.1. Upper bound for XOR games with weak classi-
cal strategies We first consider the regime where the suc-
cess probability of the best classical strategy is not much
better than , the success probability of the trivial ran-
dom strategy. In this case no quantum strategy can do sig-
nificantly better. The bound will be expressed in terms of
Grothendieck’s constant [24].

Definition 5.8 ([18]). Grothendieck’s constant is the
smallest number such that, for all integers and all
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real matrices , if

for all numbers , in , then

for all unit vectors in .

Grothendieck’s constant is known to satisfy

but the exact value is not known. The upper bound is due
to Krivine [31] (who conjectures it is the exact value), and
the lower bound is due to Davie [15] and, independently,
Reeds [38] (see also [19]).

The following theorem follows from the definition.

Theorem 5.9. Let be an XOR game. Then

Proof. Suppose, without loss of generality, that .
Let be the disjoint union of and and define a
game on by setting
if and otherwise, and

for . Clearly this game is equivalent to
the original game so it is sufficient to consider the case

.
Take and define the matrix by

It follows from the discussion at the end of Section 5.2 that

for all numbers , in . By Propo-
sition 5.7,

This establishes the result.

For the CHSH game, we have and

Games for which the ratio of to
is greater than can be constructed from the results in
Ref. [19]. In particular, the smallest known game for which
this ratio is larger than has .

5.3.2. Upper bound for XOR games with strong classi-
cal strategies We now consider the regime where a clas-
sical strategy performs well, but not perfectly. For the Odd
Cycle game of Section 3.2, we obtained

and

the quantum strategy is quadratically better than the clas-
sical one in terms of its failure probability. In fact such
a quadratic improvement is all that is possible for XOR
games, as will be shown shortly in Theorem 5.10.

In order to state and prove Theorem 5.10, we first de-
fine a function and two constants, and

. The function has the property that it is minimal subject
to being concave and bounded below by . To de-
termine , consider the unique linear mapping
such that is the tangent line to at some point

. It is straightforward to show that
for and for . To deter-
mine the constants and , note that the condition on
and the fact that d

d imply that

(2)

Theorem 5.10. Let be an XOR game with classical value
. Then , where is as defined

above, i.e.,

if

if ,
(3)

where and are as defined above.

Proof. Consider an optimal quantum strategy and let

be the unit vectors associated with it, according to Proposi-
tion 5.7. We use these vectors to define the following clas-
sical strategy:

1. Alice and Bob share a unit vector , chosen uni-
formly at random.

2. When asked question , Alice answers

3. When asked question , Bob answers
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Here the function is defined by if
and otherwise.

Let us calculate the probability that . Intro-
duce an azimuthal coordinate for in the plane spanned
by and , such that has coordinate and
has coordinate . Then

for and otherwise,
while for and

otherwise. Because is distributed uniformly in ,
is distributed uniformly in . The probability that

is then proportional to the measure of the sub-
set of on which . In par-
ticular, when

Therefore, on input ,

(4)

Using the quantum strategy, the probability that
is given by

so that

Similarly, it can be shown that

For each , let and be the
probabilities of winning the game when using the classi-
cal and quantum strategies, respectively, given that question

was asked. From the above, together with the concav-
ity of , it follows that . The overall
probability of winning using the quantum strategy is

where we have again used the fact that is concave.

We emphasize that our means of defining the classical
strategy in the above proof is not original; indeed we can
trace the technique back to Grothendieck, who used it to es-
tablish the first upper bound on the constant that bears his
name [24]. More recently, Goemans and Williamson used
the same idea to derive randomized approximation algo-
rithms for MAX CUT and related problems [23].

One consequence of Theorem 5.10 is that the quantum
strategy for the Odd Cycle game given in Section 3.2 is op-
timal.

Corollary 5.11. If is the Odd Cycle game then
.

5.3.3. Upper bound for general binary games Finally,
we prove the following qualitative Tsirelson-type bound
on any binary game: if then as
well. This result relies on the assumption that the game is
binary—for example, the Kochen-Specker game discussed
in Section 2 is a ternary-binary game (i.e.,
and ) for which there exists a perfect quantum
strategy but no perfect classical strategy.

Theorem 5.12. Let be a binary game. Then
if and only if .

Proof. Because for any game , it suffices
to show that implies .

Let us first assume that there exists a Hilbert space and
two collections of subspaces

and

of that satisfy the following properties:

1. and for each and
.

2. For every with and
with , we have .

We will show that this assumption implies that there exists
a perfect classical strategy for . After this it will be shown
that a perfect quantum strategy for implies the existence
of such a collection of subspaces.

For any 4-tuple satisfying and
we may conclude from the two proper-

ties above that and
. These relations induce a partial order on the collec-

tion of subspaces . In order to distinguish this
partial order from any incidental set relations that may hold
among the subspaces , we will use the sym-
bol when referring to this partial ordering. Notice that in
all cases we have if and only if . As
there are a finite number of these subspaces, there must exist
at least one maximal element and at least one minimal ele-
ment with respect to the partial order. Given that
if and only if , it holds that is maximal
if and only if is minimal, and similarly for ver-
sus .

Now, we claim that it is possible to reassign all maxi-
mal and minimal subspaces to or in such a way that
(i) if and only if (and similarly for

versus ), and (ii) the partial ordering is preserved.
If is maximal but not minimal, then is minimal and
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not maximal, so it is clear that reassigning and
satisfies these conditions. In case is both

maximal and minimal, then the partial ordering is essen-
tially behaving trivially with respect to (possibly equat-
ing with other subspaces). In this case we set and

to and arbitrarily, provided spaces equated with
or are assigned accordingly. The situation is similar

for and . Applying this reassignment recursively to
the remaining subspaces (the ones that were neither maxi-
mal or minimal) eventually reassigns all subspaces to or

. The partial ordering is preserved and the reassignments
necessarily satisfy and for
all choices of , , , and .

At this point a perfect deterministic strategy may be de-
rived. Specifically, if , then Alice answers question

with , and otherwise if then Alice answers
. Bob’s answers are similarly determined by the (reas-

signed) subspaces . As one of and is set to
and the other to , and similarly for and , this
strategy is well-defined. The strategy can be seen to be a
perfect strategy because Alice and Bob have zero probabil-
ity to answer incorrectly—if satisfy
and , then the fact that the partial order was
preserved implies that and . Thus,
we cannot have and , and therefore Al-
ice and Bob do not answer the pair of questions incor-
rectly with answers .

It remains to show that a perfect quantum strategy im-
plies the existence of subspaces and as above.
We may assume without loss of generality that Alice and
Bob use a strategy satisfying the properties given by Theo-
rem 5.4. As in the proof of Theorem 5.4, let

for each and . We have

where are projections with
for each , and

are positive semidefinite matrices with
for each .

Now, note that for any choice for positive semidefinite
matrices satisfying
for each , we have that the quantity

is at most 1, and therefore the quantity

(5)

is also at most 1. Therefore, by Lemma 5.5 we may replace
the matrices by new matrices satisfying
and while still achieving the maximum value
of 1 in Eq. 5. (These new matrices do not necessarily arise
from some different strategy for Bob, but this is irrelevant.)

Let and be the orthogonal spaces onto which
and , respectively, are projections, and let and
be the spaces representing the span of the nonzero eigenvec-
tors of and , respectively. Because and are or-
thogonal projections with and because and

satisfy and ,
we have that the first required property of the spaces
and is satisfied. The fact that the second property is
satisfied follows from the fact that the value of Eq. 5 is 1
and therefore

implying that whenever and
. This completes the proof.

5.4. Bounds on entanglement for XOR games

The final results we prove concern the amount of entangle-
ment needed for Alice and Bob to play a given game opti-
mally. With respect to this question, our results are restricted
to XOR games. The following theorem follows immediately
from the results of Section 5.2.

Theorem 5.13. Let be an XOR game and let
. There exists an optimal strategy for Alice and

Bob for in which they share a maximally-entangled state
on qubits.

Unfortunately, even in this restricted setting of XOR games,
the bound on the amount of entanglement provided by this
theorem is still huge—the number of qubits shared by Alice
and Bob is exponential in the sizes of their inputs.

However, if we are willing to settle for a slightly sub-
optimal strategy, a polynomial number of shared qubits
suffices. This fact follows from the Johnson-Lindenstrauss
lemma [27], which we now state, following Ref. [14].

Lemma 5.14 (Johnson-Lindenstrauss). For
and a positive integer, let be a positive integer such
that

Then for any set of points in , there is a mapping
such that for all ,
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Theorem 5.15. Let be an XOR game with
quantum value . Let , and suppose
is an even integer such that

Then, if Alice and Bob share a maximally entangled state
on qubits, they can win with probability greater than

.

Proof. Let and . Let
be the vectors associated with the

optimal quantum strategy according to Proposition 5.7. Ap-
ply the Johnson-Lindenstrauss Lemma to the points

and . Set

and

for each and . Because
for real unit vectors and , we have

A straightforward calculation based on the fact that

and

proves that

We note that these vectors can be realized as a quantum
strategy by Theorem 5.6. It follows that the difference in the
probability of winning using this strategy instead of the op-
timal one is

Hence Alice and Bob win using this strategy with probabil-
ity greater than .

Theorem 5.15 implies that any protocol for an XOR-
game can be simulated with success probability within pre-
cision using an amount of entanglement that scales poly-
nomially with respect to , , and . Combin-
ing this result with one in [29], we obtain the following.

Corollary 5.16. For all and such that ,
MIP NEXP.

We have no lower bounds on the amount of entangle-
ment required to play XOR games optimally or near opti-
mally. Perhaps even a constant amount of entanglement is
sufficient.
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