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Abstract 

Quite complex cryptographic machinery has been 
developed based on the assumption that one-way 
functions exist, yet we know of only a few possi- 
ble such candidates. It is important at this time 
to find alternative foundations to the design of se- 
cure cryptography. We introduce a new model of 
generalized interactive proofs as a step in this di- 
rection. We prove that all NP languages have per- 
fect zero-knowledge proof-systems in this model, 
without making any intractability assumptions. 

The generalized interactive-proof model con- 
sists of two computationally unbounded and un- 
trusted provers , rather than one, who jointly 
agree on a strat,egy to convince the verifier of the 
truth of an assertion and then engage in a polyno- 
mial number of message exchanges with the veri- 
fier in their attempt to do so. To believe the va- 
lidity of the assertion, the verifier must make sure 
that the two provers can not communicate with 
each other during the course of the proof process. 
Thus, the complexity assumptions made in previ- 
ous work, have been traded for a physical separa- 
tion between the two provers. 

*Supported by Alon Fellowship. 
1 Supported in prrt by NSF grant 865727~CCR, AR0 

grant DAALO%SGK-017, and US-Israel BSF grant 86 
00301. Jerusalem, Ismel. 

t Supported by a Fannie and John Hertz Foundation 
fellowship. 

SSupported by Alon Fellowship 

I’cmission IO copy wiltlout t’cc at1 or par1 ol’ this makriat is graIlled 
providrd that the copi arc not made or dislributett for direct 
commercial advantage. the ACM copyright notice and the title of 
the publication and its date appear. and notice is given Ihat copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires a fee and/or specfic 
permission. 

@ 1988 ACM-O-89791-264-O/88/0005/01 I3 $1.50 

We call this new model the multi-prover 
interactive-proof model, and examine its proper- 
ties and applicability to cryptography. 

1 Introduction 

The notion of randomized and interactive proof 
system, extending NP, was introduced in [GMR] 
and in [B]. An interactive proof-system consists of 
an all powerful prover who attempts to convince a 
probabilistic polynomial-time bounded verifier of 
the truth of a proposition. The prover and verifier 
receive a common input and can exchange upto 
a polynomial number of messages, at the end of 
which the verifier either accepts or rejects the in- 
put. Several examples of interactive proof-system 
for languages not known to be in NP (e.g graph 
non-isomorphism) are known. 

In [GMWl] Goldreich, Micali and Wigderson 
show the fundamental result that that if “non- 
uniform” one-way functions exist (i.e no small cir- 
cuits exist for the function inverse computation), 
then every NP language has a computationally 
zero-knowledge interactive proof system. This has 
far reaching implications concerning the secure de- 
sign of cryptographic protocols. It also seems to 
be the strongest result possible. Results in [F] and 
[BHZ] imply that if perfect zeroknowledge inter- 
active proof-systems for NP exist, (i.e which do 
not rely on the fact that the verifier is polynomial 
time bounded) then the polynomial time hierarchy 
would collapse to its second level. This provides 
strong evidence that it will be impossible (and at 
least very hard) to unconditionally show that IVP 
has zeroknowledge interactive proofs. 

In light of the above negative results, it is inter- 
esting to examine whether the definition of inter- 
active proofs can be modified so as t.o st,ill capture 
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the notion of efficient provability and yet allow 
perfect zero-knowledge proofs lfor NP, making no 
intractability assumptions. 

This is particularily important from a crypto- 
graphic view point, as t:he possible one-way func- 
tions currently considered are very few and almost 
exclusive to number theory (e.g. integer factor- 
ization, discrete logarithm computation and ellip- 
tic logarithm computation.) If these were found 
to be efficiently solvable, the cryptographic conse- 
quences of the [GMW] result would be unusable. 

1.1 New Model 

We extend the definiiion of an interactive proof 
for language L as follows: instead of one prover 
attempting to convince a verifier that x, the input 
string, is in L, our prover consists of two separate 
agents (or rather two provers) who jointly attempt 
to convince a verifier that t is in L. The two 
provers can cooperate and communicate between 
them to decide on a common optimal strategy be- 
fore the interaction with the verifier starts. But, 
once they start to interact with the verifier, they 
can no longer send each other messages or see the 
messages exchanged between t,he verifier and the 
“other prover”. As in [GMR] the verifier is prob- 
abilistic polynomial tim.e, and can exchange upto 
a polynomial number of messages with either one 
of the two provers (with no restriction on inter- 
leaving the exchanged :messages) before deciding 
to accept or reject string 2.l 

We restrict the verifier to send messages to the 
prover in a predetrmined order. It can be shown 
that this is equivalent with respect to language 
recognition, to a model in which the verifier is 
free to talk to the provers in any order he wishes. 
Moreover, the verifier can be forced to send mes- 
sages to the provers in a predetermined order by 
using a simple password scheme. Thus, we can 
work in the easier to deal with synchronous model 
completely without loss of generality. 

The main novelty of our model is that the ver- 
ifier can “check” its inteeractions with the provers 
“against each other”. One may think of this as the 
process of checking the alibi of two suspects of a 

‘A proof-eystem for B la.nguage in this model is defined 
in a similar marmer to [GMR]. Namely, I, has a multi- 
prover inleractive proof-system if there exist a vrrifcr V 
and provers Pl, P2 such Lllat when r E L lhc prolkxbiiity 
that V accepts is greater than 2/3, and when z’ is not ill 
L then for all Pl, I’2 the probability that V accepts is lcsa 
than l/3. 

crime (who have worked long and hard to prepare 
a joint alibi), where the suspects a.re the provers 
and the verifier is the interrogator. The interroga- 
tors conviction that the alibi is valid, stems from 
his conviction that once the interrogation starts 
the suspects c;.n not talk to each other aa they 
are kept in separate rooms, and since they can 
not anticipate the randomized questions he may 
ask them, he can trust his findings (i.e receiving a 
correct proof of the proposition at hand). 

Applying this model in a cryptographic sce- 
nario, one may think of a bank customer hold- 
ing two bank-cards rather than one, attempt.ing 
to prove its identity to the bank machine. The 
machine makes sure that once the two cards are in- 
serted they can no longer communicate with each 
other. In this scenario, the provers correspond to 
the two cards, and the verifier to the bank ma- 
chine. 

1.2 Results 

1.2.1 Perfect Zero Knowledge Multi- 
Prover Interactive Proofs 

We show, that in our extended model all NP lan- 
guages have a perfect zero-knowledge interactive 
proof-system, making no intractability assump- 
tions. 

The protocol for NP languages proposed, re- 
quires the two provers to share either a polyno- 
mially long random pad or a function which they 
can compute but the polynomially bounded veri- 
fier can not. It is well known that such functions 
exist by counting arguments. Most of the burden 
of the proof lies on one predetermined prover. In 
fact, the “other” prover sole function is to peri- 
odically output segments of the random pad he 
shares with the “primary prover”. The protocol is 
constant (two) round. 

Differently then in the case of the graph non- 
&morphism and quadratic non-residousity proof- 
systems in [GMR], [GMW], paralIe1 executions of 
the protocol remain perfect zero-knowledge. 

More generally, we show that any lauguage 
which can be recoguiaed in our extended model, 
can be recognized in perfect zero-knowledge nlrzk- 
iug no intractability wsulnptions. 

Our culist,ructivu does iiot ~LSSIIIIIL’ that the ver- 
ifier is polynomial time bounded. The .LS.C;~II,~~)I ion 
that there is no cormnunication t)t:twCelI t II(, I,wo 

I14 



provers while interacting with the verifier, must 
be made in order for the verifier to believe the va- 
lidity of the proofs. It need not be made to show 
that the interaction is perfect zero-knowledge. 

I .3 Language Recognition Power 
of New Model 

It is interesting to consider what is the power of 
this new model solely with respect to language 
recognition. Clearly, NP E IP which in turn 
is a subset of languages accepts by our extended 
model. We show that adding more provers than 
two, adds no more power to the model. 

We also show for every language possessing 
a two prover interactive proof there exists an- 
other two prover interactive proof which achieves 
completeness, i.e. the verifier will always accept 
strings which are in the language. 

Fortnow, Rompel and Sipser [FRS] have shown 
that two provers can accept any language in IP 
(one-prover model with polynomial number of 
rounds) using only a constant number of rounds. 
They also show that three provers can accept in 
a constant number of rounds all languages recog- 
nized by a multi prover model. 

Feige, Shamir and Tennenholtz [FST] look at a 
model they call the k-noisy oracle model, in which 
the verifier is interacting with k oracles all of which 
but one may be dishonest. Baaed on the assump- 
tion that one of the oracles is trusted, they show 
that P-space langauages can be recognized in a 
‘Z-noisy oracle model. 

1.4 Open Problem 

Whether the two-prover proof-system is actually 
more powerful with respect to language recogni- 
tion than the original one-prover interactive proof- 
system of [GMR],[B], remains an open problem. 

Even the simplest case of two-round two-prover 
proof-system in which the verifier sends the re- 
sult of his coin tosses first (some to prover 1 
and some to prover 2), receives responses (from 
both provers) on the subsequent round, and then 
evaluates a polynomial time predicate to decide 
whether to accept or reject, is not known to lie in 
PSPACE. Hastad and Mansour [HIU] show that 
resolving this question in the positive will imply 
that NP#poly(log) - SPACE. 

2 Definitions 

Definition 1: Let 4, Pz,..., 4 be Turing machines 
which are computationally unbounded and V be 
a probabilistic polynomial time Turing machine. 
All machines have a read-only input tape, a work 
tape and a random tape. In addition, Pt, P2 ,.., pi 
share an infinite read-only random tape of O’s and 
1’s. Every Pi has one write-only communication 
tape on which it writes messages for V. V has 
k write-only communication tapes. On communi- 
cation tape i, V writes messages to Pi. We call 
(9, %, . . . . pk, V) a k-p rover inieraclive protocol. 

Remark 1: Fortnow, Rompel and Sipser [FRS] 
remark that the above can be modeled as a proba- 
bilistic polynomial time Turing machine V and an 
oracle p such that queries to p are prefixed always 
by 1 < i 5 k, corresponding to whether the query 
is directed to prover i. Each query contains the 
history of the communication thus far. 

We note that although this memoryless formula- 
tion is equivalent to the i-prover formulation with 
respect to language recognition, it is not equiva- 
lent when zero-knowledge is considered. In this 
latter case the provers must be able to check that 
the history is indeed what is claimed by the ver- 
ifier, before answering the next query. Since the 
verifier is not untrusted, the provers can not be 
memoryless. 

Definition 2: Let L C (0, l}‘, We say that L has 
a k-prover interactive proof-sysrem(IPS) if there 
exists an interactive BPP machine V such that: 

39, P2, ‘a’, Pk such that (PI, Pz, . . . . Pk, V) is 
a k-prover interactive protocol and Vx f L, 
prob( V accepts input z) 2 i. 

VP1 I p2, **+, pk such 
that (PI, P2, . . . . 4, v) is a k-prover interac- 
tive protocol, prob( V accepts input z) 5 5. 

Remark 2: if L has an k-prover interative proof- 
system and condition (1) holds for a particular pl 
&, . . . . 4, then we say that (&,jg,pk, V) is a k- 
prover interactive proof-system for L. 

Remark 3: if L has an two-prover interative 
proof-system, then L has a two-prover interac- 
tive proof-systems ( 4, P2, V) such that for I E L, 
prob( V accepts z) = 1. See Theorem 5. 

Remark 4: For convenience, without loss of gen- 
erality, we assume that every verifier 1’ outputs 
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his coin tosses at the end of hirs interaction with 
the Pi’s. 

Definition 3: Let IPb =: (L which have k-prover 
interactive proof-system }. 

The follow- 
ing definition of perfect zero-kowledge is identi- 
cal to the Goldwasser-Micali-R.ackoff [GMR] def- 
inition of perfect zero-knowledge in the l-prover 
model. 
Definition 4: Let (P;,&, . . . . 4, V) be a k- 
prover interactive proof-system for L. Let 
Viewp,,p~,...,p,,v(z) denote the verifier’s view 
during the protocol (namely the sequence of mes- 
sages exchanged between. the verifier and the two 
provers including the last message of the veri- 
fier which contains his coin tosses - see remark 
4 above). This is a probability space taken over 
the coin tosses of V and the joint random tape of 
Pl,PZ ,...,Pk. We say that, k-prover interactive pro- 
tocol (PI, 4, . ..( Pk, V) is perfect zero-knowledge 
for V if there existe a BPP machine M such 
that M(t) = Viewp,,p, ,..., pk,v(z). We say that 
L has a k-prover perfect zero-knowledge proof- 
system if there exists provers PI, Pz,...,Pk such 
that for all BPP verifiers v, there exists a prob- 
abilistic Turing machine M such that for all t in 
L, M(x) = ViewP,,Pa,,,,,,h ~(2) and M(z) termi- 
nates in expected polynom’ial time. 
3. Statelnent of our Results 
Theorem 1: Every L E NP has a two-prover 
perfect zereknowledge interactive proof-system. 
Proposition 1: parallel executions of the perfect 
zero-knowledge interactive proof-system for N P 
remain perfect zero-knowledge. 

Theorem 2: Every L (5 IPz has a perfect zer+ 
knowledge interactive proof-system. 

Theorem 3: Any two party oblivious function 
computation can be done in this model. 
Theorem 4: For all k 2 2, if L E IP1, then 
LGIP2. 

Theorem 5: If L E IPz then 35, .Pz, V such 
that (PI, Pz, V) is a two-prover interactive proof- 
system for L and for all x E L, Prob( V accepts x 
) = 1. 

3 Key Ideas 

A general primitive used in complexity based cryp- 
tography (and in particular in the proof that NP 

is in zero-knowledge under the assumption that 
one-way functions exist)is the ability to encrypt a 
bit so that the decryption is unique. In our model, 
encryption is replaced by a commitment protocol 
to a bit such that the bit is equally likely to be 0 
or 1 (informatioll theoretically), and yet the prob- 
ability that a different bit can be decommited (i.e 
reveaIed) is less than i(this fraction can then be 
made arbitrarily small using standard techniques). 
The idea is that one prover is used to commit the 
bit, and the other to reveal it. 

Another important primitive is that of oblivi- 
ous circuit evaluation. This primitive allows two 
parties, A and B, possessing secrets i and j re- 
spectively, to compute some agred upon function 
f(i, j) in such a way that A learns nothing, and B 
learns only f(i, j). The original implementation 
of this protocol, due to Yao TyaoSSa], requires the 
existence of trapdoor functions. In fact, obliv- 
ious circuit evaluation can not be implemented 
without cryptographic assumptions in the stan- 
dard two party scenario. However, we show that 
oblivious circuit evaluation between verifier and 
1 prover can be done without assumptions in the 
two-prover model. The proof relies on a result of 
[K] reducing oblivious circuit evaluation to a sim- 
pler protocol, known as l-out-of-2 oblivious trans- 
fer, which was reduced by [C] to a still simpler 
protocol, known as oblivious transfer. This last 
protocol is implemented in the two-prover model. 

4 Proof of Theorem 1: How 
to Commit Bits 

We first show that every language in NP has a per- 
fect zero-knowledge two-prover interactive proof- 
system. 

Theorem 1: Every L in NP has a two-prover 
perfect zero-knowledge interactive proof-system. 
Idea of Proof: 

Let (PI, fz, V) denote a multi-prover protocol 
which receives as input the graph (S = (V, Z). Let 
PI and PZ share an infinite random pad R such 
that R = qrz...rk... where ri E {0,1,2}‘. Let 

2Altemativcly, R can be replaced by the outcome of 
f(z) where I is the input and f : {O,l)*- > {O,l)’ is a 
function such that for all z E {O,l)*, for alJ i < If(z)l, 
the i-th bit of j(z) is equally likely to be 0 or 1 with re- 
spect to any probabilistic polynomial time machine. Such 
functionschtr be shown to exist by standard diagonalization 
techniques over all probabilistic polynomial time machines. 
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n = IV1 . 
Let us quickly review3 one of the, by now stan- 

dard proofs ([CMWl], [Bl]) that NP is in zero- 
knowledge under the assumption that one-way 
functions exist. 
Review: The prover is attempting to convince 
the verifier that G is Hamiltonian. The prover 
publicizes an probabilistic encryption algorithm E 
(as in [GM], [yao82a])4 The prover and verifier 
repeat the following protocol r~ times: 

STEP 1:prover randomly permutes the vertices oJ 
graph G (using permutation 7r) to obtain graph G 
and sends to verifier 

0 an n x n matrix a = { cqj} where Qij in E( bij) 
and bij = 1 if edge ij is present in the G and 
0 otherwise. 

l p E E(x), i.e an encryption of K. 

STEP 2:verifier chooses at random coin E (0, l}, 
and sends coin to the prover. 

STEP 3: If coin = 1, prover decrypts p and aij 
for all i,j 5 n and sends decryptions to verifier. 
If coin = 0, prover decrypts those Qij such that 
edge ij is in the Hamiltonian path in &;. 

STEP 4: If prover is unable to preform step 3 
correctly, verifier rejects. Otherwise, after n iter- 
ations of steps 1 through 4, verifier accept. 

End of Review 

Returning to the two prover model, prover 9 
replaces the prover in step 1 of above protocol and 
prover Pz replaces the prover in step 2 of above 
protocol. Algorithm E is no longer a probabilis- 
tic encryption algorithm based on the existence 
of one-way functions aa in [GM] or wao86a], but 
rather a commitment algorithm computed as fol- 
lows. 

Let (TO, 61 : (0, 1,2}- > (0, 1,2} be such that 

(1) for all i, u*(i) = i, 

(2) at(O) = O,al(l) = 2 and ~~(2) = 1. 

Let mh be the k-th bit to be committed to in 
the protocol. 

To commit ml: : 

3 the proof reviewed is from (Bl] 
‘The encryption algorithm .E is public. We denote y E 

E(m) to mean that there exists string r such that algorithm 
E using T for his coin tosses, on input m, produces?. Given 
y there exists unique m, r such that E, on coin tosses r and 
input m outputs 7. To decrypt y both m, r are revealed. 

V chooses at random Ck E (O,l} and sends 
ck to 4. 

PI sets E(cr, fnk) = b,,(Q) -I- mk mod 3, 
where ?k E {0,1,2} is read off the random 
tape PI shares with Pz, and sends E(ck, mk) 

to v. 

To reveal the Lth bit committed in the proto- 
col, V and P2 engage in the following protocol. 

To reveal the L-th bit: 

l V sends k to Pz. 

l Pz sends V the string Pk. 

l V computes ber(ra) and sets mk to 
(E(Ck, mk) - u,,(n)) mod 3. 

Note: P2 does not know Ck and has never seen 
E(ck f mk). 

We prove two properties of the above pair of 
commit-reveal protocols. First, since PZ sees nei- 
ther E(ck, mk) nor CL, but knows exactly what 
PI’S program is, the probability that P2 success- 
fully reveals a bit value different than the one PI 
committed to is less than 4. 

Claim 1.1: Vr E (0, 1,2}, m E (0, l}, 

prob( ? is s.t. E(c, r, m) = E(c, +,fZ)) 5 f 

Comment: To decrease the probability of suc- 
cessfuly cheating from 4 to &, PI preform n com- 
mits to mk and P2 prefobms n reveals correspond- 
ingly. 

Knowing k, E(ck, ml,) and CL gives the verifier no 
advantage in guessing ml.. 

Claim 1.2: Vc f (0, l}, 

prob( m = OIE( c, r, m)) = prob( m = lIE(c, r, m)) 

Proving now that the altered mutli-prover 
Hamiltonian cycle protocol constitutes a two- 
prover interactive proof for the Hamiltonian cy- 
cle problem follows directly from [Bl]‘s proof and 
claim 1. 

Proving that the protocol is 
perfect-zero-knowledge is more subtle. 

To this end, we exhibit a probabilistic Turing ma- 
chine M such that 

1 =- 
2 
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for HamiItonian graphs G, M(G) terminates 
in expected polynomial time. 

for all p such that (P,, Pz, 6’) is a two-prover 
protocol, and for arll Hamiltonian graphs C, 
M(C) = v iewq ,pa,p. (where 9, PZ are hon- 
est provers as speci.fied above.) 

WLOCI let the number of coin tosses of verifier 
and prover on input 6 := (V,E) where IV1 = n be 
be bounded by polynomial Q(,n). 

Simulator M program: 
above in [Bl]‘s proof) 

_ (tailored after steps l-4 

STEP 1: M chooses p E (0, l}Qtn) at random 
for the coin tosses to be used by p. and sets R = 
r1?3...q . . . . IRI C (0, l)Q(n) where rt E (0, 1,2} 
are chosen at random. (V(p,G) will denote the 
program P on input C and coin tosses p.) M 
picks a random permultation ‘r of the vertices of 
graph G to obtainthe permuted graph fi and an 
n x n random binary m,atrix MAT. Next, M sim- 
ulates a commitment protocol to K and MAT aa 
follows. To simulate a. commitment protocol to 
the k-th bit m: M runs ri(p,C) to obtain c, com- 
putes E(c, m) = u,, (rr:) + m mod 3 for rk f R, 
and writes E(c, m) on f$(p,G)‘s tape. 

STEP 2: M continues running ?(p, G) to obtain 
coin. 

STEP 3: if coin = 1, M reveals x (as P2 would 
do in real protocol) by writing the appropriate r E 
R on v(p, C)‘s tape. Revealing MAT to V is more 
involved, as follows. Let MAT = {mij 11 5 i, j 5 
n} and (Y = E( C, mij ) q : a,(r) + mij mod 3 where 
r E R is the r used in step 1 to commit mij. 
Let + be such that Q: =: a,(+) +?iiij mod 3. Note 
that such + always exists and since M knows c 
(differently from Pz in the real protocol) A4 can 
compute it. Set 

r if mij = 1 and ij is an edge of I?‘, 

r’= or mij = 0 and ij is not an edge of d 
F if mij = 0 and ij is an edge of C, 

or T?lij = 1 s.nd ij is not an edge of c 

Then M reveals i: to 6’(p,G). 

If coin = 0, M selects n ij entries at random in 
MAT such that no two entries are in the same 
column or in the same row. Set 

f= r if T?l;j = 1 
i if ??lij = 0 

Where again r E R from step I such that (r = 
E(c, Vtij) = UC(r) f m;j mod 3, and I: is such that 
eij = UC(+) + Ziij mod 3. Next, IIf ~CVCZI~S P 1.0 

v(p, C). Finally, M sets R to be R with the values 
of i substituted for r used to commit the matrix 
MAT. 

STEP 4: M runs p to either accept or reject. It 
then outputs the transcript of its exchanges with 
V foollowed by ii. DONE 

It is clear that, M on G operates in polynomial 
time in the running time of v. Since 0 is assumed 
to be probabilistic polynomial time, so is M. 

To show that the probability space generated by 
M is identical to that in ViewC,,Pa,PI, we notice 
that for fixed p ( coin tosses of the verifier) and 
fixed fi (joint random tape of PI and P2) the out- 
put of M(G) is identical to ViezuCp,,q,pj. This is 
so as hl actually runs 3 to obtain his moves and 
therefore v’s moves are guaranteed to be perfectly 
simulated, while M itself follows the moves PI, P2 
would have made on joint random tape l?. Since p 
was picked by M at random at step 1, it remains 
to argue that the probability that R was chosen 
by PI and Pz is the same as the probability that i? 
was output by M. This is trivially true by claim 
1.2. a 

We claim, without proof here, that independent 
executions of the above protocol for any language 
L E NP can be performed in parallel and the 
resulting protocol will still be a P.-prover perfect 
zerc+knowledge proof-system for L. 

In the l-prover model the question of whether 
it is possible in general to preform parallel exe- 
cutions of perfect zero-knowledge protocols main- 
taining perfect zero-knowledge is unresolved. In 
particular, it is not known how to parallelize t.he 
proof-systems for quadratic residuosity and graph 
isomorphisrn. 

5 Proof of Theorem 4: IPk = 
IF2 for all k 2 2 

We now show that any L-prover (PI, . . . . 9, V) 
interactive proof-system for language L can be 
converted into a 2-prover (PI, &, v) interactive 
proof-system. The idea is as foUows. 

Verifier v tosses all his coins and sends them to 
prover $1. In return, & sends p the entire his- 
tory of communication that would have occured 



for theses coin tosses between the real verifier V 
and the k real prover? fi’s. If thisis an accepting 
conversation for V, V now uses P2 to check the 
validity of the conversation. This is done by p se- 
lecting at random an original prover Pi, and sim- 
ulating with 4 the conversation between V and 
Pi on these coin tosses, If tile conversation does 

not match the conversation sent by pl then v re- 
jects, otherwise the protocol is repeated k times 
(in series) and finally 3 accepts. 

Note that the number of rounds in the simu- 
lating protocol is kzt, where t is the number of 
rounds in the k-prover interactive proof-system. 
Fortnow, Rompel and Sipser in [FRS] show that, 
for each L E I&, there exists a 3-prover IPS for 
L with only a constant number of rounds. 
Theorem 8: Let k 1 2. If L E IPc then L E IPz. 
proof: Let L have a k-prover interactive proof- 
system (PI, . . . . pk, V). Let Ik = {1,2, . . . . k,$} and 
P denote the coin tosses made by the verifier. For 
a w E L, the optimal provers PI, . . . . 4 and the 
verifier V can be thought of as deterministic func- 
tions Pi : c’ -+ c’ and V : c’ x Ik x c’ + 
C’U(~ccept, reject} such that gji = Pi(hj-li#Zj) 
denotes the j-th message of the i-th prover to 
the verifier, zj’ = V(r, i, hjvl, .., hFel) denotes 
the j-th message of the verifier to the i-th prover, 
and hj’ = #Zi#Yf#...#tj’#yj’ denotes the his- 
tory of communication as prover i sees it at 
round j. Let 1 the total number of rounds, then 
V(r, 8, hi, . . . . ht) E {accept,reject). Let Q be a 
polynomial such that (~1, [zjl, ivjl < Q(lwl). 

We now define provers PI and & and verifier p 
in the simulating two-prover protocool A, $$, I?. 

On input w, 
STEP 1: c- chooses r E (0, I}Q(lwl) at random, 
sends P to 4. 

STEP 2: $‘I sends htl , . . . . ht”: to v where the hi’s 
are computed accordin 
V. If V(r, %, htl, . . . . hl 55 

to functions Pi, . .^, Pk and 
) = reject then V rejects 

and halts. Otherwise p picks 1 5 i _< k at ran- 
dom, sets j = 1 and continues. 
STEP 3: v sends uj = V(r,i,Ajel) t,o 4, where 
‘I$ = #u{#u~#...#u~#uj for j 5 t. if j = t and 
Af = hl’ then p accepts and halts , otherwise v 
rejects and halts. 

STEP 4: I-$ sends W; = Pi(hj-,#uj) to V. Set 
3 ’ = j f 1 and GOT0 STEP 3. 
claim 5.1: VW E L, 

prob( $’ accepts w) = prob( V accepts w) 

proof: If i)i follow the protocol as described above 
and compute the ht’ according to the functions of 
the corresponding Pi’s, then for every sequence of 
coin tosses r on which V would accept so would 
3. 

clniw 5.2: if 10 e L, prot)( C’ ilcceptn IU) 5 
(prob( V accepts w) + e-‘. 

proof: As- 
sume w # L. Then, the prob( p accepts w) ,< 
prob( V accepts w(Vi < kVj < t, yi = Pi(hj-I))+ 
prob( ti accepts w131,j s.t. ,yj # &(hj-l)) 5 
prob( V accepts w)+ prob( V(T, 8, ht’, . . . . htk) = 
accept, and 
31 5 k, s.t. h,’ # Ai, but i of step 4 is s.t. h,’ = 
if) _< prob( V accepts w) + (1 - i). 

If the above protcol is repeated ka indepen- 
dent times, the probability of success i; re- 
duced to prob( V accepts ‘UI) + (1 - i)’ < 
prob( V accepts w) + e”. 

This completes the proof, and L is indeed in 
IP2. I 

6 Proof of Theorem 5: Com- 
pleteness 

Goldreich, Mansour and Sisper (GMS] showed 
that any L E IP has an interactive proof-system 
for which strings in L are always accepted. We 
show the corresponding property for any L E I&. 

Theorem 6: If L E IP2, then there exists a 2- 
prover interactive proof-system (PI, P2, V) for L 
such that for all x E L, prob( V accepts ) = 1. 

proof: Suppose (PI, Pz, V) is a a-prover in- 
teractive proof-system for L such that 6 = 
prob( V accepts Iw not in L} and the number of 
coin tosses on input w which V makes is a poly- 
nomial Q((w[). W e s h ow a simulating 2-prover in- 
teractive proof-system (PI, &, V) for L which also 
achieves complet,enes. The simulation is done in 
two stages. In stage 1, wt use the i&a of the com- 
pleteness proof for the l-prover interactive proof- 
system model by Goldreich, Mansour and Sisper 
in [MGS] (based on Lautman’s Lemma) where & 
plays the part of both PI and P2. In stage 2, as in 
the proof of the theorem of section 6, V uses i)z 
to check the validity of stage 1. 

Let t denote the number of rounds in 
(PI, P2, V). Again, consider 9, PZ and V as de- 
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terminstic functions as in the proof of theorem of 
section 6. 

Let P denote the coin, tosses of the verifier. For 
i = 1,2, let hf(r) =: #zf#yj;#...#zi#yf where 

’ x’? = 3 V(r, i, hj-,(r)), and 9: =: Pi(hj-,(r*)#~,i.). 

Define W = {rlV(r,‘$, hi, I$) = acce@}. Note 
that for w E L, && 2 (1 - c) and for w 
not in L * < c. Lautman[L] shows that 
VW E L3s1, . . . . sqlwl), jsil = Q(lwl), s.t.Vr, ]r( = 
Q(]zo]), 31 s.t. P $ sy E W. We use this in a man- 
ner similar to [GMS]. 

On input w, 

STEP 1: pi sends v si,...,s~(l,,,l) such that si E 
(0, l)Q(lwl) 
STEP 2: P sends r to Pr where r is randomly 
selected in (0, l}Q@l) 

STEP 3: & sends to P, hf(sj @ r) for i = 1,2 
and 1 < j 5 Q(]w]). (These are the histories of 
conversations which would have been exchanged 
in original protocol (PI,, Ps, V) on coin tosses r 13 
sj,l 2 j I Q(lwl).) 
STEP 4: if V(r@sj, h:(r@sj), hf(r@sj)) = reject 
for all 1 5 j < t, then p rejects. If 31 s.t. V(r@ 
81, #(rCBsl), jrT(r@s,)) = accept, then goto STEP 
5. 

STEP 5: $’ chooses i ci {1,2} at randorn. It then 
interacts with prover 1=z in the same way that V 
and Pi would have on coin tosses r $81. If this in- 
teraction produces exactly the same history string 
hf(r $ $1) sent by & in STEP 3 then \i accepts, 
otherwise it rejects. 

The above protocol is repeated Q(]ur])s times, 
and the verifier accepts if and only if he accepeted 
in any of these iterations. 

Claim 1: prob( V acc:epts Iwl E L) = 1 

proof: if 4, and i)2 follow the program outlined 
above, follows directly from [L] and [GMS]. 

Claim 2: prob( v accepts Iw] not in ,c) 5 5 

proof: We now can not assume that 4, pz follow 
the protocol. Let hij, for i = 1,2, 1 < j 5 Q(]w]) 
denote the strings sent by 4 in STEP 3. 

prob( V accepts in one iteration )u~ # L) 5 

Now, prob( V accepts in Q(]uJ])~ iterat.ions (UJ $! 
L) = (1 - hT + Q(]w]) t)Q”m ‘” which is less 
than a l/3 for E sufficiently small. QED 

7 Proof of Theorem 2: Out- 
line 

Overview 

The proof of Theorem 2 is very long and compli- 
cated. The main idea of the proof is the implemen- 
tation of a technique we call encrypted conversa- 
lions. This is a general technique for transforming 
proof systems into zero-knowledge proof systems. 
A protocol that has been transfo,rmed using this 
technique closely mirrors the original protocol. III- 
deed, all the questions and answers of the trans- 
formed protocol can be mapped to questions and 
answers in the original protocol. However, these 
questions and answers are all strongly encrypted, 
in an information theoretic sense, using keys that 
are known by the provers, but not by the verifier. 
Because the conversation is so strongly encrypted, 
the verifier gets no information, so the protocol is 
zero-knowledge. 

Two concerns such a transformation must deal 
with are 

How can the verifier, who in a strong sense 
knows little of what has happened in an en- 
crypted conversation, be convinced that the 
conversation indeed mirrors a valid conversa- 
tion from the original protocol? Also, how 
can the verifier be convinced that the un- 
encrypted conversation would indeed have 
caused the original verifier to accept? 

How can one insure that a malicious verifier 
cannot subvert the encrypted protocol in or- 
der to acquire information in some way? 

We deal with the first concern by showing how the 
provers and verifier can take an encrypted tran- 
script of the first i rounds of a conversation, and 
compute an encrypted transcript of the first i + 1 
rounds of a conversation. This is done in such a 
way that the verifier can verify with high probabil- 
ity that this is the case. We deal with the second 

XI prob( 31, V(p CB SI, hll, &I) = accept)&, & honest) 
+prob( ii, & not caught in step 5 but 3j, i, hi(r@ 

concern by insuring that the encrypted conversa- 

sj) # hij) 5 Q(l~I)~~+(l-~&;) = I-~J+ 
tion, if generated at all, will mirror a conversation 
between the prover and an honest verifier. Thus, if 

&(I4 . 6 the verifier follows the simulation, he will only find 
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out whether the original verifier, on a random set 
of coin tosses, accepted. Since the original verifier 
accepts with probability 1, this is no information. 
Furthermore, we guarentee that if the verifier does 
not go along with the simulation, he will not get 
any information. 

In order to accomplish these goals, we use a 
very useful tool called oblivious circuit computa- 
tion. This tool, first developed by Yao [Yao86a], 
is a protocol by which two parties, A and B, pos- 
sess secrets i and j respectively, and have agreed 
upon some circuit f. At the end of the protocol, A 
learns nothing about j, and B learns f(i, j), but 
nothing more about i than can be inferred from 
knowing j and f(i, j). The provers and verifier 
can compute the next step of an encrypted con- 
versation by obliviously evaluating a circuit. We 
sketch the reduction from encrypted conversations 
to oblivious circuit evaluation in appendix A.3. 

A large portion of our construction is devoted to 
implementing oblivious circuit evaluation. Yao’s 
implementation of this protocol relies on complex- 
ity theoretic assumptions, and is therefore unsuit- 
able for our purposes. More recently, however, 
this protocol was implemented using a subproto- 
co1 known as oblivious transfer in lieu of any cryp- 
tographic assumptions[K]. In the standard, two- 
party scenario, oblivious transfer cannot be im- 
plemented without complexit,y theoretic assump- 
tions. However, we show that oblivious transfer 
can be implemented in the two-prover scenario 
without recourse to these assumptions. Our im- 
plementation uses a result of Barringtion [Ba] that 
NC’ languages can be accepted by bounded width 
branching programs. We sketch our implementa- 
tion in appendix A.2. 
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A Structure of the Trans- 
formed Protocol. 

Given a P-prover IPS, we transform it into a zero- 
knowledge 2-prover IPS that has three distinct phases. 
These stages will be referred to as the cornmilulphase, 
the oblivious transfer phase,. and the encrypteo’conver- 
sation phase. In the commital phase of the protocol, 
the two provers commit a set of bits to the verifier. 
In the oblivious transfer phase of the protocol, the 
provers and verifier create a random sequence 0 of 
oblivious transfer bits. Sequence 0 has the following 
three properties. 

l All of the bits of 0 are known to the provers. 

l Each bit in 0 is known to the verifier with prob- 
ability g. 

l Neither prover knows which hits in 0 the verifer 
knows. 

The third and final stage actually simulates the origi- 
nal 2 prover IPS. In this stage, sequence 0 is used to 
perform oblivious circuit co,mputation, which then al- 
lows the use of 1.11~ c1tcrypl.1~1 couversatitrll tc~~lluiquf:. 
We IlOW describe the: three. phases in greater tlet,ail. 

A.1 The Conullit;al Phase. 

It is necessary for the two provers to be able to com- 
mit bits for use in the second, oblivious transfer phase 
of the protocol. ‘l’lhis commital is of the same type 
as in the proof that any language in NJ’ has a zero- 
knowledge Z-prover IPS. We use the same commital 
protocol as is used in Section 5. 

The bits committed to in the commital phase may 
be random. In order to commit a bit b in the oblivious 
transfer phase, a prover can tell the verifier the value of 
b @ b,, where bc is a bit committed to in the commital 
phase. To decommit b, t.he prover can then simply 
decommit b,. 

A.2 The Oblivious Transfer Phase. 

The oblivious transfer phase of the zero-knowledge IPS 
consists of several parallel evaluations of the oblivious 
transfer protocol, described below. 

Introduction to Oblivious Transfer 

We can view oblivious transfer as a protocol be- 
tween two parties, A and B. Initially, A knows some 
random bit b, which is unknown to B. At the end of 
the protocol, the following two conditions hold. 

(The Transfer Condition) One of the following 
two events has occured, each with probability i. 
Either B learns the value of b, or B learns noth- 
ing. Player B knows which of t.he two events 
occurred. 

(The Obliviousness Condition) Player A receives 
no information about whet,her or not R learned 
the value of b. 

Oblivious transfer, first introduced by Rabin[R], 
is a powerful cryptographic primitive. Its applica- 
tions include contract signing [EGL] and oblivious 
circuit evaluation ([Yj, [GMW2], [GHY], [AF], [GV], 
[K]). The first implementation of oblivious transfer 
by Rabin [R] was based on the difficulty of factoring 
and only worked for honest parties, Fischer, Micali, 
and Rackoff[FMR] presented the first implementation 
based on factoring and robust against computationally 
bounded adversaries. Even-Goldreich-Lempel[EGL] 
reduced the intractibility assumption t.o the existence 
of trapdoor permutations. 

Unfortunately, these reductions are all crypto- 
graphic in nature, and thus of no use to us. Our im- 
plemrnt,ation. which is not based on any crypt,ographic 
assutnl)tiolls, c:xI&)its 1.1~ 1iLc.k of t1irc.c.t. c.omunicatiou 
bt~twrc~il thct t.wo provers. 

A Varirrxlt of Ol&vioua Trax~sf~r in the Z-Pravar 
Moclc*l. 

We implement an analog to oblivious transfer in 
the two-prover model. At the beginning of tire proto- 
col, the provers know(have chosen) solve random bit b, 
which tltc verifier does not know. l’hr provers and the 
verifier have also agreed on a security parameter ZC. 
At the end of the protocol, the following variants of 
the usllill transler and obliviousness conditions hold. 



1. (The Transfer Condition) One ot the following 
events OCCUIE with probability ). Either the ver- 
ifier fully learns the value of 6 (i.e. can predict 
b with probability l), or the verifier gains only 
partial knowledge of b (i.e. cart predict b with 
probability i). The verifier knows which of the 
two events occurred. 

2. (The Obliviousness Condition) Let A’ denote the 
security parameters. For all c > 0, and for K 
sufficiently large, if the two provers communicate 
less than K bits of information, they cannot pre- 
dict, with probability i + l/K’, whether the ver- 
ifier fully learned b. 

Our implementation of this oblivious transfer proto- 
col requires a constant number of rounds. The total 
number of bits of communication between the provers 
and the verifier will by polynomial in K and the size 
of the input. 

Both the transfer and the obliviousness conditions 
are relaxed versions of the standard ones. The transfer 
condition is relaxed purely for ease of implementation. 
Using the techniques of CrCpeau-Kilian(CK], we can 
show that achieving this weakened transfer condition 
is equivalent to achieving the ideal transfer condition. 
The standard obliviousness condition, however, can- 
not be implemented in thie model if the two provers 
are allowed to freely communicate. To get around this 
difficulty, we show that for interactive proof systems, 
a set of bits transferred under the nonideal oblivious- 
ness condition may be used in place of a set of bits 
transferred under the ideal obliviousness condition. 

Branching programs. 

The main idea behind the oblivious transfer proto- 
col is a simulation of width 5 permutation branching 
programs(WSPBP), as defined in [B]. Before describ- 
ing the protocol, we first present a slightly nonstan- 
dard way to specify a WSPBP. We then show a way 
of randomizing this specification. Using this random- 
ized representation, we can then describe our oblivious 
ransfer protocol. 

WSPBP’s may be formally thought of as having 
some polynomial p(n) levels, each with five nodes. On 
level 1 there is a distinguished start node a; on level 
p(n) there is a distinguished accept node a. For each 
level, i, 1 5 i < p(n), there is an input variable, which 
we denote by Vi, and two 1 - 1 mappings, fi and fl, 
that map the nodes at level i to the nodes at level 
i + 1. Intuitively, the m’apping .& tells where to go if 
the input variable vi is 0, and fi tells where to go if ui 
is equal to 1. A branching program may be evaluated 
by on a set of inputs by computing 

Branching- Program(zl,. . . , z,,) = 

If this value if equal to the accept node o, the branch- 
ing program accepts, otherwise, it is rejects. An ex- 
ample of a program is in fig. 1. 

As described above, our branching programs consist 
of variables, nodes, and functions from nodes to nodes. 
For our protocol, we need an alternate representation 
for branching programs. Given a W5PBP, we first pick 
a random mapping y, that maps nodes to { 1,. . ,5), 
subject to the constraint that no two nodes on the 
same level are mapped to the same number. We then 
replace each function f;, k E (0, l}, by a permutation 
ha, subject to the constraint 

hl(Y(N)) = r(f;(N)), 

for all nodes N on level i. From equations (A.2.1) and 
(A.2.2) we have 

7(Branching- Program(zl, . . + 9 2n)) = 

This isomorphism between evaluating the permuta- 
tions hi on 7(s) and evaluating the original branching 
program proves very useful in implementing oblivious 
transfer, as we will show in the next section. The fal- 
lowing simple lemma is useful in analyzing the infor- 
mation tranrferred by the oblivious transfer protocol 
we will present. 

Lemma A.l: Suppose that for each level, i, of a 
branching program, exactly one of the functions hi 
or hi is specified. Suppose also that for some level 
j, 7(N) is specified for all nodes N on level j. Then 
there is exactly one way of consistently defining y and 
the functions hf. 

Proof Outline: First, we note that specifying y spec- 
ifies all the h’s. Thus we need only show that there is 
exactly one way of consistently defining y. By equa- 
tion A.2.2, we have 

7(N) = /ai-’ (r(fL(W)), and 

r(N) = h;(r(f:-‘(N))). 

(A.2.4) 

(A.2.5) 
If 7 is defined on level i, equation(A.2.4) uniquely ex- 
tends it to level i - 1, and equation (A.2.5) uniquely 
extends it to level i + 1. Inductively, one can uniquely 
extend 7 from row j to the entire branching program. 
This extension is easily shown to be consistent. 1 

The oblivious transfer protocol. 

We now outline the oblivious transfer protocol be- 
tween the two provers and the verifier. For the ex- 
position, we assume that the provers follow the proto- 
col. It is not hard to convert this protocol to one that 
works with adversarial provers. 

Stage 1: Let n = K’. Both provers initially start 
with some canonical WSPBP that, given two vectors 
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i = [zl 21 . . . zn] and y’ = [VI II . . . y,], accepts 
iff esp= 1. They then iagree on a random mapping 
y, and permutationa h;. ‘The provers send the verifier 
the exclusive-or of b and the least significant bit of 
Y(U). 

Stage 2: The verifier and Prover 1 pick a random 
vector 2. The verifier and Prover 2 pick a random 
vector y, As a subprotocol, the prover and verifier flip 
an unbiased coin in the following manner: Prover i 
chooses as his bit, rp, one of the bits commit ted in the 
commital phase of the protocol. The verifier chooses a 
bit ru at random, and announces it to Prover i. Prover 
i then decommits tp, The bit r, defined by r = rp $rv 
will be unbiased if either Prover i or the verifier obeys 
the protocol. 

Stage 3: Prover 1 sends the verifier the permutations 
h:,, for all i such that v, = z, for some j. Likewise, 
Prover 2 sends the verifier the permutations hti, for 
all i such that Vi = y, for some j. For example, if 
Vi = ~7, and 97 = 0, then Prover 2 would. send the 
verifier hb, but not send :him hi. 

We now show how to convert this protocol to one 
in which the provers ma.y be adversarial. First, we 
require that the provers commit their y and their per- 
mutations h: and hi at Stage 1 of the oblivious trans- 
fer protocol, using the co:mmitaJ protocol described in 
section 1. The verifier must be assured th,nt the fol- 
lowing two conditions are met. 

1. The permutations it receives correspond to those 
that have been committed, and 

2. The permutations and y correspond to a legiti- 
mate randomized branching program. 

The first condition is assured by having the provers de- 
commit their permutations in Stage 3 of the protocol. 
To assure that the second condition is met, we have the 
verifier perform a “spot-check” with probability l/n’, 
where n is the size of th.e input, and c is some pas- 
itive constant. To perform a spot-check, the verifier 
halts the oblivious transfer protocol at the beginning 
of Stage 2. Instead of using the committed WSPBP to 
implement oblivious transfer, the verifier req,uests that 
y and all the hrsh functions are revealed. The verifier 
can then check whether or not the two provers gave a 
legitimate randombed W’5PBP, and reject if they did 
not. Note that it is only necessary for the verifier to 
be able to detect cheating by the provers some poly- 
nomial fraction ofthe time. This probability may be 
amplified by successively running the zero-knowledge 
proof system sufficiently many times. 

Properties of the ObLivious Transfer I?rotocol 

The following theorems state that the above pro- 
tocol does indeed implement our variant of oblivious 
transfer. 

Theorem: (Transfer) After the above protocol has 
been executed, one of the following two events may 
occur, each with probability l/2. 

(1) The verifier knows the value of b. 

(2) The verifier can guess the value of b with proba- 
bility at most 3/4. 

Furthermore, the verifier can tell ~which event oc- 
curred. 

Proof Outline: Suppose, that f. 3 = 1. Then the 
verifier can compute $a), and thus compute b. This 
corresponds to event (1). Now suppose that 2’. y’ # 
1. The verifier knows, for each level i, exactly one of 
the functions hi or hi. The verifier can also compute 
~(a’), where (I’ is also on the last level, and a’ # a. 
Everything else the verifier knows can be computed 
from this information. Using Lemma 1, we have that 
any specification of y on the top level nodes can be 
consistently extended in exactly one way. Thus, the 
verifier has no information about y(cb) other than the 
fact that y(a) # y(a’). The verifier’s predictive ability 
is maximized when ~(a’) is even, in which case the 
conditional probability that y(a) is odd is 3/4. In this 
situation, the verifier can predict b with probability 
314. I 

Theorem: (Obliviousness) Let c be a constant, c > 0, 
and I<, the security parameter, be sufficiently large 
(possibly depending on c). If, after the above protocol 
has been executed, the two provers exchange only I< 
bits of information, they cannot predict, with probn- 
bility & + l/h”, whether the verifier received the bit. 

Proof Outline: We again use the observation that 
the verifier receives a bit iff the dot product of the two 
randomly chosen vectors is equal to ‘1. Determining if 
the verifier received the bit is equivalent to computing 
the dot product of two random vectors of size n. We 
now cite a theorem of Chor and Goldreich [CG] con- 
cerning the communication complexity of computing 
dot products. 

Theorem[CG]: Let players A and B each receive ran- 
dom n bit boolean vectors, 2’ and j.7 respectively. If 
they exchange o(n) bits, they cannot predict 2’. y’with 
probability greater than $ + l/n’, for any c. 

Our theorem follows directly from this result. u 

Ideal versus Nonideal Oblivious Transfer Bits. 

As we have meutioned above, the oblivious transfer 
protocol we implement is nonideal in the oblivious- 
ness conditions. The nonideal nature of the oblivious- 
ness condition is inherent to our model, if the transfer 
condition is indeed ideal in the information theoretic 
sense. If the two infinitely powerful provers are allowed 
to communicate freely, they can each learn the entire 
transcript of the oblivious transfer protocol, and thus 
determine everything the verifier could have learned 
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from the protocol. This violates the obliviousness con- 
dition of oblivious transfer, yielding the following ob- 
servation. 

Observation: It in impossible to implement an ideal 
oblivious transfer protocol between two provers and 
a verifier if the provers are alIowed to communicate 
freely after the protocol. 

The nonideal nature of the oblivious condition does 
not affect whether a protocol is zero-knowledge; the 
verifier learns exactly as much from a pseudo-oblivious 
source ss from an oblivous one. However, using 
a pseudo-oblivious source of bit instead of an ideal 
source could conceivably cause a protocol to no longer 
be a proof system. We show that, provided the secu- 
rity parameter for our pseudo-oblivious source is suf- 
ficiently high, this will not be the case. 

Formalizing Proof Systems with Oblivious 
Transfer Channels. 

In order to state our resuIt more precisely, we first 
augment our definition of two-prover interactive proof 
systems by adding a fourth party, a transfer source. 

Definition: A two-prover interactive protocol with 
oblivious transfer consists of a four-tuple of parties, < 
PI, Pa, V,T >. Parties PI, P2, V may be formally de- 
scribed as mappings from sequences of C’ (informally, 
the history of that party’s conversation so far) to dis- 
tributions on ~=‘(informally, the next answer/question 
given/asked by the party). 

Player r may be formally described as a mapping from 
(0, 1)’ to a distribution on triples (IP,, Xq, XV). The 
values IP, ,lq may be informally thought of as in- 
formation leaked back to the provers, Pi and P2, by 
a possibly nonideal oblivious transfer protocol. The 
possible values of Iv on input 0 = 01,~. . , Ok are 
elements of (0, 1, #}‘, of the form 0;. , . Ol, where 
0: = 0; or 0: = #. Informally, Iv consists of the bits 
that are tranferred to the verifier, V. 

For the rest of the discussion, we will anthromor- 
phize our descriptions of the PI, P2, V and T, describ- 
ing their behavior in terms of actions by players in- 
stead of as values of functions. 

Protocols with oblivious transfer are evaluated in 
nearly the same way as standard protocols, but for 
an initial oblivious transfer phase. At the beginning 
of the protocol, the provers, A and Pz, agree on a 
sequence of bits 0, which they send to the transfer 
mechanism, T. The transfer mechanism sends some 
of these bits to the verifier, and sends additional in- 
formation back to the two provers. At this point, T no 
longer plays any part in the protocol, and the players 
PI, Pz, and V proceed to interact in the same manner 
as with standard two-prover protocols. Players 9, P2, 
and V treat their views of the oblivious transfer phase 
as special inputs. 

Modeling ideal and nonideal sources in our for- 
malism. 

We now give a specification for an oblivious transfer 
mechanism which models the information received by 
the provers by the actual oblivious transfer mechanism 
we have implemented in the two-prover model. 

Specification: Oblivious transfer mechanism Tn,k is 
specified by its input from the provers and its output 
to the provers and the verifier. T,,k takes as input 
a sequence of bits 0 = 01,. . . , Olr. It flips k coins, 
bt,..., bk. Tn,k randomly selects two sequences of n el- 
ement boolean vectors, 2’1,. , zk and cl,. . . , fk, sub- 

ject to Zi . $ = bi. T&‘S Output is a~ follows. 

‘Transfer to V: T,,r, sends the verifier sequence 0’ = 
o:,..., 0; where 0: = Oi iff bi = 1. Otherwise, 0: = 
#. 
Transfer to PI: T,,,k sends PI the sequence 
e 

X1,...,?,g. 

Transfer to P2: Tn,k sends PZ the sequence 
-I 

Yl,..*,y;r* 

This model for our transfer channel makes the fol- 
lowing simplifications. The verifier does not get any 
partial glimpses at bits that it hasn’t completely re- 
ceived, whereas in the actual protocol, it may guess it 
with probability 3/4. Also, it does not get any record 
of its interactions with the provers in the oblivious 
transfer protocol. For instance, in the actual protocol, 
the verifier would also know the z’i’s and Y;‘s, whereas 
in this model it does not. These simplifications turns 
out to be irrelevant to our analysis, since the valid 
verifier completely disregards all of this extra infor- 
mation. 

More significantly, the provers do not receive any of 
the extra information they might obtain in the commi- 
tal and oblivious transfer phases. One can show that 
any pair of provers which have any chance of fooling 
the verifier must abide by rules of the commital and 
oblivious transfer protocols. The extra information 
they receive from an honest run of these protocols is 
of no value to them. They may, in a certain techni- 
cal sense, simulate all of this extra information, once 
given their respective vector sequences 2’1,. . . , z’k and 
g1 . . . , $k. Thus, the provers cannot cheat any more ef- 
fectively using our simplified channel than they could 
using the actual commital and oblivious transfer pro- 
tocols. The details of this argument are ommitted. 

Modeling an ideal oblivious transfer mecha- 
nism. 

It is fairly straightforward to model an ideal oblivi- 
ous transfer mechanism in our formalism. We denote 
this transfer channel Tp, which we specify as fol- 
lows. 

Specification: Oblivious transfer mechanism Tide” 
is specified by its input from the provers and its out- 
put to the provers and the verifier. Tidea’ takes as 
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input a sequence of bit8 0 = 01,. . *, Or. It flips k 
coins, bl, . . . , bh. It randomly relects two sequence8 of 
n element boolean vectors, zr,. . , %k and {I,. . . , gk. 
Tid*o’*s output ir as folla~we. k 

‘Transfer to V: TLdc”’ sends the verifier, sequence 
0’ = O;, . . . (0; where Cl: = 0; iff bi = 1. Otherwise, 
0: = #. 

Transfer to Fr and Ps: Tide“' sends nothing to PI 
or P2. 

A practical equivalenc:e between Tn,k and Tidea’. 

We can now state our theorem concerning the the 
practical equivalence of our oblivious transfer protocol 
and the ideal one. 

Theorem: Let < PI, Pz, V, T$p’ > be an interactive 
proof system with oblivious tra.nsfer. Here, p(n) de- 
notes some polynomial in the size of the input. Then 
there exists some some polynomial 9(n) such that 
c A, P2, V, Tq(n,,dn, > is also an interactive proof 
system with oblivious transfer. 

Brief Outline of Proof: The proof of th;ls theorem 
ia somewhat involved. We show that if one could cheat 
more effectively using a T8(nl,p(nl transfer channel, for 
9(n) arbitrarily large, then one could use this fact to 
create a protocol for computing the dot product of two 
random q(n) element boolean vectors. The communi- 
cation complexity for this protocol will depend on V 
and n, but not on the fu.nction q. From this it is pos- 
sible to use the Chor-Goldreich lower bound on the 
communication complexity of boolean dot product to 
reach a contradiction. 

In order to constuct the protocol for computing 
boolean dot products, we first define a sequence of 
transfer mechanisms that are intermediate between 
our nonideal and ideal tr.ansfer mechanisms. We show 
that if the provers can cheat using the nonideal trans- 
fer mechanism, then two consecutive transfer mecha- 
nisms in our sequence can be distinguished. We then 
show how to use these transfer mechanisms to generate 
two very simple and very similar transfer mechanisms 
whose behavior is distinguishable. Finally, we u8e the 
distinguishability of this final pair of transfer mech- 
anisms to create a protocol for boolean dot-product. 
We proceed to formalize this argument. 

mansfer mechanbms that are intermediate be- 
tween the ideal and nonideal models. 

We specify a sequence of oblivious transfer mecha- 
nisms as follows. 

Specification: Oblivious transfer mechanism TA,k is 
specified by it8 input frorm the prover8 and it8 output 
to the provers and the verifier. T& takes as input 
a sequence of bits 0 = 01,. . . ,Ok. It flips k coins, 
h,...,bk. T:,c randomly select8 two sequences of n el- 
ement boolean vectors, 2’1,. . . , 5?8 and $, . . , y’k. For 

1 < j 5 i, vectors Z, and Y; are subject to the con- 

straint Z, . Y; = b,. i’“Aek’s output is as follows. 

Transfer to V: TA,k sends the verifier a sequence 
0’ = 0; ( . , 0; where 0: = 0, iff b, = 1. Otherwise, 
0: = #. 

Transfer to PI: TA,k sends 1’1 the sequence 
-0 

Zl,..v,i?k. 

Transfer to 4: TAqk sends 1’s the sequence 
Gl;, . . . , !ik. 

The only difference between T,,,k and T,& is that 
the vectors sent to the prover8 by T,,k all have some 
correlation with whether the bit was sent to the veri- 
fier, whereas only the first i vectors sent to the provers 
by TA,k are so correlated. Note that c,k is equivalent 
to the ideal channel Tidea’, and Tt,k is equivalent to 
T n,k. 

Analysis of cheathg probabilities for different 
transfer mechanisms. 

The eequence of oblivious transfer mechanisms we 
defined above is “continuous” in that any two consecu- 
tive mechanisms are only incrementa.lly different from 
each other. Using an argument simi1a.r to that of [GM], 
we show that if the probability of successfully cheating 
using one transfer mechanism in the sequence is sig- 
nificantly greater than the probability of successfully 
cheating using a different transfer mechanism in the 
sequence, then there must be two consecutive mech- 
anisms which differ in the probability of a particular 
cheating strategy being successful. 

Deflnition: Let L be some language, and < 
PI, Pz, V, T:iy’ > a two-prover IPS for L, with obliv- 
ious transfer. For some z e L, 1x1 = R, we define 
cheatid,,l(z) as the probability that V can be tricked 
into accepting 2. 

We wish to analyze how frequently the provers can 
cheat 
if they use a nonideal transfer mechanism, Td,,),tin). 
Let PL,~(~), P2,,(.,) be optimal cheating provers for 
the Protocol < PI,~(,), b,,,), V. Ta(n),dn) >. For 
z +! L, IsI = II, we define cheat:,,,(r) a8 the probabil- 
ity that PI,~,,), h,~,,) causes V to accept z in protocol 
< Pl,p(n), P2.q(n), v, T;“),pC,,) >. 

Clearly, we have chcot0,(,)(z) < cheat&al(z). We also 
have, by definition, that chea$~~(z) is the maximum 
probability that any prover8 can trick V into accepting 
z, using transfer mechanism Ts(,,),p(n). 

Using a simple pigeonhole argument, we can show 
the following. 

Lemma A.2: Let z # L, and Irl =: n. For all poly- 
nomials q(n), there exists Some 1. 11 < i < p(n), such 
that 
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cheat$Jx) - chcal~,)(r) 

p(n) 
(A.2.6) 

We now ahow that if for for all polynom/als q(n), 
there exists a c > 0, such that chea$Ti,(z) - 
cheat;,)(z) > l/lzl’ for infinitely many 2, then we 
can create efficient algorithms for computing dot prod- 
ucts of random vectors. To do this, we first must in- 
troduce the notion of “hardwired” versions of transfer 
mechanisms T:,,,,pc,,,. 

Restricted version8 of oblivious transfer mech- 
aniems. 

Given two easily distinguishable mechanisms 
T&),pCn, and ‘$-r&(n) * we would like to create even 
simpler pairs o mechanisms that are easily distin- 
guishable, yet preserve the essential differences be- 
tween T&n),p(n) and T$i),p(,,). We observe that the 
only difference between these two mechanisms lies in 
the distibutions imposed on the vectors Zi+l and $;+I 
which are sent to &,k,,, and P2,;tn). We would like 
to be able to fix all the other aapects ofthese channels. 
To do thir, we make the following definitiona. 

Deflnition: A tronafer restriction R E 7& is a 3- 
tuple (Rb, R+, R,), where 

l & is a sequence of bits, 61,. . . , bk I 

a RX is a k - 1 element sequence of n element 
boolean vectors. 2’1,. . . , Zi-1, z’i+l,.. . , Zk. 

l & is a k - 1 element sequence of n element 
boolean vectors, Y;, . . . , g,-l, $+I,. . . , Y;. 

Furthermore, WC require that for 1 5 j < i, Z,*g, = 6, 

Intuitively, we can think of R E ‘Rk,k as a epecifi- 
cation for which bits get through to the verifier, and, 
except for the ith bit, specifications for which vectors 
are transmitted back to the provers. 

Definition: Given a transfer restriction R E ‘Ri,k We 
specify a restricted version of Ti,h, which we denote 
by T:,,[R], a~ follows. 

Specification: Oblivious transfer mechanism Ti,k [RJ 
takes as input a sequence of bits 0 = 01, . . . , Ok. Let 
& = 61 ,..., bk, R, = 2?1, . . . . Cf?i-J,?i+l,..+,L??k~ and 
R, = il.. . . ,&I,$+1 ,... ,A. T&k[R] randomly se- 
lects two n element boolean vectors, 2; and yi. If 
j 5 i, then 3j ad $j are chosen s.t X> 1 Y; = bj. 
TA,k[R]‘s output ir as follows. 

Transfer to C’: TA,,[R] sends the verifier sequence 
o;,..., 0; where 0: = 0, iff bi = 1. Otherwise, 0: = 
#. 

Transfer to PI: T&[R] sends PI the sequence 
%I,...,%k. 

TYansfer to Pz: TA,,[R] sends PZ the sequence 
y;,...,jL 

Analysis of cheating with respect to restricted 
transfer mechanisms. 

Recall that provers PI,,(,) and Pz,~(,,J cheat opti- 
mally, given oblivious transfer mechanism Tatn),p(“). 
We would like to describe what happens when these 
provers are run using restricted transfer mechanisms. 
To this end, we define cheatk,,[R](z) as the probabil- 
ity that f’~,~(.,), Pz.~(~), causes V to accept z in protocol 
c P,.q(n), Pxp(n)t v, T&,,,,dRl >. 

Using a simple probabilistic argument, we prove the 
following important lemma. 

Lemma A.% Let z e L, and 1x1 = n. Let I 5 
i < p(n). For all polynomials q(n), there exists a 
restriction R E Rgi,,dn,) such that 

cheat;;,[RJ(x) - cheatic,,[R](x) 2 

cheat’+’ itn,(x) - chea&,)(x). (A.2.7) 

Using TiC,,,,dc,,[R], TziJ,d,,[R] to compute dot 
products. 

Recall that a restriction R E Rzd,,,,,) defines the 
entire input/output properties of a restricted transfer 
protocol Ti,, 
transmitted ii 

d,,)[R], but for the output vectors Ili,di 
ack to the provers. If the two provers 

have a source Mdn), which produces vector pairs 3,$ 
of size q(n) and sends them to Prover1 and Prover2, 
respectively, we can use it to simulate T&,J,ti,j[R]. 

We also note that, if allowed to communicate di- 
rectly, two provers can “simulate” the verifier in the 
following way. They can send to each other the mes- 
sages they would have sent ho the verifier. By knowing 
the set of transfer bits, which bits were received by 
the verifier, and a transcript of the conversation so far 
between the verifier and the provers, the provers can 
determine exactly what the verifier’s next question in 
the conversaton will be. 

We now can explicitly write down a protocol for 
computing the dot product of random boolean vec- 
tors. The assume that the two parties PI and PZ 
have agreed on some, z(x fi! L.lzJ = n),q,i, and 
R = (Rb, R,, R,) 6 Rzz 

8 
dn)). The protocol is spec- 

ified as follows. Player 1 receives a random boolean 
vector 3, and player Pz receives a random boolean vec- 
tor $. At the end of the protocol, player PI outputs a 
0 or 1, which hopefully corresponds to 2’. y’. 

Protocol: Dot-Product(z’,y3 /* PI knows 3, PZ 
knows yi and 151 = IA = q(n) */ 

PI and A simulate 
the protocol c PI.~(~), P&(,), V, T&,,j,dn)[Rl >, on 
input z. They treat vectors Ic’ and y’ as substitutes for 
fi+l, y’;+l (which are not defined by R). 

If the simulated verifier accepts, then & outputs b,+l, 
where R,, = 61,. , , bd,,). Otherwise it outputs the 
complement of bi+l. 

127 



We now analyze the communication complexity of 
this protocol. 

Deflnition: Given a two-prover protocol ‘P < 
Pi, fi, V, T >, and -me input z, we define the leakage 
L(P,2) as the total number of bits transm.itted from 
the provera to the verifier. 

The following lemma follows immediately from the 
definition of Dot-Product. 

Finally, we can bound below Dot - Product’s suc- 
cess rate on random vectors by the following lemma. 

Lemma A.6: Given q(n) bit vectors Z, 3 distributed 
uniformly, the probability that Dot-Product(i, fl = 
2. d is at least 

f + (cheat$$[R](z) - chear&,[R](z)) . (A.2.8) 

Proof: our proof is by a straightforward calculation 
of conditional probabilities, which we outline below. 
We define the variables good and bad by 

good = prob(The simulated verifier accepts) 

i!. J := bi), and, 
bad = ptob(The simulated verifier accepts1 

i?.y’# bi). 

The probability that IDot-Product yields the cor- 
rect answer is equal to 

1 
5 * good + f . (1 - bad) (A.2.9). 

We now solve for good and bad in terms of 
cheata,)[R](z) and chcat~~)[R](z). Using our defini- 
tions for chcat~,)[R](z) and chcat$~)[R](:c), we have 

cheat~,$Rj( x) = good, and, 

chcat~,)[~(z) P f . good + f . bad. 

Solving for good md bad, we have 

good = chea$i,[RJ(z), and, 

bad = cheal~~j[RJ(z)- 

(A.2.A) 

(A.2.11) 

(A.2.12) 

2(cheat,f,‘,[R](z) - cheata,,,[R](z)). (A.2.13) 

Substituting equations (A.2.12) and (A.2.13) into 
equation A.2.9), and simplifying, we get equation 
(A.2.8). # 

A.3 Implelnenting zero-knowledge 
with circuits. 

In this section we outline a technique we cali the 
method of encrypted conversations. This technique 
represents a f;irly general methodology for convert- 
ing protocols into zero-knowiedge protocols. Its main 
requirement is the ability of the parties ihvolved to 
perform oblivious circuit evaluation. 

A normal form for tw*prover I:PS’s. 

For ease of exposition, we consider a normal form 
for two-prover interactive proof systems(IPS’s). This 
normal form consists of three stages, as described be- 
low. 

Notation: Throughout this section, qi(z, t, ., .,m) 
will denote the i-th question of the verifier computed 
on his random coin tosses t, the input x, and the his- 
tory of the communication so far. (0, correspond to 
the provers answers). 

Stage 1: On input x, where 1x1 = n, the verifier 
generates a sequence r = rl, . . . , rp(,,) of random bits. 
The verifier computes his first question, q1 = ql(z,r). 

Stage 2: The verifier sends ql to Prover 1. Prover 1 
sends its answer, 41 back to the verifier. The verifier 
computes his second question, ~2 = ql(z, r, 01). 

Stage 3: The verifier sends q2 to Prover 2. Prover 2 
sends its answer, 02, back to the verifier. The verifier 
computes its decision predicate, occcpt(z, t, al, as), 
and accepts iff acccpt(z, r, aI, al) evaluates to “true”. 

We use the following result. 

Theorem(norma1 form for 2 prover IPS’s): 
Given any two prover IPS P for a language L, there 
exists an IPS P’, with the following 2 properties. 

1. If z E L then p+ob(P’(z) accepts)= 1. 

2. There exists some c > 0 such that if z e L then 
ptob(P’(z) accepts)< 1 - l/lzl’. 

Remark: It is currently open whether the < 1-l/lzl’ 
failure probability can be reduced. However, if greater 
reliability is desired, one may run a normal form prc+ 
tocol several times serially to achieve an exponentially 
low probability of failure. 

We now need to show how to convert an IPS in 
normal form into a zero-knowledge IPS. 

Conceptually, we would like to have the use of a 
black box into which the verifier inputs an encrypted 
history of the communication, the prover inputs its 
answer to the question and the output which is given 
to the verifier is the encrypted answer of the prover 
and the encrypted next question of the verifier. See 
fig. 2. 
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The encryption scheme used to encrypt the ques- 
tions and answer0 should be an information theoret- 
ically strong encryption scheme with respect to the 
verifier, while the provers will be given the ability to 
decrypt. 

We describe how this is achieved in the following 
section A.3.1. The box is achieved by the technique 
of oblivious circuit evaluation as described in section 
A.3.2. 

A.3,1 Strong encryption using S-universal 
hash functions. 

We need a cryptographic system (call it E for the sake 
of discussion) which is both unbreakable, and existen- 
tially unforgeable. By unbreakable, we mean that if 
one is given E(t), an encryption of z, but one does 
not have the decryption key, then one cannot infer 
anything about z. By existentially unforgeable, we 
mean that if one is given E(z), an encryption of z, but 
one does not have the decryption key, then one cannot 
produce any string forge such that forye = E(y) for 
some y. These security requirement8 are information 
theoretic, and must apply to someone with arbitrary 
computational power. 

To accomplish this, we use the notion of universal 
hash functions, first introduced by Carter and Weg- 
man[CW]. In addition, we require the following prop 
erty of our universal sets. 

Deflnition: A family of 2-universal sets 31, of func- 
tions h : (0, 1)” 4 {0, 1) n is almod self-inueraciff for 
all c, and for all n sufficiently large (with respect to 
c), a function h, picked uniformly from ‘H, will have 
an inverse h-’ E ‘H with probability > 1 - n”. 

One example of an almost self-inverse 2-universal 
set of hash functions is the set of linear equations over 
GF(2”). As there is a trivial correspondence between 
{O,l}” and GF(2”), we treat all our elements as being 
in {O,l}“. 

For our encryption system, we require that all le- 
gal messages m are padded with a number of trailing 
O’s equal to the length of the original message. We 
encrypt a message m E (0,l)” by applying some uni- 
formly selected function h E X, to it. We can decrypt 
h(m) by by applying its h” to it. For our purposes, 
we can safely ignore the possibility that a uniformly 
chosen h isn’t invertible. The following lemma shows 
that this encryption scheme is unbreakable and un- 
forgeable. 

Lemma:Let h be chosen uniformly from ‘I&,. Then 

1. $nbre_artbility) (Vz,y & (O,l}“)ptob(h(z) = 
= 2 I 

2. (unforgeability) (Vz, y, I E (0, 1)“) 

prob((3w E (0, 1}“‘20”‘2)h(~) = .zlh(z) = y) 

-n/l =2 . 

Proof: Both properties follow immediately from the 
definition of l-universal hash functions. 1 

In the protocol the provers will agree on four ran- 
dom hash functions hi,hs,h~,h~ E Rp(,,). At the 
end of the protocol, the verifier will possess the val- 
ues of hi(r), ha(ql), and ha(al), but will not possess 
any extra information about which functions Iri, hs 
and hs actually are. However, knowing the value of 
h(z) gives no information, in the information theoretic 
sense, about the value of z. This is roughly how the 
zero-knowledge aspect of our protocol is achieved. 

A.3.2 Use of oblivious circuit evaluation . 

We use the reduction of Kilian[K] from oblivious trans- 
fer to oblivious circuit computation. This xeduc- 
tion maintains the usual security properties desired of 
oblivious circuit evaluation, without recourse to any 
intractibility sssumptions.5 Its sole requirement is a 
sequence 0 = Or, . . . , O,,, of bits, all of which are 
known to A, and haif of which are known to B(a more 
detailed description of this condition is given in section 
A.2). This set of bits(or, more technically, a reason- 
able approximation to such a set) is provided by the 
oblivious transfer protocol outlined in section A.2. for 
the rest of this discussion, we treat oblivious circuit 
evaluation as a primitive operation. 

A.3.3 Outline of the Zero-Knowledge Pro- 
tocol 

We can now describe our zero-knowledge transformed 
protocol For our expositions, we still treat oblivious 
circuit computation of as a primitive. (A description 
of circuits Co, Cl, Cs and Cs is given following the pre 
tocol.) Note the similaruty between this description 
and the description of the normal-form for protocols 
given above. 

On input z, where 121 = R. 

Step 0: Provers 1 and 2 agree on random invertible 
hash functions hi, hz, ha, hh E 7fzti,,), and random 
string ri E (0, l)p(n). The verifier selects a random 
string rs E (0, l}&“). The verifier and Prover 1 eval- 
uate r’ = Co(z](r1,rg,h1). (1, will the random coin 
tosses to be used by the verifier). 

Step 1: The verifier and Prover 1 then evaluate 
9: = Cr[z](t’, h,‘, ha), the encrypted version of the 
verifier’s first question. 

SGoldreich-Vainish describe a simple reduction from 
oblivious circuit evaluation to oblivious transfer, without 
any intractibility assumptions. I Itswever, this reduction 
only works for honest parties, ;~~~*I is thus unuseable by 
us. 
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Step 2: The verifier sends q; to Prover 1. If 
h;‘(qi) does not decrypt to a legitimate message, then 
Prover 1 halts the conversation. Otherwise, Prover 
1 computes his answer, 01, and sends the verifier 
a: = &(a~). The ,veIifier anid Prover 1 evaluate 
q; = C1~2](t’,&h~~,h; ‘, ha), the encrypted version 
of the verifiers second question. 

Step 3: The verifier sends qi to Prover 2. If h,‘(gi) 
does not decrypt to a legitimate message, then Prover 
2 halts the conversation. Otherwise, Prover 2 com- 
putes his answer, op. The verifier and Prover 2 evalu- 
ate decision = CJ[z](r’,a~,a2,h.~*,hg*). 

At the end of this ;protocol, verifier accepts iff 
decision = true. 

We now describe circuits Ci for i = 0, 1,2,3. 

For each circuit, we give the input from the prover, 
the input from the verifier, and the output given to the 
verifier. We adopt the convention that lz[ = n, and 
assume without loss of generality that all etirings being 
exchanged in the protocol are of length p(n), for some 
polynomial p. We use the following simple functions 
to simplify our exposition. Function pad, : (0, 1)” - 
{O,l}‘* pads an extra n. zeros onto the end of an n- 
bit string Function strip,, : {0,1}2” - (0, l}“, which 
removes the last n bits from a an-bit string. Predicate 
legal, : {o,l}sn * {trug?, false} is true iff the last n 
bits of the input string are equal to 0. 

Co[z]: 

Input from the prov’er: A sequence of bits, b = 
bt,...,bp(n), and a hash function h E ?&A(,,). 

Input fkom the verifier: A sequence of bits c = 
a, * * . I Cd”). 

Output to the verifier: Output(h(pad,,(b $ c))). 

Circuit Cs[z] is the initialization circuit that creates 
the verifiers random bits in Stage 1 of the protocol 
described above. 

Cl [z]: 
Input fkom the prover: 

Hash functions hl’, hz E H2p(,). 
Input fkom the verifier: 

String r’ E (O,l}sM1”). 
Output to the verifier: 

r = hi’(r’) 
If legs/p(,)(r) = f a:lse 
Then Output(02J*“)) 
Else r = strip&,)(r) 

a = 91(x, r) 
Output(hn(pad~,)(91))) 

Circuit C,[z] is used to implement Stage 1 of the 
protocol described above. 

Cz[z]: 

Input from the prover: 
Hash functions h,‘, /A,‘, hh c 1&d(,) 

Input from the verifler: 
Strings r’, ai f (0, 1}2p(“). 

Output to the verifler: 
r = h;‘(r)) 
al = h;‘(a;) 
If (legald,)(t) and legalp(,,(ol)) = false 
Then Output(OZr’(“)) 
Else r = strip&,)(r) 

01 = stripdnf(al) 
42 = QZ(Z, r, al 1 
OutPut(ht(Pndp(,,(Yz);) 

Circuit Cz[z] is used to implement Stage 2 of the 
protocol described above. 

Cs[z]: 
Input from the prover: 

Hash functions hi’, h,’ E asp,,), 
String a2 E (0, l}dn) 
Input from the verifler: 
Strings r’, a; E (0, l}zs(“). 
Output to the verifler: 
r = hi’(r’) 
al = h,‘(a’,) 
If (legald,)(r) and legal,,( =: false 
Then Output(02d”)) 
Else r = strip&,,)(r) 

al = sWdn)(al) 
Output(accept(z, r, al, 02)) 

Circuit C,[z] is used to implement Stage 3 of the 
protocol described above. 

The two obvious questions we must deal with are, 
“Is this protocol still a proof system?“, and “Is this 
protocol zero-knowledge?” 

Is this protocol a proof system? 

If the verifier is honest, and if Lhe provers input 
the correct hash functions, and their inverses, into the 
circuits being evaluated, then one can map transcripts 
of conversations in this protocol into transcripts of the 
original protocol (with possibly cheitting provers). In 
this case, the provers cannot cheat any more effec- 
tively they could in the original protocol, and the new 
protocol will remain a proof system if the original one 
W&9. 
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If the provers do not input conrirtcnt set8 of hash 
functione, then nothing can be guruenteed about 
whether the protocol rem&u l proof ryrtem. How- 
ever, using the machinery developed in [K], it ir pee- 
rible for the prorm to commit, at the beginning of 
the protocol, all the huh functions they input to the 
circuits, along with a aero-knowledge proof that these 
iaputrr are consistent with each other. 
h th& protocol zerrAtnowledge? 

The proof that this protocol is zero-knowledge is, 
while not overly complex or difficult, relior too heavily 
on machinery from [K] to be concisely presented here. 
We make the following intuitive argument for why the 
protocol is zerc+knowledge. 

Firrt, note that the verifier’r actiona are severely 
restricted by the uee of circuits and the encryption 
scheme. Except for its random bits, all the inputr it 
gives to the provers or the circuits are encrypted with 
an unforgerble ryrtem. If the verifier ever attempta 
to give ad incorrect rtring to b prover, the prover will 
detect the forgery will probability exponentirlly cloee 
to 1. Likewise, if the verifier inputs an incorrect rtrin 

f to a circuit, it will almoat certainly output either o’H” 
or false. This rules out any active attack on the part 
of the verifier. 

Second, we show that passive attacks by the verifier 
do not yield by information. The intermediate outputs 
of circuitr Cl , . . . , CS arc all uniformly ditributed, 
and thus yield no information. 
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Figure 1: Schematic of encrypted conversation. 

Figure 2: Schematic of a simple WSPBP. Solid 
lines correspond to functions jf , dashed lines COT- 

respond to functious ji. In this program, ul = ~2 

and v2 = zi. This branching program is equivalent 
to 118, z2. 

131 


