
Comput Complexity 1 (1991), 3-40 1016-3328/91/010003-38 $1.50+0.20
@ 1991 Birkhguser Verlag, Basel

N O N - D E T E R M I N I S T I C
E X P O N E N T I A L T I M E H A S

T W O - P R O V E R
I N T E R A C T I V E P R O T O C O L S

L ~ S Z L d B A B A I , L A N C E F O R T N O W

AND C A R S T E N LUND

Abs t rac t . We determine the exact power of two-prover interactive
proof systems introduced by Ben-Or, Goldwasser, Kilian, and Wigder-
son (1988). In this system, two all-powerful noncommunicating provers
convince a randomizing polynomial time verifier in polynomial time that
the input x belongs to the language L. We show that the class of lan-
guages having two-prover interactive proof systems is nondeterministic
exponential time.

We also show that to prove membership in languages in E X P , the
honest provers need the power of E X P only.

The first part of the proof of the main result extends recent tech-
niques of polynomial extrapolation used in the single prover case by
Lund, Fortnow, Karloff, Nisan, and Shamir.

The second part is a verification scheme for multilinearity of a func-
tion in several variables held by an oracle and can be viewed as an
independent result on program verification. Its proof rests on combina-
torial techniques employing a simple isoperimetric inequality for certain
graphs:
Sub jec t classifications. 68Q15, 68Q60

1. I n t r o d u c t i o n

The concept of N P was introduced in the early 70's as a model of languages
with emcient proof of membership (Cook [161, Levin [27]). As an extension of
this concept, two variants of single prover interactive proofs were introduced
in 1985 by Babai [4] and Goldwasser, Micali, Rackoff [23]. The power of this
extension has not been recognized until very recently, when combined work
of Lund, Fortnow, Karloff, Nisan [29], and Shamir [35] has shown that every

4 Babai, Fortnow &Lund Comput Complexity [(1991)

language in P S P A C E has an interactive proof. This actually means 2~P =
P S P A C E because the inclusion I P C_ P S P A C E has been known for long
(see Papadimitriou [31]).

This paper looks at the class M I P of languages that have multiple-prover
interactive proof systems. Ben-Or, Goldwasser, Kilian and Wigderson [11]
created the model of multiple provers consisting of provers that cannot com-
municate and no prover can listen to conversations between the verifier and
other provers. Ben-Or et al. [11] showed in this model that all languages in
N P have perfect zero-knowledge multi-prover proof systems, a statement not
true for one prover unless the polynomial-time hierarchy collapses (Fortnow
[19]). They also show that only two provers are necessary for any language in
M I P . Recently, building on the work of Lund, Fortnow, Karloff, Nisan and
Shamir, Cai [15] has shown that P S P A C E has one-round interactive proofs
with two provers.

Surprisingly, the proof that P S P A C E contains I P does not carry through
for multiple-prover proof systems. The best upper bound known, due to Fort-
now, Rompel, and Sipser [21], is non-deterministic exponential time: Guess
the strategies of the provers and check for all possible coin tosses of the ver-
ifier. This paper shows this upper bound is tight: M I P = N E X P . After
the I P = P S P A C E result, this represents a further step demonstrating the
unexpectedly immense power of randomization and interaction in efficient prov-
ability.

THEOREM 1.1. (MAIN THEOREM) M I P = N E X P . In other words, the set
of languages with two-prover interactive proof systems is exactIy the set of
languages computable in non-deterministic exponential time.

Ben-Or et al. [11] in fact show that all languages that have multi-prover
proof systems have perfect zero-knowledge multi-prover proof systems with no
cryptographic assumptions. Combining this with our result shows that all of
N E X P has perfect zero-knowledge multi-prover proof systems.

REMARK J..2. In this paper, the term exponential Mways means 2 p(~) for some
polynomial p(n). In particular, E X P = Uk>l TIME(2nk). The nondetermin-
istic version N E X P is defined analogously.

We also show that to prove membership in languages in E X P , the honest
provers need the power of E X P only (Corollary 4.10). A consequence, !inking
more standard concepts of structural complexity, states that if E X P has poly-
nomial size circuits then E X P = M A (Theorem 6.8), strengthening a resu!t

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 5

of A. Meyer that E X P = E P under the same condition. - Instance-checking
and self-testing/self-correcting properties (in the sense of Blum, Kannan [12]
and Blum, Luby, Rubinfeld [13]) of EXP-comple t e languages also follow (see
the discussion in Section 6).

Theorem 1.1 is in sharp contrast to what has previously been expected.
Indeed, Fortnow, Rompel and Sipser have shown that relative to some oracle,
even the class coNP does not have multi-prover interactive proof systems.

We should also point out that it follows from our result that multiple provers
with coins are provably strictly stronger than without, since N E X P 7 ~ N P
(Seiferas, Fischer, Meyer [34]). In particular, for the first time, provably poly-
nomial time intractable languages turn out to admit "efficient proof systems"
since N E X P r P. (No analogous claims can be made about single prover
interactive proof systems, as long as the question P r P S P A C E remains
unresolved.)

Unfortunately if we take B P P to be the class of "tractable" languages, we
are no longer able to make the intractability claim since it is not known whether
or not B P P = N E X P . Indeed, there exists an oracle that makes these two
classes collapse (Heller [25]), thus eliminating the hopes for an easy separation.

Theorem 1.1 and the result that I P = P S P A C E have the same flavor of
replacing universal quantification by probabilistic quantification. P S P A C E is
exactly the class of languages accepted by a game between two players, one
who makes existential moves and the other makes universal moves. Peterson
and Reif [32] show that N E X P can be described by a game with three players,
two existential players unable to communicate and one universal player who
communicates with the other two. Simon [36] and Orponen [30] describe a game
between an existential oracle and a universal player and show the equivalence to
N E X P . Remarkably, in all of these cases, the universal player can be replaced
by a probabilistic polynomial time player without reducing the strength of the
models. For P S P A C E , this follows from [35]; for N E X P , the equivalence is
established by our main result.

In the course of the proof of the main theorem, we show how to test whether
a function in several variables over I , given as an oracle, is multilinear over
a large interval. This test has independent interest for program testing and
correction, in the context of Blum, Kannan [12], Blum, Luby, Rubinfeld [13],
and Lipton [28] (see Section 6).

The reduction to the test involves ideas of the P S P A C E = I P proof (arith-
metic extrapolation of truth values). The proof of correctness of the multilinear-
ity test rests on combinatorial techniques. A more efficient multilinearity test,
with important consequences, has been found recently by Mario Szegedy [38].

6 Babai, Fortnow A Lund Comput Complexity I (!991)

2. Mult i -prover Protocols and Probabil ist ic Oracle
Machines

In this section we give some basic background on muttiprover interactive proof
systems. The definitions and results first appeared in Ben-Or, Goldwasser,
Kilian, Wigderson [11] and Fortnow, Rompel, Sipser [21]. For completeness,
we include an outline of the proofs.

Let P1, P2 , . . . , Pk be infinitely powerful machines and V be a probabilistic
polynomial-time machine, all of which share the same read-only input tape.
The verifier V shares communication tapes with each Pi, but different provers
Pi and Pj have no tapes they can both access besides the input tape. We allow
k to be as large as a polynomial in the size of the input; any larger and V could
not access all the provers.

Formally, similarly to the prover of a single prover interactive proof system
[23], each Pi is a function that outputs a message determined by the input and
the conversation it has seen so far. We put no restrictions on the complexity
of this function other than that the lengths of the messages produced by this
function must be bounded by a polynomial in the size of the input.

With the exception of Section 5, n = Ixl will denote the length of the input
throughout the paper.

P1 , . - . , Pk and V form a multi-prover interactive protocol for a language L
if:

1. [fx E L then Pr (PI , .o . ,Pk make V accept x) > ! - 2 -~.

2. If x r L then for all provers P [, . . . , P ~ , P r (P~ , . . . ,P~ make V accept
x) < 2 -~

MIP is the class of all languages which have multi-prover interactive protocols.
If k = 1 we obtain the class IP of languages accepted by standard interactive
proof systems.

For easier reading, we introduce some terminology. The functions P1, o - -, Pk
will be called the honest provers; any other collection of provers is dishonest~
Although not required by the formal definition, we may assume that the honest
provers don't a t tempt to get x accepted when in fact x r L. (They print a
special symbol upon which V automatically rejects.) We shall also use the term
"the provers win" to indicate that V accepts. We allow dishonest provers to
have a good chance of winning but only if x 6 L. On the other hand, dishonest
provers may lose with large probability even if x 6 L.

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 7

REMARK 2.1. It is implicit in this definition that the Verifier's coins are pri-
vate; the Provers receive only information computed by the Verifier based on
previous messages and the coin flips.

REMARK 2.2. It would seem natural to suggest that the timing of the messages
could convey information. This is expressly excluded in the definition (the
provers are functions of all the information printed on their tapes), but this
restriction can be overcome by requiring the protocol to be oblivious in the sense
that for every i, the sender, the recipient, and the time of the i th message is
determined in advance by the length of the input and regardless of the outcome
of the communication. This modification would not change the class MIP.

Let M be a probabilistic polynomial time Turing machine with access to an
oracle O. We define the languages L that can be described by these machines
as follows:

We say that L is accepted by a probabilistic oracle machine M iff

1. For every x C L there is an oracle O such that M ~ accepts x with
probability > 1 - ~ for all polynomials p and x sufficiently large.

1 2. For every x r L and for all oracles O, M ~ accepts with probability < p(l*l)
for all polynomials p and x sufficiently large.

One way to think about this model is that the oracle convinces M (by
way of overwhelming statistical evidence) to accept. This differs from the
standard interactive protocol model in that the oracle must be set ahead of
time (it is a fixed function) while in an interactive protocol the prover can be
adaptive (he can make his future answers depend on previous questions). This
seemingly slight difference accounts for the apparently huge increase in power,
from I P = P S P A C E to M I P = N E X P . The oracle can be thought of as a
very long proof of a theorem, which the Verifier can rapidly check. This aspect
of this concept will be developed and refined in [7].

THEOREM 2.3. (Fortnow, Rompet, Sipser [21]) L is accepted by a probabilistic
oracle machine if and only if L is accepted by a multi-prover interactive proto-
col.

A further important result states that two provers always suffice.

THEOREM 2.4. (Ben-Or, Goldwasser, Kilian, Wigderson [11]) If a language
L is accepted by a multi-prover interactive protocol then L is accepted by a
two-prover interactive protocol.

,rm ," 1"~ 8 Babai, Fortnow & Lund ~omput Complexity ~ t1991)

We combine the proofs of these two theorems.
PROOF.

1. First we show how to simutate a probabilistic oracle machine by two
provers.

Let M be a probabitistic oracle machine that runs in time n% Have the
verifier of the two-prover protocol ask all the oracle questions of Prover
1, then pick one of the questions asked at random and verify the answer
with Prover 2. The probability that cheating provers are not caught
this way is at most (1 - n-C). Repeat this process n c+I times to reduce
error probability below (1 - n - ~) n~+t < e -~. (We should stress that
we are not assuming that the Provers' responses in a later round would
not depend on the messages exchanged in previous rounds. In fact, the
result remains valid even if between the rounds, the Provers are allowed
to communicate with each other. It is the conditional probability of
their success in any particular round, conditioned on arbitrary history of
previous Communication, that is less than (1 - n-c).)

2. Suppose now that L is accepted by a multi-prover interactive protocol.
Then define M as follows: Have M simulate V with M remembering
all messages. When V sends the j t h message to the ith prover, M asks
the oracle the question (i, j , f., f i l l , . . . , flij) properly encoded and uses the
response as the *fth bit of the j t h response from prover i where fiil, o. . , fllj
is everything prover i has seen at that point.

(a) If x E L then the oracle O could convince M to accept by just
encoding each prover's answer to each question.

(b) If an oracle (.9 could convince M to accept a string x then the provers
could convince the verifier to accept by just using that O to create
their responses.

(The full details of this proof can be found in [20].) D

3 . A r i t h m e t i z a t i o n : a V a r i a n t o f t h e L F K N P r o t o c o l

The purpose of the first half of this section is largely didactical. We describe
a variant of the LFKN protocol using ideas from Bahai, Fortnow [6] (cf. also
Shamir [35]). The reader needs to thoroughly understand this protocol before
moving on to the proof of the Main Theorem. At the end of this section we
derive a lemma which will be used directly in the proof of the Main Theorem.

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 9

3.1. A r i t h m e t i z a t i o n . We describe an interactive protocol for coNP. We
have to show how the Prover convinces the Verifier that a given Boolean formula
is not satisfiable.

A Boolean function in m variables is a function {0,1} m ~ {0,1}.
We say that a polynomial f (x l , . . . , xm) (over some field) is an arithmeti-

zation of the Boolean function B (u l , . . . , u,~) if on all (0, 1)-substitutions, the
(Boolean) value of B and the (arithmetic) value of f agree.

A Boolean formula is a well-formed expression built from the constants
0, 1 and variable symbols using the operations A, V,-~. A Boolean formula
represents a Boolean function in the obvious sense.

An arithmetic formula is a well-formed expression built from the constants
0, ! and variable symbols using the operations +, - , x. An arithmetic formula
represents a polynomial function in the obvious sense over any commutative
ring with identity.

PROPOSITION 3.1. Given a Boolean formu]a B, one can construct in linear
time an arithmetic formula f which will represent an arithmetization of B over
any tldd (and indeed over any ring with identity).

PROOF. We eliminate the V's in B, replacing them by -~'s and A's. We then
replace Boolean variable symbols by arithmetic variable symbols, A's by x 's
and subexpressions of the form -,g by (1 - g). []

REMARK 3.2. We note that the arithmetization we obtained of a Boolean
formula of length d is a polynomial of degree less than d.

Let now B be the Boolean formula which the prover claims is not satisfi-
able. Let f be the arithmetization of B constructed above. We view f as a
polynomial over Z (an integral domain). The prover has to convince the verifier
that f vanishes on all (0, 1)-substitutions. The fact that each member of this
exponentially large collection of quantities vanishes, can be expressed concisely
as follows:

1 1 1

~ . . . ~ f (x l , . . . , z m) 2 = 0 (3.1)
Xl~O x2~O ~m--~O

Recall that the polynomial f is given to the Verifier in the form of an explicit
arithmetic expression.

10 Babai, Fortnow & Lund Comput Complexity 1 (1991)

3.2. T h e L F K N va r i an t . We describe how the Prover convinces the Verifier
of the validity of the slightly more general equality

1 1 1

E--. E (3.2)
xl ~-0 x 2 = 0 Xrn=0

where a is a given number and h is a polynomial of degree _< d in each variable,
given as an explicit ari thmetic expression. The protocol works over an arbitrary
field (or integral domain with identity) of order > 2din.

PROPOSITION 3.3. The set of pairs (h, a), where h is an arithmetic [ormula
and a is a number such that equation (3.2) holds, belongs to IP .

Let I be a sufficiently large subset of the field: Ill > 2din. (We extend the
field of definition if necessary.) For i = O, 1 , . . , , m we shall consider the partial
s u m s

1 1

~ , (x ~ , . . . , x i) : = ~ . . . ~ h (x l , . . . , x m) . (3.3)
Xi+I~---O Xrnm0

Clearly, h~0 = h, and

hi-1 = hi(xi = O) + h~(xi =).) (3.4)

(using self-explanatory notation for substitution).
The protocol to verify (3.2) proceeds in rounds. There are m rounds~
At the end of round i, the Verifier picks a random number r~ C g; and

computes a "stated value" bi. We set b0 = a. The Prover will maintain that for
each i, including i = 0,

bi -- (3.5)

So by the beginning of round i > 1, the numbers r l , . . . , ri_l have been picked
and the "stated values" b0 = a, b l , . . . , bi_l have been computed.

Now the Prover is requested to state the coefficients of the univariate poly-
nomial

g (x) = x) . (3.6)

Let ff~ denote the polynomial stated by the Prover. The Verifier performs a
C o n s i s t e n c y Test ; with equation (3.4) in mind, he checks the condition

bi_l = ~i(0) + ~i(1). (3.7)

If this test fails, the Verifier rejects; else he generates the next random number
r; E I and declares bl := ffi(rl) to be the next "stated value". After the rn th

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 1t

round we have the stated value b,~ and the random numbers r l , . . . , r,~; and
the verifier performs the F ina l Tes t

(3.8)

The Verifier accepts if all the m Consistency Tests as well as the Final Test
have been passed.

The proof of correctness exploits the basic idea that if the Prover wants
to cheat, he is likely to be forced to cheat on polynomials with fewer and
fewer variables; eventually reaching a constant, the correctness of which the
Verifier can check by a single substitution into the explicit polynomial behind
the summations.

PROOF OF CORRECTNESS OF THE PROTOCOL. Assume first that (3.2) holds.

Then the honest Prover will always answer correctly (9i = gi) and win.
Assume now that at some point, the Prover cheats: gi-1 r gi-1. Here

we allow i = 1; we define the constant polynomial g0 := b0 = a. Then with
probability >_ 1 - m/Ill, hi -1 ~-- gi-l(ri-1) r gi-l(ri-1) since two different
univariate polynomials of degree _< d cannot agree at more than d places.
Assuming now that the Prover passes the next Consistency Test (3.7), it follows
that he must cheat in the next round: .~ • g~.

if now (3.2) does not hold, then the constant a = b0 = g0 differs from
go = h0, hence the Prover automatically cheats in round 0. It follows that with
probability >_ 1 - dm/]l], he will be forced to cheat in each round. But cheating
in the last round is discovered by the Final Test. []

3.3. O r a c l e p o l y n o m i a l s and o rac le p r o t o c o l s . We now wish to drop
the condition in Proposition 3.3 that the polynomial h is given by an explicit
arithmetic formula. Instead we want the Verifier to access the values of h from
an orac le .

To formalize this, we have to introduce the concept of an interactive oracle-
protocol. This is the same as a two-prover interactive protocol except the second
prover is restricted to be a function, i.e., its responses must be nonadaptive.
in this case we call the second prover the oracle and we view the protocol a
single prover protocol, where the Verifier has random access to the Oracle, and
the Prover wishes to convince the Verifier in polynomial time that the Oracle
has a certain property.

Since slight changes in the oracle will not be noticed by the Verifier, global
properties of h cannot be verified this way, but under certain conditions well-
behaved approximations of h can be ascertained to have certain global prop-
erties. "Well-behaved" will mean low degree polynomials; the key idea being

12 Babai, Fortnow &Lund Comput Complexity I (t991)

that such polynomials form an error-correcting code (cf. Remarks 3.(5, 3.7).
The notion of approximation is defined as follows.

r ~3 DEFINITION 3.4. Let f , 9 be functions over a finite set X. For ~ E [0, q we say
that f 5-approximates g if the number of places x E X such that f (x) r g(x)
is less than 6IX I.

LEMMA 3.5. Let d ,m ,k >_ O, a field F and a subset I G F, [U I = kdm be the
input. Suppose the Oracle accepts queries of the form (r l , . . . , rm) (r,~ E [), and
responds with an demen t h(r l , . . . , rm) E F of polynomial length. There exists
an interactive oracle-protocd such that

O) is h is a polynomiM of degree <_ d in each variable and (3.2) holds then
there exists a Prover which the Verifier surely accepts;

(ii) if h is &approximated on I ~ by some polynomial f which has degree < d
in each variable (6 <__ 1/4) and if there exists a Prover which has greater
than ~ + 1/k chance of being accepted then (3.2) holds with f in ptace of
h.

REMARK 3.6. The Lemma says that the validity of (3.2) can be verified in
polynomial t ime with large confidence assuming h has low degree; aP.~d even if
h itself is "forged" from some low degree polynomial f by changing the values
of f at a fixed positive fraction of the inputs, it can be verified that (3.2) holds
for the correct f . This error-cowecting property of the protocol is related to
the next remark.

REMARK 3.7. A well-known lemma of Jacob Schwartz asserts that a nonzero
polynomial of total degree < d vanishes at no more than a d/ll ! fraction of
I m (m is the number of variables) [37] (cf. [9, Lemma 2.35]). (The proof is a
simple induction on m.) It follows that given h, its low degree correction (if
exists) is unique. Indeed, assume both fl and f2 are s of h,
and let f = fl - f2. Then f is a low degree polynomial (degree < d in each
variable) which vanishes on all but a 25 fraction of the inputs from jm. By
Schwartz's Lemma, f is identically zero unless 2~ _> 1 - d m / [I i. So if k > 2 and

_< 1/4 then the correction of h is unique. (This is a multi-variable version of
the principle of the Reed-Solomon codes.)

PROOF OF LEMMA 3.5. We perform the LFKN-type protocol as described in
Section 3.2. The only difference is that in the Final Test, the Verifier makes a
query to the Oracle rather than evaluating h(r l , . . . , rm) himself.

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 13

We prove that the protocol has the properties stated in the Lemma. Prop-
erty (i) is straight forward: just as in the proof of Proposition 3.3, the honest
Prover will always win.

In order to prove Property (ii), let f be the unique polynomial of degree
_< d in each variable which 5-approximates h. Assume that (3.2) does not hold
for f in place of h. Let us pretend for a moment that the Oracle holds f rather
than h. Then, according to the analysis in the proof of Proposition 3.3, the
Consistency Tests will force the Prover to cheat in each round, including the
last one, with probability >__ 1-drn / l l I = 1 - 1 / k . At this point the only possible
rescue for the Prover is that f and h may differ on the random substitution
@1,-.-, r,~). But the probability of this is at most 5, hence with probability
>__ 1 - (5 + 1/k), the Prover will be caught. []

An apparent weakness of this result is that we have to assume that h is a
low degree polynomial, or at least a good approximation of such a polynomial.
One of the main technical results of this paper is that this circumstance can be
checked by the randomizing Verifier (see Section 5). Apart from this problem,
the main task in proving the Main Theorem (Theorem 1.1) is to reduce it to
the simultaneous vanishing of a low degree po!ynomial, held by an oracle, over
all (0,1)-substitutions.

3.4. I m p l e m e n t i n g o r a c l e - p r o t o c o l s w i t h two provers . Oracle-protocols,
as defined in Section 3.3, represent a compromise between the extremes of two-
prover protocols and probabilistic oracle machines, shown to be equivalent in
Section 2. Not surprisingly, oracle protocols are equal to both in power. This
is clear from the aforegoing. Indeed, on the one hand, an oracle protocol can
simulate a probabilistic oracle machine simply by adding a dummy prover. On
the other hand, the Oracle part of an oracle protocol can be simulated by two
provers as dicussed in the proof of Theorem 2.4 resulting in 3 provers which
can then be reduced to two by the results stated in Section 2.

In fact, the latter simulation can further be simplified as follows.
Suppose the language L is accepted by an oracle-protocol and x is an input.

To simulate the oracle protocol with two provers, we execute the entire protocol
with Prover 1 including the queries to the Oracle. We then choose a random
question we have asked Prover 1 about the Oracle and ask this question to
Prover 2. If the answers differ then we reject.

As in the proof of Theorem 2.4, we observe that this protocol guarantees at
1east an n -~ chance for cheating provers (i.e., x ~ L) to be caught. Repeating
the process a polynomial number of times time results in an exponentially small
probability that cheating provers could get away.

14 Babai, Fortnow & Lund Comput Complexity i (1991)

4. P r o o f o f the Main T h e o r e m

This section as well as the next one are devoted to proving Theorem 1.1. In
view of the fact M I P C_ N E X P ([21], see the comment before the statement
of Theorem 1.1) we have to prove N E X P C_ M I P .

4.1. P r e l i m i n a r y r e m a r k s . Look at the tableau describing the computation
of a non-deterministic exponential time Turing machine M on input x. Convert
this to a 3-CNF like in the proof of the Cook-Levin theorem (NP-compieteness
of 3-satisfiability; [16], {27], cf. [1, p. 385]) There will be an exponential number
of variables and an exponential number of clauses. However, the clauses are
easily definable, in fact there exists a polynomial-time computable function
fx(i) that describes the variables of clause i. Thus L(M) = {x i there is an
assignment of variables A such that for all i, A satisfies clause fx(i)}.

Suppose we could quantify, over all functions. Then we could say M accepts
x iff there exists a function A taking variables to "true" or "false" such that for
all i, A satisfies fx(i). Note that it is important that A is completely specified
before i is chosen. Also notice that given A as an oracle, we can check whether
A satisfies fx(i) in polynomial time.

In fact, as outlined in Section 2, we can create predetermined, though un-
trustworthy, functions (oracles) using multiple-prover protocols. So we can use
multi-provers to create A. (An easy implementation of this in our context,
along the lines of the proof of Theorem 2.3, will be given in Section 3.4.)

The next thing to do is to ask if A satisfies f~(i) for all i. However we
cannot immediately do such universal quantification with multi-provers. The
obvious "statistical approach", replacing the "for all i" with "for most i" will
clearly fail.

We might try handling the universal quantification with the techniques
of Lund, Fortnow, Karloff, Nisan [29], Babai, Fortnow [6], and Shamir [35],
but these results do not relativize and A may not have the proper algebraic
properties necessary for this proof.

We need a further reduction of the problem, involving a deeper arithmeti-
zation of the fact that f~(i) is polynomial time computable.

4.2. A N E X P - c o m p l e t e l anguage . For the purposes of Section 4, we adopt
some notational conventions. We shall use lower case letters x, b, f , ~, z, w (pos-
sibly subscripted) for strings of variables of polynomially bounded length; the
corresponding individual variables will be denoted {i,/~i, q~i, ri, (i,w{. A typical
variable in the string bj will be/3j~. These variables will be either Boolean or
belong to the field q. We view the Boolean domain {0, 1} as a subset of Q.

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 15

DEFINITION 4.1. Let r, s be nonnegative integers; let z and bi (i = 1, 2, 3) be
strings of variables, where Izl = r and Ibm] = s. For brevity, let b = blb2ba
and w = zb (juxtaposition indicates concatenation). Let t = rlr2ra be a string
of 3 variables. Let B(w, t) be a Boolean formula in r + as + 3 variables. We
say that a Boolean function A in 8 variables is a 3-satisfying oracle for B if
B(w, A(bl), A(b2), A(ba)) is true for each of the 2 "+a* Boolean substitutions into
the string w of r + 3s variables. We say that B is oracle-S-satisfiable, if such a
function A exists. The oracle-3-satisfiability problem takes a Boolean formula B
as input together with the integers r, s and accepts it if it is oracle-a-satisfiable.

PROPOSITION 4.2. Oracle-3-satisf~ability is NEXP-complete.

PROOF. Clearly, this language belongs to N E X P . Let now L C N E X P and
z an input of length n for the membership problem in L. We construct in
polynomial time an instance (B, r, s) of oracle-3-satisfiability which is accepted
if and only if x C L.

The first part of this construction is essentially due to J. Simon [36]; simi-
Iar proofs appear in Peterson, Reif [32] and Orponen [30], describing N E X P
analogues of the Cook-Levin theorem (NP-completeness of 3-SAT).

Let M be the N E X P Taring machine accepting L. Look at the tableau
describing the computation of M on input x. Convert this to a 3-CNF ~,: like
in the proof of the Cook-Levin theorem. There will be an exponential number
Nv of variables and an exponential number Nc of clauses. For sake of simplicity
assume without loss of generality that N~ = 2 s where s = n c for some constant
c. w e label the variables by binary strings of length 2s: X(b), b E {0, 1} ~.
There are 2 as+a possible clauses with 3 signed variables each (a signed variable
is a variable or its negation). A typical clause has this form:

C(b , f ,X)=(~ l@X(bl))V(9o2@X(b2))V(~a@X(ba)) , (4.9)

where the a-bit string f = ~Ol~2~a encodes the signs of the variables, and the
3s-bit string b = blb2b3 encodes the variables themselves. (c 2 = 1 stands for
negation and c 2 = 0 for the absence of it; | denotes addition rood 2.)

The clauses themselves are polynomial time recognizable, i.e., there is a
polynomial time computable predicate p such that C(b, f, X) is a clause of q5 x
if and only if p(x, b, f) holds. We infer that x E L if and only if there exists
a Boolean.function A : {0, 1} * ~ {0, i} (a satisfying instance) such that for
every b e {0, 1} as and t ~ {0, 1} a,

D(b,f ,A) =: C(b,f ,A) V ~p(x,b,f) (4.10)

16 Babai, Fortnow & Lund Comput Complexity ! (1991)

holds. (Those clauses which belong to (I)x according to p must be satisfied when
the variables X(bi) are replaced by the Boolean values A(bi).)

Observe that C(b, f , A) is obtained from the explicit Boolean formula

B l (f , t) := (901 @ 7-1) V (~2 ~) 7-2) V (~o3 @ r3) (4.11)

by substituting A(bi) for rl.
We now wish to replace ~p(x, b, f) by a Boolean formula. To this end we

regard p(x,b, f) as computable in NP, and apply Cook-Levin to obtain an
equivalent a-SAT instance B2. The 3-CNF formula B2, computable in polyno-
mial time from x~ involves the variable strings b, f and u, the latter being the
"witness" (of polynomial length). Having fixed the values of b, f , we observe
that B2 is satisfiable if and only if p(x, b, f) = 1.

Let finally
B(u ,b , f , t) := Bl(f , t) V -~B2(u,b,f). (4.12)

This is the Boolean function we have sought. (To consolidate with the notation
of Definition 4.1 let z = u f and let r denote the length of z.) When does a
function A : {0, 1}* + {0, 1} 3-satisfy B? For every b = blb2b3, the substitu-
tions 7-i = A(bi) must satisfy B for all possible values of z. But this is precisely
what we have shown to be equivalent to x 6 L. []

4.3. A r i t h m e t i z a t i o n of N E X P . We use the same variable symbols as
introduced at the beginning of Section 4.2. For the definition of arithmetization,
we refer to Section 3.1.

LEMMA 4.3. Given an instance (B, r, s) of oracle-3-satisfiability (where B =
B(w, t) is a Boolean formula in r + 3s + 3 variables), one can compute in
polynomial time an arithmetic expression for a polynomial g with integer co-
et~cients over the same set d r + 3s + 3 variable symbols such that a function
A : {0, 1} s + Q constitutes a 3-satisfying oracle for B if and oMy if

E g(w, A(bl), A(b2), A(ba)) = 0.
wE{0,1}~+ a~

(4.13)

PROOF. First we use Proposition 3.1 to obtain an arithmetic expression for a
polynomial f representing an arithmetization of B. Next, set

g(w,t) := (f (w, t)) 2 + (7-1(rl - i)) 2. (4.14)

Since now the 1eft hand side of (4.13) is a sum of squares, that sum will vanish
if and only if all terms vanish.

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 17

The vanishing of the last term of the right hand side of (4.14), i.e., the
relation A(bl)(A(bl) - 1) = 0, corresponds to the guarantee that all values of A
are from {0, 1}. Assuming now that this is the case, the vanishing of the first
term on the right hand side of (4.14) is by definition equivalent to the relation
B(w, A(bl), A(b2), A(b3)) = O. []

4.4. M u l t i l i n e a r i t y . Let A : {0, 1} ~ ~ Q be a function stored by the Oracle,
and let h(w) := g(w, A(bl), A(b2), A(b3)). Our task is to verify (4.13). In order
to be able to use an LFKN-type protocol as described in Section 3, we have to
turn A into a polynomial of low degree. There is a very simple way to do so.
A polynomial is rnultilinear if it is linear in every variable.

PROPOSITION 4.4. Let A : {0, 1} ~ ~ Q be a function. Then A has a unique
multilinear extension J~ : QS ~ Q. I f A takes integer values then so does
over I s.

PROOF. Define A by

A(x) : : ~ r I A(b)e~,(~i), (4.15)
bE{0,1} s i = 1

where x ~ (~1 , . . . , ~) ; b is the bit-string/31.../3s; and g0(~) = 1 - ~ , el(~) = ~.
Clearly, A possesses the required properties.

To prove the uniqueness, assume f : Q~ ~ Q is multilinear and its restric-
tion to {0, 1} s is zero. For x E Q~, let k(x) denote the number of coordinates
different from 0,1. We prove by induction on k(x) that f (x) = 0. Indeed this
is true by assumption for k(x) = 0. Now for some k(x) > 0 suppose e.g. that
~1 r {0, 1}. Replacing ~1 by either 0 or 1 we obtain places where f vanishes
by the induction hypothesis; but then, by the linearity in ~1, it vanishes at x
as well. []

REMARK 4.5. The proof works over any integral domain with identity.

Now we are ready to apply the oracle version of the LFKN protocol from
Lemma 3.5. What we need is that the Oracle store not just A, the oracle 3-
satisfying B, but the multilinear extension of A to a suitable domain P. The set

C Z has to be large enough for the LFKN protocol to work. Multilinearity
of A will guarantee that the function h(w) = g(w,A(bl),Z,(b2),A(b3)) is a
polynomial of low degree and the LFKN protocol verifies (4.13).

18 Babai, Fortnow ~z Lund Comput Comp]exity i (1991)

The difficulty with this approach is that a dishonest Oracle may cheat by
storing a function that is not multilinear.

This question will be addressed by a separate protocol in Section 5. That
protocol will ask simple randomized questions to the Oracle. ff the function
A : I s --+ Q stored by the Oracle is multilinear, the protocol will always accept.
On the other hand, if the protocol has >_ 1/2 chance of accepting, then the
function stored by the Oracle is at least an e-approximation of a multilinear
function P -+ Q (el. definition 3.4).

We state the result here. We say that a function P --+ Q is e-approximately
multilinear if it is an e-approximation of a multilinear function. For typographic
convenience, we use exp2(u) to denote 2 ".

THEOREM 4.6. Let d > 1 and k >__ 1 be fixed constants. Let N be an integer,
s e+a < N <_ 2 s~ for some s. Let i denote the set of integers {0 , . . . , N - 1}. Let
A(~ l , . . . ,~s) be an arbitrary function from P to Q. Then for any constant k ~
there exists a probabilistic polynomial-time Taring machine M such that given
access to A as an oracle:

1. K A is multilinear, integral valued, and does not take values greater than
exp~(s k') then M A always accepts.

2. I f A is not s-d-approximately multilinear then with high probability M a

rejects.

The proof of this result will be the subject of Section 5. The following
observation justifies the upper bound posed on the values of A in statement
#1 in the Theorem.

PROPOSITION 4.7. ff m = {0 , . . . , N - 1} and A : P --+ Q is the multilinear
extension of a Boolean function then for any x C I s, the absolute value of A(x)
is bounded by

]A(z)I < (2N) ~. (4.16)

PROOF. Immediate from equation (4.15). []

REMARK 4.8. Theorem 4.6 has applications to program testing and correcting.
We shall elaborate on this in Sections 6.3 and 6.4.

REMARK 4.9. The same test works if we replace multilinearity by the condition
that the polynomial be of low degree. Let kl,. �9 �9 k,~ be positive integers < n c.
Assume we wish to test if the function A : P --+ Z is a polynomial having
degree _< ki in variable xl for every i. Theorem 4.6 extends to this situation,
with only trivial modifications in the proof.

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 19

4.5. T h e P r o t o c o l . Let L E N E X P . We have to design a M I P protocol
to verify x E L. As described in Section 3.3, what we actually construct is an
interactive oracle-protocol. Section 3.4 describes a simple implementation of
such a protocol with two provers.

We shall thus have a single Prover and an Oracle. According to Propo-
sition 4.2 the Verifier constructs an instance (B, r, s) of oracle 3-satisfiability
which is accepted if and only if x E L. Next, following Lemma 4.3 the Verifier
constructs an arithmetic expression for a polynomial g in r + 3s + 3 variables
with integer coefficients such that x C L if and only if there exists a Boolean
function A: {0, 1} s -4 {0, 1} such that equation (4.13) holds.

We select reliability parameters 5 < 1/4 and k _> 4 such that 1/5+k < n ~
(n = lxl). We set I = {0, . . . , N - 1 }, where N = kdm where d is the degree of
g and m = r + 3s. (Clearly, all these parameters are bounded by n~

We ask the Oracle to store a function A : F -~ Z which is supposed to be
a multilinear extension of a 3-satisfying oracle for (B, r, s).

Phase One of the protocol is the multilinearity test. This phase does not
require the Prover; the Verifier will ask a polynomial number of randomized
questions to the Oracle according to Theorem 4.6. If this phase ends in rejec-
tion, the Verifier rejects the claim x E L and the protocol terminates.

Phase Two is invoked if the multilinearity test ends with acceptance. This
phase is intended to verify (4.13). This is accomplished via the LFKN-type
interactive oracle-protocol stated in Lemma 3.5, applied to the function h(w) =
g(w,A(bl),A(b2),A(b3)). The Final Test, i:e., the last step of that protocol
requires the evaluation of h(w) at a single random w C ! "~ where m = r +
3s. The Verifier accomplishes this by making three queries to the Oracle:
A(bl), m(b2), d(b3). (In Phase Two, these are the only queries to the Oracle.)
Note that these three places have been chosen at random from P by the Verifier.
According to the outcome of Phase Two, the Verifier accepts or rejects the claim
x G L .

PROOF OF CORRECTNESS. If x E L, then the honest Prover-Oracle pair will
clearly always win.

Suppose now that a Prover-Oracle pair has greater than 5 + 1/k chance of
winning. We claim that then x C L.

First of all, the Oracle A has to be at least 5/3-approximately multilinear;
otherwise it would be rejected in Phase One with high probability. Let A' be
a multilinear function which 5/3-approximates A.

Let h(w) = g(w, A(bl), A(b2), A(b3)) and h'(w) = g(w, A'(bx), A'(b2), A'(b3)).
Clearly, h is 5-approximated by h ~ over I m, and h ~ has degree < d in each of its
m variables. Therefore, according to Lemma 3.5~ if the Prover has greater than

20 Babai, Fortnow & Land Comput Complexity I (i991)

(5 + 1/k chance of winning, then (4.13) holds with A' in the place oi' A. This
means that A' is a 3-satisfying oracle for (B, r, s), thus proving that x E L. []

This concludes the proof of the Main Theorem modulo the multiiinearity
test which follows in Section 5.

4.6. T h e P o w e r of t h e P rove r s . We state a by-product of the above proof
regarding the required power of the provers. Let C be either a class of languages
or a class of functions. We say that a language L has (single or multiple prover)
interactive proof systems with provers of complexity C if

o For any z E L, the honest provers Pi are restricted to answering questions
of membership in some language Li E C, and are able to convince the
verifier about membership of x in L;

o Even all-powerful provers do not have a chance of convincing the verifier
of membership o f , in L if in fact z r L.

If C is a class of functions, we define provers of complexity C analogously:
the honest provers are restricted to evaluating some function f E C. It is clear
that a prover of power C is equivalent to one of power pC. In particular, provers
of power P P are equivalent to provers of power # P since p e p = p # e .

The result of Feldman [18] combined with Shamir's [35] implies that each
language in P S P A C E has a single prover interactive proof system with a
prover of complexity P S P A C E . The result of Lund et al. [29] implies that
p # e has single prover interactive proof systems with a prover of complexity
P . A similar property of E X P follows from our proof.

COROLLARY 4.10. For any L E E X P , there is a multiple-prover ingerac{ive
proof system with provers of complexity E X P .

PROOF. Notice that the tableau of the computation performed by a determin-
istic exponential-time machine M on a specific input z is unique and any bit of
that tableau can be computed in deterministic exponential time by simulating
the computation of M(x). In the proof of Proposition 4.2 we reduce z E L to an
instance of oracle-3-satisfiability where a satisfying instance can be computed
in deterministic exponential time. From this the result is immediate. []

REMARK 4.11. Although we know that all languages provable in a multi-
prover proof system must lie in N E X P we do not know whether N E X P
provers are sufficient to prove any N E X P language to a verifier. It would be

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 21

important that all provers have access to the same tableau of an accepting com-
putation; but there could be several since the N E X P machine may have many
accepting paths. The best upper bound we know on the power of the provers
for N E X P is E X P Np, pointed out by Ggbor Tardos. Indeed, it is easy to
see that an EXpNP-machine is capable of computing a lexicographically first
tableau for any N E X P language. (The computation proceeds by sequentially
asking every bit of the lexicographically first accepting tableau in the form of
an exponentially long (padded) question to the N P orcale.)

Also of interest is the power of provers needed to prove a coNP-complete
language like DNF tautology. Lund et al. [29] show that # P provers are suffi-
cient. We know of no better bound.

5. Verification of Multi l inear Functions and
Polynomials of Low Degree

First we need some definitions and notation.
As before, we use I to denote the interval {0, 1 , . . . , N - 1} for some suitable

large integer N.
We shall consider the nth cartesian power of a finite set X (usually X = i).

A subset U __G X n will be called a k-dimensional subspace of X n if there exist
n - k different coordinates il , . �9 i~_k and n - k values of these coordinates
c~h,. �9 �9 c~n_ k E X such that

U = { (O ~ l , . . . , c ~ , ~) : x i 3 = c % for j = l , 2 , . . . , n - k }

A line is a 1-dimensional subspace. The points of a line in the k ta direction
have all but the k *h coordinate in common. We shall denote by L the set of
lines and by L~- the set of lines in the ith direction. A hyperplane is a subspace
of dimension n - 1. We shall use these terms for the case X = I. Note that
what we call subspaces correspond to the subspaces aligned with the coordinate
system in the affine space. (E.g., in this terminology, P has n N hyperplanes.)

DEFINITION 5.1. Let f : I ~ ~ Q be a function. We call f multilinear if its
restriction to any line (in the above sense) of ! n is linear.

DEFINITION 5.2. Let f : P --~ q. For5 C [0, t] wesay that f is a-approximate-
ly multilinear i f there exists a multilinear g such that g &approximates f . I f
n = 1, we obtain the concept of &approximately linear functions.

22 Babai, Fortnow & Lund Comput Complexity ! (1991)

DEFINITION 5.3. Given a function A : ! '~ -+ Q, we call a line g in D correct, if
the restriction Ale is a linear function. We say that g is &wrong or just wrong
if All is not 5-approximately linear.

5.1. T h e Tes t . If we ever catch a point where the value of A is not integral
or too large (> exp2 nk), we reject and halt. Henceforth we assume this never
occurs. From this one can infer with high confidence that

(*) for most x E D, A(x) is integral and not greater than K = exp2(nk+l).

Although we don't need this later on, we mention that it follows from (*)
that, if A(x) is multilinear, then it never gets too large (greater than n~K) on
I n. Furthermore, n!A(x) is integral. - These conclusions hold even if we replace
"most" by % positive fraction of" in (*).

First we describe a subtest that tests if a line is wrong:

Tes ta (l ine g) Select ml + 2 random points of g. If A restricted to these points
agrees with a linear function then accept else reject.

PROPOSITION 5.4. (a) f i g is correct, then Testo surely accepts g.
(b) I f f is 5-wrong, Testa will reject it with probability greater than 1 -

exp(--~ml).

PROOF. Take two of the points; interpolate their A-values to a linear function
h(x) on g. If for more than a 5 fraction of x E l we have that A(x) # h(x) then
the probability that the test detects no such point is at most

(1 - e)m, < exp(-aml).

Now the whole test is the following:

Tes t Select m2 random lines from Li for each i. If Testa accepts each of these
lines then accept else reject.

PROPOSITION 5.5. (@ / f A is multilinear, then Test accepts.
(b) f f for some i more than an e fraction of the lines in Li is &wrong, then

the probability that Tes t rejects is greater than

1 - (exp(--era2) q- exp(--Smi)).

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 23

PROOF. The probability that no &wrong line is selected is (1 - e) m2 <
exp(-em=). The probability that a &wrong line, when selected, remains un-
detected, is less than exp(-Sml) . It is easy to see that the sum of these two
quantities is an upper bound on the failure probability of the Test. []

We paraphrase statement (b) above.

PROPOSITION 5.6. Given a function A : P ~ Q, assume that A passes the
Test with m2 = t /e , ml = t /& Then we infer with confidence > 1 - 2e -t that

(Vi) the proportion of 5-wrong lines among Li is < e. (**)

The rest of this section is devoted to proving that the above conclusion
(**) implies that A is d-approximately multilinear for some small d. See The-
orem 5.13 (end of this section) for the formal statement of this result.

5.2. T h e S e l f - I m p r o v e m e n t L e m m a . We need a combinatorial isoperimet-
ric inequality.

DEFINITION" 5.7. Let X be a finite set. For S C_ X ~ define the closure of S as

=

where ~ri : X ~ --~ X ~-1 is the projection in the i th dimension.

LEMMA 5.8. (EXPANSION LEMMA) Let S C X '~. I f IS[<_ IXp/2 then [SI >-
[sl(1 +

This]emma was proved by D. Aldous [2, Lemma 3.1]. It is also implicit in
work by Babai and Erd6s [5, Lemma].

The key step in the induction argument that will yield Theorem 5.13 is the
verification that if a function passes the Test and it is multilinear on a fair
portion of the space then it is actually multilinear almost everywhere. Here is
the formal statement:

LEMMA 5.10. (SELF-IMPROVEMENT LEMMA) Given a function A " l" -~ Q,
assume that

(Vi) the proportion of 5-wrong lines among Li is < e

and
some multi l inear function g A-approximates A,

where A _< 1/2. Then

g d-approximates A, where d = 3n2(e + 5 + l / N) .

24 BabM, Fortnow &Lund Cornput Compiexity ! (1991)

PROOF. We will partition the points of i n into four sets. For S C ~ _ ~ , w e s e t

s) = ISl/N

B: B = {z E PiA(x) # 9(x)}. Call them bad points.

W: Union of 5-wrong lines. Call the points in W wrong. Observe that ~he
assumption gives #(W) < he.

M: Points x ~ W which belong to lines g where A]~ is 5-approximated by
some linear function h, but h(z) # A(x). Call these points misplaced.
Since for each line only a S-fraction is misplaced and since each point lies
on n lines we obtain that #(M) < nS.

I: Points z on lines g such that Ale is 5-approximated by a linear function
h, where h # gte, but A(x) = g(z) = h(z). Since at most one such point
belongs to each line, #(I) < n/N.

Now define S := B \ (W U M). We claim that S C_ B U M U I. To see this take
c~ C S and let/~ be a point on a line f through c~. Assume that /3 r B U M.
First observe that since a is not a wrong point there is a linear function h
which 5-approximates A restricted to g. Since neither a nor/3 were misplaced
and a was bad and/~ is not bad, we have that A(fl) belongs to two different
linear function g restricted to g and h. Hence/3 E 1.

So if #(S) < 1/2 then from the Expansion Lemma we obtain that

1 /

+ < < . (s) + + 6) +

hence #(S) < 2n2(~ + 5 + 1/N). This concludes the proof since

#(B) < #(S) + n(c + 5) < 3n2(e + 5 + 1/N). []

5.3. T h e P a s t i n g L e m m a . The multilinear function which closely approxi-
mates A will be constructed for certain subspaces by induction on their dimen-
sion. What we show below is that if A is approximately linear on most lines
and approximately multilinear on a fair portion of the hyperplanes, then it is
approximately multilinear on the entire space. The %elf-improvement lemma"
prevents the devaluation, through repeated application in the induction argu-
ment, of the term "approximately" in this result.

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 25

LEMMA 5.11. (PASTING LEMMA) Given a function A : I n ~ Q, assume that
- 2--6~, N >_ 4On,

(Vi) the proportion of 5-wrong lines among Li is <

and there exists g : I n • jn ~ Q such that 9(x, y) is multilinear in y E p-1 for
every x C [and the set

= {~ [g(~, Y) fl-approximatesA((, y)}

has fair density #(~) >_ ~, where V = ~ and/3 - ~o"
Then A is A-approximately multilinear, where A = e + 5 + 4/3 _< 1/2.

And by the self-improvement/emma A is d-approximately multilinear, where
e' = 3n2(e + 5 + 1/N).

PROOF. First observe that the first part of the assumption implies that there
exist functions f~(y) and f2(y) : i n-~ ~ Q such that xf~(y) + f2(y) (c + 5)-
approximates A(x,y) . Define �9 = {~l~fl(Y) + f2(y) does not /3-approximate
A(~,y) as a function of y}. Then #(g/) < ~ - 1 0 (e + 5) . So 1~5\~I >

N (1- '~- 10(e + 5)) >__ 2. Let ~1,(2 ~ (I) \ kI/, ~1 r (2- Then for./ = 1,2 there

exist multilinear functions gi(Y) that 2/3-approximate ~if~ (y) + f2(Y). Hence on
a set of measure 1 - 4fl we have that

f l (Y) = g l (Y) - - g2(Y)

and
(291 (y) - (lg (y)

f 2 (y) =

Now denote the multilinear functions on the right hand side by f l (y) , f2(y) .
Then the multilinear function x ~ (y) + f2(y) A-approximates A(x,y) . []

5.4. T h e T ree Co lo r ing L e m m a . The next lemma provides the overall
structure of the induction. It demonstrates, as we shall see in the next subsec-
tion, that the Pasting lemma is strong enough to carry approximate multilin-
earity all way from most lines to the entire space.

Let T be a depth n levelwise uniform tree (vertices on the same level have
the same number of children). We will color the tree by two colors red and
white. The input is a coloring of the leaves. Then we color the tree bot tom up
according to the following rule.

Fix the parameters e0 and ~ with 0 _< r r < 1. Color a vertex red if each
of the following two conditions are met (and otherwise color it arbitrarily):

26 Babai, Fortnow & Lund Comput Complexity i (1991)

o "Almost all leaves" in the subtree Tv rooted at v are red: oniy a fraction
not greater than e0 is white.

o A "fair number" of children of v are red: the proportion of red children
is at 1east c 2.

LEMMA 5.12. (TREE COLORING LEMMA) Let ek = (1 - p)keo. Let v be a
vertex on level k. (The leaves are on level 0.) Assume that alI bu~ an ek
fraction of the leaves in Tv are red. Then v is red.

PROOF. By induction on k.

k = 0 This case says "if a leaf is red then it is red."

k > 1 Take a random child u of v. Recall that we use # to denote the uniform
probability measure over nonempty finite sets. Now E~(#(white leaves in
T~)) < ek. Hence Pry(#(white leaves in T~) > ek-~) < ~ = 1 - ~ . But

this probability is by the inductive hypothesis at least Pr~[u is white].
So

Pru [u is red] _ 9~.

Hence the proportion of red children of v is at least 9~ and also the pro-
portion of red leaves in Tv is at least 1- -ek >_ l - - e0 . Hence v is red.

THEOREM 5.13. Given A : I n --, Q, assume that

(Vi) the proportion of 5-wrong lines among Li is < ~.

Then

A is d-approximately multilinear, where d = 3n:(e + 5 + I/lv'),

assuming the parameters have been so chosen that N >__ 40n 2, 5 < ~ and

<_ soln3

PROOF. We first construct a tree T of depth n - 1. The nodes of the tree will
correspond to subspaces of P. (We consider aligned affine subspaces; see the
conventions stated at the beginning of this section.) The root corresponds to
P; and the children of a node correspond to its hyperplanes. Observe that the
leaves correspond to lines. We color all the leaves corresponding to a &wrong

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 27

line white, all the others red. Now we color the rest of T according to the
1 Note that c < Cn = (1 -- p)ne0. From coloring rule with e0 = 2e and ~ = TS-g~"

the coloring lemma we obtain that the root is red. Now we only have to make
the following observation. We shall say that a subspace U is/3-approximately
multilinear if the restriction AIu has this property.

LEMMA 5.14. I f V E T is red then the subspace Uv corresponding to v is
~3-approximately multilinear, where/3 = 1/10.

PROOF. By induction on the level k of v.

k = 1 is okay since 5 </3.

k >_ 1 We know that since v is red, it has a fraction of _> ~ red children.
By the inductive hypothesis the subspaces corresponding to them are/3-
approximately multilinear. There must thus be a direction such that a
fraction of _> T of hyperplanes of Uv in that direction is/3-approximately
multilinear.

Since v is red we also know that the proportion of 5-wrong lines in Uv is
< e0. This implies that the proportion of 5-wrong lines in Uv in any di-
rection is < ne0. Therefore, by the Pasting lemma U~ is e*-approximately
multilinear, where e* = 3n2(ne0 + 5 + 1/N). This concludes the proof of
the lemma since the choice of parameters implies that e* _</3.

So now A is e*-approximately multilinear. By the Self-improvement lemma
it follows that A is d-approximately multilinear, completing the proof of The-
orem 5.13. []

Now the proof of Theorem 4.6 is immediate. Let our probabilistic Turing
machine perform the Test, setting the parameters so that d _< n-% If A is
multilinear, integral valued, and takes no too large values, then the machine
will clearly accept. On the other hand, Proposition 5.6 guarantees that in
case the machine accepts, condition (**) (Proposition 5.6) can be inferred with
high confidence. By Theorem 5.13, this implies that A is n-*-approximately
multilinear, c?

REMARK 5.15. As we mentioned in Remark 4.9, this test for multilinearity can
be extended to polynomials having small degree in each variable, where "small"
means bounded by a polynomial of the length of the input. Let k s , . . . , kn be
positive integers < n c. Assume we wish to test if the function A : i n ~ I i s a

polynomial having degree _< kl in variable xi for every i. Theorem 5.13 extends

28 Babai, Fortnow &Lund Comput Complexity I_ (1991)

to this situation, with the following modification of the parameters. We should
set e' = 3n2(e + 5 + k / N) where k = maxi ki; furthermore ~ - 5(k+1),~ N >_

20(k+ 1)2n 2, 5 < 200,~k+l) and e < i With the obvious modifications,
_ _ _ _ 4 O O n a (k + l) "

the same proof applies.

REMARK 5.16. Recently, Mario Szegedy [38] succeeded in devising a more
efficient protocol for multilinearity (and low degree) testing; at the same time
the proof of correctness of his protocol is also simpler.

6. Program Testing, Verification and Self-Reducibility

The results of this paper have many connections to program testing~ ver-
ification and self-correcting code. We make the connections precise in this
section.

6.1. R o b u s t n e s s . In this section we describe a useful property, P S P A C E -
robustness, of languages. We show that every P S P A C E - r o b u s t language is
Turing-equivalent to a family of multillnear functions (one n-variable function
for every n).

DEFINITION 6.1. A language L is P S P A C E - r o b u s t if pL = p S P A C E L .

Examples of P S P A C E - r o b u s t languages include the PSPACE-comp]e t e and
EXP-comple t e languages.

LEMMA 6.2. Every P S P A C E - r o b u s t language has a Turing-equivaient family
of multilinear functions over the integers.

PROOF. Let L be a P S P A C E - r o b u s t language. Let gn(xl~~ ~xn) be the
multilinear extension of the characteristic function of L~ = L N {0, 1} ~ (see
Proposition 4.4). Clearly L E Pg, where g = {gn : n > 0}. We will describe
an alternating polynomial-time Turing machine with access to L computing
g. First guess the value z = gn (x l , . . . , x~) . Then existentially guess the lin-
ear function h~(y) = g(y, x 2 , . . . , z n) and verify that h,(x ,) = z. Then uni-
versally choose tl E {0, 1} and existentially guess the linear function h~(y) =
g(tl, y, X3 , . . . , Xn). Keep repeating this process until we have specified t l , . . . , tn
and then verify that t l . . . tn C L. Since a P S P A C E machine can simulate a n
alternating polynomial-time Turing machine, if L is P S P A C E - r o b u s t then g
is Turing-reducible to L. []

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 29

In particular, we have multilinear PSPACE-complete functions, EXP-
complete functions, etc. This lemma, inspired by Beaver-Feigenbaum [10] and
spelled out simultaneously by the authors of this paper and of [10], has signif-
icant consequences, as we shall see below.

There are natural classes of languages satisfying the conclusion of Lemma 6.2
which are not known to be PSPACE-robust; P#P-complete languages being
the prime example, since they are equivalent to the permanent, a multilinear
function (Valiant [41]).

6.2. I n s t a n c e Check ing . In Blum, Kannan [12], "function-restricted lP" is
defined as follows:

The set of all decision problems ~r for which there is an interactive proof
system for YES-instances of 7r satisfying the conditions that the honest prover
must compute the function ~r and any prover (whether honest or not) must be
a function from the set of instances to {YES, NO}.

By Theorem 2.3 due to Fortnow, Rompel, Sipser we see that function-
restricted IP is equivalent to multi-prover interactive proof systems where the
honest provers can only answer questions about the language they are being
asked to prove.

Blum and Kannan also define a program checker Cr ~ for a language L and an
instance x C {0, 1}* as a probabilistic polynomial-time oracle Turing Machine
that given a program P claiming to compute L, and an input x:

1. [f P correctly computes L for all inputs then with high probability C~
will output "correct".

2. If P(x) r L(z), with high probability C~(x) will output "P does not
compute L".

Blum and Kannan show that a language has a program checker if and only
if the language and its complement each have a function-restricted interactive
proof system.

The recent results by Lund, Fortnow, Karloff, Nisan [29] and Shamir [35]
show all PeP-complete and PSPACE-complete languages have function re-
stricted interactive proofs and (since both classes are closed under comple-
ments) program checkers. This implies a program checker for any ~P-complete
function such as the permanent of a matrix.

The following follows from Corollary 4.10:

COROLLARY 6.3. Every EXP-complete language has a function-restricted in-
teractive proof system and thus a program checker.

30 Babai, Fortnow & Lund Comput Complexity I (1991)

Thus not every language in function-restricted [P has a single prover inter-
active proof unless P S P A C E = E X P . This essentially gives a negative answer
to the open question of Blum, Kannan [12] as to whether I P contains function-
restricted I P.

Still open is the question as to whether NP-comple te languages have pro-
gram checkers. This is directly related to the question of whether coNP lan-
guages have protocols with N P provers (see Section 4.6).

6 .3 . Se l f -Tes t ing a n d S e l f - C o r r e c t i n g P r o g r a m s . Our test of multilinear
functions (Section 5) also has applications to program testing as described by
Blum, Luby, Rubinfeld [13] and Lipton [28].

We will use the following definition of self-testing/correcting programs which
is slightly different from but in the spirit of the Bium-Luby-Rubinfe!d defini-
tion. We make the connection between the two models clear in Section 6.4.

An input set I is a sequence of subsets I1,I2, o.. of {0, 1}* such that for
some k and for all n, if x E IN then n 1/k <_]x i <_ n k. We let I represent the set
Un>lln.

We say a pair of probabilistic polynomial t ime programs (T, C) is a self-
testing/correcting pair for a function f over an input set I if given a program
P that purports to compute f the following hold for every n:

1. The tester T (P , t n) will output either "Pass" or "Fail".

2. If P correctIy computes f on all inputs of _/then T (P , 1 n) will say "Pass"
with probability at least 2/3.

3. For every x E /n, if Pr(T(7 ~, 1 '~) says "Pass") > 1/3 then P r (C (~ , x) =
f (x)) > 2/3.

The errors can be made exponentially small by repeated trials and majority
vote. A language has a self-testing/correcting pair if its characteristic function
does.

An alternative definition would require the tester to always say "'Pass" for
a correct program. In every case that we know, the tester has this property.
However, we allow the more general definition for a better comparison with the
Blum-Luby-Rubinfeld model (see Section 6.4).

THEOREM 6.4. Every PSPACE-complete and EXP-complete ianguage has a
self-testing~correcting pair over I = { I~[I~ = {0, 1}~~

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 31

We will prove Theorem 6.4 for EXP-complete languages. The proof for
PSPACE-complete languages is analogous. In fact this proof holds for any
language L that is PSPACE-robust and has a multiple prover interactive proof
system where the provers only answer questions about membership in L.

LEMMA 6.5. Let gn be the mult i l inear extension of an E X P - c o m p l e t e lan-
guage L over the t~dd of p,~ d e m e n t s where pn is the least prime greater than
n. The funct ion g = {g~ : n > 0} has a sel f- test ing/correct ing pair over the set

n I : { I . l I n : F p . } .

PROOF. Since g is E X P - h a r d and each bit of g ~ (x l , . . . , x,~) is computable in
E X P (Lemma 6.2), by Corollary 4.10 there exists a multiple prover interactive
proof system for verifying a specific bit of g ~ (x l , . . . , x~) where the provers need
only answer questions about g-

Let P be a program that purports to compute g- The tester program
r (~ , 1 ~) will choose n 3 randomly chosen (91, . . . , Yn) E F~ . T will then verify
that each bit of the P(y l , . �9 y~) is the same as g (Y l , . . . , yn) with a multiprover
interactive proof system using 7) as the provers. The tester T will output "Pass"
if every bit checks correctly. If T outputs "Pass" with probability at least 1/3
then with extremely high confidence P (y l , . . . , y~) = g ~ (y l , . . . , yn) on all but
1/n ~ of the possible (Yl,. .- , Y~) E P Pn"

We now use ideas of Beaver, Feigenbaum [10] and Lipton [28] to create the
correcting function C. Suppose we wish to compute g ~ (x l , . . . , x ~) . Choose
elements r l , . . ,r,~ E F n at random and let r i �9 p~ = (xl + i r l , . . . , x , ~ + ira) for
! < i < n + 1. Let g'(y) = gn(xl + y r l , . . . , xn + yr~) for all y. With probability
greater than 1-~.,~2 (By "Bertrand's Postulate", p,~ < 2n), P (r i) = g,~(r ~) = g'(i)
since each r i is uniformly random. However, g'(Y) is a polynomial of degree
at most n and we have n + 1 points of this polynomial, g ' (1) , . . . ,g ' (n + 1).
Interpolate this polynomial and compute g'(0) = g ~ (x ~ , . . . , xn). If we repeat
this process n times then with extremely high probability a majority of the
answers from this process will be the proper value of g,~. []

PROOF O F T H E O R E M 6.4. Suppose we had a program Q that purports to com-
pute L. By Lemma 6.2 there exists a polynomial time function f (y l , . . . , y~, i)
such that the ith bit ofg~(y~,...,y,~) is one if and only i f f (y ~ , . . . , y n , i) E L.
We create a new program P that simulates this process asking questions to Q
instead of L. If Q properly computes L then P properly computes g~.

Let Tg and Cg be the testing/self-correcting pair for g. We will create a
testing/self-correcting pair TL, CL for L. The tester TL(Q, 1 ~) will just simulate
Tg(P, 1 ~) using the P described above. The checker CL(Q, x) will just output
Cg(~P, (X l , . . . , x r t)) w h e r e x ~- . T I . . . z n. []

32 Babai, Fortnow L: Lund Comput Complexity i (1991)

6.4. C o m p a r i s o n w i t h t h e B l u m - L u b y - R u b i n f e l d M o d e l . Blum, Luby
and Rubinfeld [13] give the following series of definitions for self-testing/correct-
ing pairs:

Let :D = {Z)~in >_ 0} be an ensemble of probability distributions such that
7)~ is a distribution on I , . Let T' be a program that purports to compute g.
Let error(g, P , :D~) be the probability that P(z) # g(x) when x is chosen from
9~.

Let 0 _< el < e2 _< 1. An (el,e2)-self-testing program for g with respect to
7? is a probabilistic polynomial-time program T such that

1. If error(g, P , :D~) _< el then T(P , 1 ~) outputs "Pass" with probability at
least 2/3.

2. If error(g, P , :D~) >__ e2 then T(7 9, 1 ~) outputs "Pass" with probability at
most 1/3.

Let 0 _< e < 1. An e-self-correcting program for f with respect to 2)
is a probabilistic polynomial-time program C such that for all x E I~, if
error(g, P , :D,) < e then C(P, x) = g(x) with probability at least 2/3.

A self-testing~correcting pair for g over an input set I is a pair of programs
(T, C) such that for some e, el, e2 with 0 < q < e2 _< e < 1 and some ensemble of
probability distributions :D over I such that T is a (el, e2)-self-testing program
for g with respect to :D and C is an e-self-corretion for g with respect t o /) .

Note that if g has a self-testing/correcting pair (T, C) over an input set I
in the Blum-Luby-Rubinfeld model then g has a self-testing/correcting pair in
our model using the same T and C.

LEMMA 6.6. ff L is PSPACE-robust and has a function-restricted interac-
tive proof system then there exists a family g of multilinear functions Turing-
equivalent to L that has a self-testing/correcting pair in the Blum-Luby-Rubin-
feld model.

PROOF. Use the function g defined in Lemma 6.5. The same tes'~er and
corrector T and C used in the proof of Lemma 6.5 also work here. Let D , be
the uniform distribution over F" The tester T is a (0, 1 - 1/n2)-self-testing p n ~

program for g over D. The corrector C is a 1 - 1/n2-self-correcting program
for g over ~D. []

COROLLARY 6.7. There exist PSPACE-complete and EXP-compiete [unctions
that have self-testing/correcting pairs in the Blum-Luby-Rnbinfeld model.

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 33

It's not clear whether all PSPACE-complete or EXP-complete languages
have self-testing/correcting pairs under the Blum-Luby-Rubinfeld model.

We can also do program verification in the spirit of Lipton (Blum-Luby-
Rubinfeld without an assumption of a tester T) as follows: Suppose a program
;o claims to compute a multilinear function. We can test that there is some
multilinear function f using Theorem 4.6 such that P = f on most inputs and
then if P = f on most inputs we can create a correcting function C such that
C = f on all inputs with high probability. The proof is virtually identical to
the proof of Lemma 6.5. We can also replace "multilinear" by "small-degree
polynomial" as defined in Remark 4.9.

6.5. C i r c u i t R e d u c t i o n s : U n i f o r m vs. N o n u n i f o r m C o m p l e x i t y . Karp
and Lipton [26] have considered the effect of nonuniform simulation of large
complexity classes by small circuits on uniform complexity classes. They credit
A. Meyer for one of following results (C = EXP):

THEOREM 6.8. (MEYER, KARP, LIPTON) Let C be one of the following com-
pIexity classes: E X P , P S P A C E , P#P. If C has polynomial size circuits (i.e.,
C C P/poly) then C = El .

Recent results on the power of interactive proofs (including our main result)
lead to a strengthening of the conclusion in each case, replacing E y by its
subclass MA. For C = peP, this is a result of LFKN [29].

The following result generalizes a corollary in Lund, Fortnow, Karloff, Nisan
[29]. For the definition of the complexity of provers see Section 4.6.

COROLLARY 6.9. If a language L has a multiple-prover interactive proof sys-
tem with provers of complexity C (see Section 4.6) and if C has polynomial-size
circuits then L E MA.

Here M A denotes the Merlin-Arthur class: Non-deterministic move first,
folIowed by a random move. Arguably this represents the class of "publishable
proofs" (not requiring direct interaction between prover and verifier). Babai
[4] has shown M A _C E f fl IIP. We note that Santha [33] constructed an oracle
under which M A is properly contained in AM, itself still a subclass of IIf .
PROOF. Merlin produces the circuits for L1,. �9 Lk that describe the responses
for provers P1 , . . . , Pk respectively and Arthur simulates the verifier for L using
the circuits to compute the provers' responses. D

In particular, if L has a function-restricted interactive proof and L has
polynomial-size circuits then L E MA.

34 Babai, Fortnow & Lund Comput Complexity i (199i)

COROLLARY 6.10. I f alt of E X P has polynomial-size circuits then E X P =
E P = n P = M A . The same statement holds for P S P A C E and P#P in the
place of E X P .

It seems remarkable that this result, which refers to standard concepts of
structural complexity theory, has been proved via the theory of multi-prover
interactive proof systems.

7. Concluding Remarks

7.1. I n t e g e r s vs. F in i t e Fields. We have formulated our protocols .over the
integers. Adapting them to finite fields requires some extra thought. The main
advantage of such an adaptation is that we should not need to compute with
large numbers.

The multilinearity test works over any field. However, the "sum of squares"
trick employed in Lemma 4.3 requires real numbers. Below we indicate how to
eliminate this difficulty.

First we state a version of Lemma 4.3 which over fields (or integral domains
with identity) of any characteristic.

LEMMA 7.1. Let p be a given prime number or zero, and F = Z/(p) (either
the field of order p or Z). Given an instance (t?, r, s) of oracle-3-satist~ability
(w h e r e B : B (w , t) is a Boolean formula in r + 3s + 3 variables), o n e c a n

compute in polynomiM time an arithmetic expression for a polynomiM f with
coetl~cients in F over the same set o[r + as + 3 variable symbols such that a
function A : {0, 1}* -+ F constitutes a 3-satisfying orade for B i f and only i f

(Vw E {0, 1} r+as) f (w , A(bl), A(b2), A(ba)) = 0. (7.17)

(Vb E {0, 1}*) A(b)(A(b) - 1)) = 0. (7.18)

PROOF. As in the proof of Lemma 4.3, we take f to be the arithmetic expres-
sion for a polynomial representing B (Proposition 3.1). The rest of the proof
follows the lines of the proof of Lemma 4.3. []

The question now is, how the Prover convinces the Verifier that each of these
exponentially many quantities vanishes. Let g be a low degree polynomial of
m variables over F for which we want to verify that g is identically zero over
the Boolean cube {0, 1} TM. We assume that values of g over some domain I of
appropriately large size are held by an oracle. (If F is too small, we have to use
a subset ~ of some extension field of F.) We describe two verification schemes.

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 35

For the first scheme, we have to assume that F has characteristic 2. Let
us consider the sum ~weug(w) where U is a subset chosen at random from
certain family of subsets. For instance, viewing {0, 1} m as a linear space over
F2, the Verifier can choose U to be a random subspace of dimension d where
0 < d < rn is selected at random. This way if 9 is not identically zero then the
above sum will have at least 1/(4(m + 1)) chance of being nonzero according
to a lemma of Rabin (see [42]). Now the characteristic function of g can be
expressed as a polynomial of degree _< m and the protocol of Lemma 3.5 can
be used. - Variations of this method use classes of hash-functions to specify
the subset U.

Below we describe a different procedure with a self-contained proof.
We allow F to be an arbitrary finite field. Let us extend F to a field F ~ of

order greater than 2 m+l. (Elements of F ~ can be represented as tuples of ele-
ments of F.) Now consider the univariate polynomial p(x) = 2,,e{0,1)-, g(w) x~
where the binary string w = r written in the exponent refers to the
integer m-~ ~i=0 ~i2~. Then the probability that a random ~ C F' is a root of p is 1
if 9 is identically zero and _< 1/2 otherwise. Therefore the task of the Prover is
to convince the Verifier that for a random ~ provided by the Verifier, p(~) = 0.

Let now ~i = ~2~; then

m--1 m--1

= I I = I I (1 + (7.19)
i = 0 i = 0

The Verifier, having computed the ~i, holds the explicit multilinear polynomial
of w on the right hand side of (7.19). Therefore the protocol of Lemma 3.5 can
be used to verify the equality p(~) = 0, assuming 9 is a good approximation of
a low degree polynomial (which in our case is guaranteed by the multilinearity
test for A).

7.2. R e c e n t D e v e l o p m e n t s . The M I P protocol described in this paper has
recently found curious applications and extensions.

A clique approximation algorithm is an algorithm that computes the size
of maximum cliques in a graph within a constant factor. Feige, Goldwasser,
Lovgsz, and Safra [17] made the striking observation that our Main Theorem
has the following fairly immediate consequence: If there exists a polynomiM-
time clique approximation aIgorithm then E X P = N E X P . They also proved
that a slight modification yields (under the same assumption) the stronger con-
sequence that N P is in quasi-polynomial time, where quasi-polynomial means
exp((log n)~

36 Babai, Portnow & Lund Comput Complexity I (1991)

Digging considerably deeper into our protocols, Szegedy [38] achieved re-
markable improvements, yielding in particular that a polynomial time dlque ap-
proximation algorithm implies that NP is in DTIME(n~176176 This means
nearly polynomial time, where "nearly polynomial" is defined as n (l~176176
The ul t imate goal would be to infer NP = P from the same hypothesis.

In another direction, in joint work with L. Levin and M. Szegedy, we have
further explored the implications of our protocols to the verification of program
instances and mathematical proofs. In particular, we have introduced a concept
of transparent proofs [7]. Roughly speaking, a pair (T, P) of strings, where T is
a "theorem-candidate" and P is a "proof-candidate", is in transparent form, if
T is encoded in an error-correcting code, and the pair (T, P) can be verified by
a probabilistic verifier in polylog(N)-time, where N is the combined length of
(r , P) , and the verifier has random access to the string (T, P). (The string T
must be encoded because the verifier does not have enough t ime to read T so it
could not observe slight changes in the s tatement of the theorem.) Improving
several aspects of the protocols of this paper~ we are able to prove that every
(deterministic) mathematical proof can be transformed in polynomiaJ time into
a transparent proof. In particular, programs with (nondeterministic) polyno-
mial t ime specifications can be viewed as provers of theorems (such as "the
product of the matrices A and B is C; or "the graph X is Hamil tonian ') . Our
result says that , if the untrusted prover invests a polynomial amount of extra
work, the result can be checked in polylogarithmic time.

7.3. O p e n P r o b l e m s . Many open questions remain about multi-prover in-
teractive proof systems including:

Does all of N E X P have bounded-round two-prover interactive proof sys-
tems? Note that this strengthening of Cai's result would not necessarily
imply the collapse of the polynomial-time hierarchy. We remark that
if we allow a polynomial number of provers then a bounded number of
rounds does suffice [21].

o What complexity of provers do we need to prove coNP and N E X P
languages (see Section 4.6)7

Finally, there seems occasion to cautiously express hope that the tech-
niques discussed above might lead to a solution of some long standing
separation problems such as B P P vs. N E X P (cf. [24], [25]). Although
there exist oracles which collapse these classes, this fact no longer seems
as discouraging as it used to be, in view of a substantial mass of new
techniques that do not relativize.

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 37

Acknowledgments

The first author was partially supported by NSF Grant CCR-8710078. The
second author is partially supported by NSF Grant CCR-9009936. - The au-
thors are grateful to Claus Schnorr for his insistent criticism which was helpful
in improving the presentation of the material. Discussions with Leonid Levin
and Mario Szegedy were illuminating.

R e f e r e n c e s

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading MA, 1974.

D. ALDOUS, On the Markov chain simulation method for uniform com-
binatorial distributions and simulated annealing, Probability in the Engi-
neering and Informational Sciences I (1987), 33-46.

L. BABAI, Trading group theory for randomness, in Proc. 17th Ann. ACM
Syrup. Theory of Computing, 1985, 421-429.

L. BABAI, E-mail and the unexpected power of interaction, in: Proc. 5th
Ann. IEEE Structures in Complexity Theory Conf., 1990, 30-44.

L. BABAI AND P. ERD6S, Representation of group elements as short
products, Annals of Discrete Mathematics 12 (1982), 27-30.

L. BABAI AND L. FORTNOW, Arithmetization: a new method in struc-
tural complexity theory, ComputationM Complexity I (1991), 41-66. (Pre-
liminary version appeared as: A characterization of # P by arithmetic
straight line programs, in Proc. 31st Ann. IEEE Syrup. Foundations of
Comp. Sci., 1990, 26-34.)

L. BABAI, L. FORTNOW, L. LEVIN, AND M. SZEGEDY, Checking com-
putations in polylogarithmic time, in: Proc. 23rd ACM Symp. Theory of
Computing, 1991, to appear.

L. BABAI, L. FORTNOW, AND C. LUND, Non-deterministic exponential
time has two-prover interactive protocols (extended abstract), Proc. 31st
Ann. IEEE Syrup. Found. Comp. Sci., 1990, 16-25.

L. BABAI AND P. FRANKL, Linear Algebra Methods in Combinatorics,
I, Preliminary Version, University of Chicago, Dept. C. S. 1988.

38 Babai, Fortnow & Lund Comput Complexity i (1991)

[10] D. BEAVER AND 3. FEIGENBAUM, Hiding instances in multioracle queries,
in Proc. 7th Syrup. on Theoretical Aspects of Comp. Sci., Lecture Notes
in Comp. Sci. 415 (1990), 37-48.

[11] M. BEN-OR, S. GOLDWASSER, J. KILIAN, AND A. WIGDERSON, Multi-
prover interactive proofs: How to remove the intractability assumptions,
in Proc. 20th Ann. ACM Syrup. Theory of Computing, 1988, 113-t31.

[12] M. BLUM AND S. KANNAN, Designing programs that check their work,
in Proc. 21st Ann. ACM Syrup. Theory of Computing, 1989, 86-97.

[13] M. BLUM, M. LUBY, AND R,. RUBINFELD, Self-testing and seif-correcting
programs, with applications to numerical programs, in Proc. 22nd Ann.
ACM Syrup. Theory of Computing, 1990, 73-83.

[14] L. BABAI AND S. MORAN, Arthur-Merlin games: a randomized proof
system, and a hierarchy of complexity classes, J. Comp. Sys. Sci. 36 (1988),
254-276.

[15] J. CAI, PSPACE is provable by two provers in one round, manuscript,
1990.

[16] S. A. COOK, The complexity of theorem proving procedures, in Proc. 3rd
Ann. ACM Syrup. Theory of Computing, 1971, 151-158.

[17] U. FEIGE, S. GOLDWASSER, L. LovAsz, AND S. SAFRA, On the com-
plexity of clique approximation, in preparation.

[18] P. FELDMAN, The Optimum Prover lives in PSPACE, manuscripts, 1986.

[19] L. FORTNOW, The Complexity of Perfect Zero-Knowledge, In S. Micali,
ed., Randomness and Computation, Advances in Computing Research 5
(1989), 327-a4a.

[20] L. FORTNOW, Complexity-Theoretic Aspects of Interactive Proof Sys-
tems, Ph.D. Thesis, Massachusetts Institute of Technology, Laboratory
for Computer Science, Tech. Report MIT/LCS/TR-447 1989.

[21] L. FORTNOW, J. ROMeEL, aND M. S~eSeR, On the power of multi-
prover interactive protocols, Proc. 3rd Structure in Comple• Theory
Cons 1988, 156-161.

[22] L. FORTNOW AND M. SIPSER, Are there interactive protocols for co-NP
languages?, Ins Process. Letters 28 (1988), 249-251.

Comput Complexity 1 (1991) Two-Prover Interactive Protocols 39

[23] S. GOI~DWASSER, S. MICALI, AND C. RACKOFF, The knowledge com-
plexity of interactive proofs, SIAM d. Comput. 18 (1989), 186-208. (Pre-
liminary version appeared in Proc. 18th Ann. ACM Syrup. Theory of Com-
puting, 1985, 29t-304.)

[24] J. HARTMANIS, N. IMMERMAN, AND V. SEWELSON, Sparse sets in N P -
P: E X P T I M E versus N E X P T I M E , Inf. and ControI 65 (1985), 158-
181.

[25] H. HELLER, On Relativized Exponential and Probabilistic Complexity
Classes, Information and Computation 71 (1986), 231-243.

[26] R. KARP, R. LIPTON, Some Connections between Nonuniform and Uni-
form Complexity Classes, Proc. 12th Ann. ACM Syrup. Theory of Com-
puting, 1980, 302-309.

[27] L. LEVlN, Universal'nyYe perebornyYe zadachi (Universal search problems,
in Russian), Problemy Peredachi lnformatsii 9 (1973), 265-266. A cor-
rected English translation appears in an appendix to Trakhtenbrot [39].

[28] R. LIPTON, New directions in testing, in Proceedings of the DIMACS
lu on Distributed Computing and Cryptography, 1989, to appear.

[29] C. LUND, L. FORTNOW, H. KARLOFF, AND N. NISAN, Algebraic meth-
ods for interactive proof systems, in Proc. 31st Ann. IEEE Syrup. Foun-
dations of Comp. Sci., 1990, 1-10.

[30] P. ORPONEN, Complexity Classes of Alternating Machines with Oracles,
Proc. 1orb ICALP, Lecture Notes in Comp. Sci 154 (1983), 573-584.

[31] C. PAPADIMITmOU, Games against Nature, Proc. 24th Ann. IEEE Syrup.
Foundations of Comp. Sci., 1983, 446-450.

[32] G. PETERSON AND J. REIF, Multiple-person alternation, Proc. 20th Ann.
IEEE Syrup. Foundations of Comp. Sci., 1979, 348-363.

[33] M. SANTIfA, Relativized Arthur-Merlin versus Merlin-Arthur games,/nf.
and Computation 80 (1989), 44-49.

[34] J. SEIFERAS, M. FISCHER, AND A. MEYER, Separating Nondeterminis-
tic Time Complexity Classes, J. Assoc. Comput. Mach. 25 (1978), 146-167.

[35] A. SHAMIll, IP = PSPACE, in Proc. 31st Ann. IEEE Syrup. Foundations
of Comp. Sci., 1990, 11-15.

40 Babai, Fortnow & Lund Comput Complexity I (1991)

[36]

[37]

[38]

[39]

[4o]

[41]

[42]

J. SIMON, On Some Central Problems in Computational Complexity,
Ph.D. Thesis, Cornell University, Computer Science, Tech. Report TR
75-224, 1975.

J. T. SCHWARTZ, Fast probabilistic algorithms for verification of polyno-
mial identities, J, Assoc. Comput. Mach. 27 (1980), 701-717.

M. SZEGEDY, Efficient MIP protocol and a stronger condition on clique
approximation, in preparation.

B. A. TRAKHTENBROT, A survey of Russian approaches to Perebor
(brute-force search) algorithms, Annals of' the History of Computing 6
(1984), 384-400.

S. TODA, On the computational power of PP and | in Proc. 30th Ann.
IEEE Syrup. Foundations of Comp. ScL, 1989, 514-519.

L. VALIANT, The complexity of computing the permanent, Theoretical
Computer Science 8 (1979), 189-201.

L. VALIANT, V. VAZIRANI, NP is as Easy as Detecting Unique Solutions,
Theoretical Computer Sdence 47 (1986), 85-93.

Manuscript received 30 March 1990

LASZL6 BABAI
University of Chicago
Chicago, IL 60637

and
EStvSs University, Budapest, Hungary
lac i �9 uchicago, edu

CAP~STEN LUND
Department of Computer Science
University of Chicago
1100 E. 58th St.
Chicago, IL 60637

LANCE FORTNOW

Department of Computer Science
University of Chicago
1100 E. 58th St.
Chicago, IL 60637
f or~now@cs, uchicago, edu

Current Address of CARSTEN LUND:
DIMACS
P.O. Box 1179
P~utgers University
Piscataway, NJ 08855-1179
c!und@dimacs, rutgers, edu

