
Statistical Zero-Knowledge Arguments for NP from Any One-Way Function∗
(Extended Abstract)

Minh-Huyen Nguyen Shien Jin Ong Salil Vadhan

Division of Engineering and Applied Sciences
Harvard University

Cambridge, Massachusetts, USA.
E-mail: {mnguyen,shienjin,salil}@eecs.harvard.edu

Abstract

We show that every language in NP has a statistical
zero-knowledge argument system under the (minimal) com-
plexity assumption that one-way functions exist. In such
protocols, even a computationally unbounded verifier can-
not learn anything other than the fact that the assertion be-
ing proven is true, whereas a polynomial-time prover can-
not convince the verifier to accept a false assertion except
with negligible probability. This resolves an open question
posed by Naor, Ostrovsky, Venkatesan, and Yung (CRYPTO
‘92, J. Cryptology ‘98).

Departing from previous works on this problem, we
do not construct standard statistically hiding commitments
from any one-way function. Instead, we construct a relaxed
variant of commitment schemes called “1-out-of-2-binding
commitments,” recently introduced by Nguyen and Vadhan
(STOC ‘06).

1 Introduction

As first discovered by Shannon [Sha] for the case of en-
cryption, most interesting cryptographic tasks are impossi-
ble to achieve with absolute, information-theoretic security.
Thus, modern cryptography aims to design protocols that
are computationally intractable to break. Specifically, fol-
lowing Diffie and Hellman [DH], this is typically done by
showing that breaking the protocol is as hard as some in-
tractable problem from complexity theory. Unfortunately,
proving lower bounds of the sort needed seems beyond the
reach of current techniques in complexity theory, and in-
deed would require at least proving P "= NP.

∗A full version of this paper is available on ECCC [NOV]. All three au-
thors were supported by NSF grant CNS-0430336 and ONR grant N00014-
04-1-0478.

Given this state of affairs, research in the foundations
of cryptography has aimed to design cryptographic proto-
cols based on complexity assumptions that are as weak and
general as possible. This project was enormously success-
ful in the 1980’s. In a beautiful sequence of works, it was
shown that many cryptographic primitives, such as pseu-
dorandom generators, pseudorandom functions, private-key
encryption and authentication, digital signatures, (computa-
tionally hiding) bit commitment, and (computational) zero-
knowledge proofs could be constructed from any one-way
function [HILL, GGM, Rom, Nao, GMW], and moreover
this complexity assumption is minimal in the sense that each
of these primitives (and indeed almost any cryptographic
task) implies the existence of one-way functions [IL, OW].
Moreover, it was shown that many of the remaining prim-
itives, such as public-key encryption, collision-resistant
hashing, and oblivious transfer, could not be reduced to
the existence of one-way functions in a “black-box” man-
ner [IR, Sim].

However, a few important primitives have resisted classi-
fication into the above categories. That is, it is only known
how to build these primitives from seemingly stronger as-
sumptions than the existence of one-way functions, yet
there is no black-box separation between these primitives
and one-way functions. In this work, we are interested in an
example involving zero-knowledge protocols.

1.1 The Complexity of Zero Knowledge

Zero-knowledge proofs are protocols whereby one party,
the prover, convinces another party, the verifier, that some
assertion is true with the remarkable property that the veri-
fier “learns nothing” other than the fact that the assertion be-
ing proven is true. Since their introduction by Goldwasser,
Micali, and Rackoff [GMR1], zero-knowledge proofs have
played a central role in the design and study of crypto-
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graphic protocols. Part of the reason for their vast applica-
bility is the fact that, under certain complexity assumptions
(discussed below), every language L in NP has a zero-
knowledge proof system [GMW]. That is, a prover can ef-
ficiently convince a verifier that x ∈ L in a zero-knowledge
manner, provided that the prover possesses an NP witness
to the membership of x in L. This means that when design-
ing cryptographic protocols, any time that one party needs
to convince others of some fact (e.g., that it has followed the
specified protocol) without revealing additional knowledge,
it can do so provided that it possesses a witness to the fact
(e.g., its own secret keys and coin tosses).

Zero-knowledge protocols come in several flavors, de-
pending on how one formulates the two security conditions:
(1) the zero-knowledge condition, which says that the veri-
fier “learns nothing” other than the fact the assertion being
proven is true, and (2) the soundness conditions, which says
that the prover cannot convince the verifier of a false asser-
tion. In statistical zero knowledge, the zero-knowledge con-
dition holds regardless of the computational resources the
verifier invests into trying to learn something from the inter-
action. In computational zero knowledge, we only require
that a probabilistic polynomial-time verifier learn nothing
from the interaction.1 Similarly, for soundness, we have sta-
tistical soundness, a.k.a. proof systems, where even a com-
putationally unbounded prover cannot convince the verifier
of a false statement (except with negligible probability), and
computational soundness, a.k.a. argument systems [BCC],
where we only require that a polynomial-time prover cannot
convince the verifier of a false statement.

Of course, it would be ideal to have both security condi-
tions be statistical, and thus hold against computationally
unbounded adversaries. Unfortunately, the resulting no-
tion, statistical zero-knowledge proofs, while quite interest-
ing and nontrivial (cf., [Vad]), can only be achieved for lan-
guages in AM∩coAM [For, AH]. Because AM∩coAM
is not believed to contain NP (cf., [BHZ]), it is unlikely that
every problem in NP possess statistical zero-knowledge
proofs. Thus at best, we can have one of the security condi-
tions be statistical.

Computational zero-knowledge proofs (with statistical
soundness) was the original notion proposed in [GMR1].
Goldreich, Micali, and Wigderson [GMW] showed that we
can construct such proof systems for all of NP from any
bit-commitment scheme that is computationally hiding and
statistically binding. By [Nao, HILL], such commitment
schemes can be constructed from any one-way function, and
thus we obtain computational zero-knowledge proofs for
NP from any one-way function. This complexity assump-

1More precisely, in statistical zero knowledge, we require that the ver-
ifier’s view of the interaction can be efficiently simulated up to negligible
statistical distance, whereas in computational zero knowledge, we only re-
quire that the simulation be computationally indistinguishable from the
verifier’s view.

tion is essentially minimal due to results of Ostrovsky and
Wigderson [OW], who showed that zero-knowledge proofs
for any non-trivial language imply a weak form of one-way
functions.

Brassard, Chaum, and Crepeau [BCC] proposed instead
the notion of statistical zero-knowledge arguments,2 be-
tween the which is what we study in this paper. One reason
that this variant of zero-knowledge proofs may be prefer-
able to the original one is that breaking the soundness prop-
erty must be done “on-line” during the interaction with the
verifier and thus we need only protect against the adver-
sary’s present-day computational resources, whereas break-
ing the zero-knowledge property can involve the adversary
investing effort long after the interaction to try and learn
something from the transcript of the interaction. Thus, it
seems preferable for the zero-knowledge property to be the
one with the stronger, statistical guarantee.

It is evident from the constructions of [GMW, BCC]
that to construct statistical zero-knowledge arguments for
all of NP, it suffices to construct bit-commitment schemes
that are statistically hiding and computationally binding.
The early constructions of such schemes were based on
specific number-theoretic complexity assumptions [BCC,
BKK], and were later generalized to any family of claw-
free permutations [GK], and then to any family of collision-
resistant hash functions [NY] (see also [DPP]).3

In 1992, Naor, Ostrovsky, Venkatesan, and
Yung [NOVY] showed that the collision resistance
criterion4 is not necessary, by giving a beautiful construc-
tion of statistically hiding commitments (in fact perfectly
hiding ones) and thus statistical zero-knowledge arguments
for NP from any one-way permutation. They left as an
open question whether these primitives could be based
on arbitrary one-way functions, which would again be
essentially minimal by [Ost, OW].5

The only progress in the past decade came in 2005 when
Haitner et al. [HHK+] showed how to construct statisti-
cally hiding commitments from any “approximable preim-
age size” one-way function, which is a one-way function
where we can efficiently approximate the preimage size of
points in the range.

2Actually, [BCC] and some subsequent works (such as [NOVY]) con-
structed perfect zero-knowledge arguments, which intuitively guarantee
that the verifier learns something from the interaction with zero probabil-
ity (as opposed to negligible probability, as in statistical zero knowledge).
However, this distinction is minor in comparison to the distinction between
the statistical and computational zero knowledge, which refer to computa-
tionally unbounded and polynomial-time verifier strategies, respectively.

3The fact that claw-free permutations imply collision-resistant hash
functions was shown in [GMR2, Dam], and the early constructions of
claw-free permutations based on specific number-theoretic complexity as-
sumptions were given by [GMR2, BKK].

4We note that one-way permutations and collision-resistant hashing are
known to be incomparable under “black-box reductions” [Sim, Rud, KSS].

5The results of [Ost, OW] are stated only for proof systems, but they
also hold for argument systems.
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Motivated by this recent development, in this paper we
resolve the complexity of statistical zero-knowledge argu-
ments for NP:

Theorem 1.1. If one-way functions6 exist, then every lan-
guage in NP has a statistical zero-knowledge argument
system.

Deviating from prior works on this problem, we do not
prove this theorem by constructing the standard notion of
statistically hiding commitments from any one-way func-
tion. Instead, as described below, we work with a re-
laxed variant of commitment schemes recently introduced
by Nguyen and Vadhan [NV], which we describe in the next
section.

We also remark that our protocol has a polynomial num-
ber of rounds, while a constant number of rounds can be
achieved based on collision-resistant hashing [NY, BCY].
However, achieving a subpolynomial (no(1)) number of
rounds is open even assuming the existence of one-way per-
mutations (cf., [NOVY]).

1.2 Techniques

We begin by recalling the notion of a commitment
scheme. A commitment scheme is a two-stage protocol be-
tween a sender and a receiver. In the first stage, the sender
‘commits’ to a value v, and in the second, the sender ‘re-
veals’ this value to the receiver. We want two security
properties from a commitment scheme. The hiding prop-
erty says that the receiver does not learn anything about
the value v during the commit stage. The binding prop-
erty says that after the commit stage, there is at most one
value that the sender can successfully open (without the re-
ceiver rejecting). As with zero-knowledge protocols, each
of these security properties can be computational or statisti-
cal. For commitments, it is impossible to have both proper-
ties be statistical. As mentioned earlier, statistically binding
commitments can be constructed from any one-way func-
tion [Nao, HILL], but our interest is in statistically hiding
commitments.

Recently, Nguyen and Vadhan [NV] introduced a new re-
laxation of commitment schemes, called 1-out-of-2-binding
commitment schemes, symbolically written as

(2
1

)
-binding

commitment schemes. These are commitment schemes
with two phases, each consisting of a commit stage and a
reveal stage. In the first phase, the sender commits to and
reveals one value v1, and subsequently, in the second phase,
the sender commits to and reveals a second value v2. We re-
quire that both phases are hiding, but only that one of them

6As in most treatments of zero knowledge, we use a nonuniform no-
tion of security, and thus require our one-way functions to be secure
against nonuniform algorithms (i.e., circuits). Uniform treatments of zero-
knowledge proofs and arguments are possible (see [Gol1, BLV]) but are
much more cumbersome.

is binding. That is, the binding property only requires that
with high probability, the sender will be forced to reveal the
correct committed value in at least one of the phases (but
which of the two phases can be determined dynamically by
the malicious sender).

In [NV], it was shown that such commitment schemes
still suffice to construct zero-knowledge protocols for all of
NP. Thus, our task is reduced to constructing

(2
1

)
-binding

commitment schemes that are statistically hiding and com-
putationally binding from any one-way function. Unfortu-
nately, we do not know how to do this. Instead, we construct
polynomially many two-phase commitment schemes, with
the guarantee that at least one of the schemes is hiding (in
both phases), and all of the schemes are

(2
1

)
-binding. Fortu-

nately, a similar issue arose also in [NV] and it was shown
how even such a collection could be used to construct zero-
knowledge protocols for NP.

Even though we draw upon [NV] for the notion of
(2
1

)
-

binding commitments and its utility for zero knowledge,
there are many differences between the contexts of the two
works and the constructions of

(2
1

)
-binding commitments.

In [NV], the goal was to prove unconditional results about
prover efficiency in zero-knowledge proofs (that one can
transform zero-knowledge proofs with inefficient provers
into ones with efficient provers). This was done by show-
ing that every problem having a zero-knowledge proof has
an “instance-dependent”

(2
1

)
-binding commitment scheme,

where the sender and receiver get an instance x of the prob-
lem as auxiliary input and we only require hiding to hold
when x is a “yes instance” and binding when x is a “no in-
stance.” Here, we are giving conditional results (assuming
the existence of one-way functions) and are obtaining stan-
dard (as opposed to instance-dependent)

(2
1

)
-binding com-

mitments. Moreover, the focus in [NV] is on proof sys-
tems and statistically

(2
1

)
-binding commitments; thus here

we need to develop new formulations to work with argu-
ment systems and the computational binding property.

Our initial construction, which gives a
(2
1

)
-binding com-

mitment scheme satisfying a “weak hiding” property, is in-
spired by the construction of [NV]. Indeed, the second
phase in [NV] was also introduced to deal with non-regular
functions (corresponding to “non-flat distributions” in their
setting), and our construction can be seen as applying the
same idea to a variant of the protocol of [HHK+]. How-
ever, in [NV], this construction immediately gives a “strong
hiding” property, whereas much of the technical work in
the current paper comes from amplifying the “weak hiding”
property we obtain into a strong one.

2 Preliminaries

Let X be a random variable taking values in a finite set
T . We write x ← X to indicate that x is selected accord-
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ing to X . For a finite set S, we write x ← S to indicate
that x is selected uniformly amongst all the elements of S.
The support of a random variable X is Supp(X) = {x :
Pr [X = x] > 0}. Random variable X is flat if it is uni-
form over its support.

A negligible function, denoted by neg, is a function that
vanishes more quickly than any inverse polynomial. That
is, for all c ∈ N, neg(n) < n−c for all sufficiently large n.
Let poly(n) denote any polynomial, that is poly(n) ≤ nc

for some c ∈ N, and for all sufficiently large n.
The statistical difference between two ran-

dom variables A and B over {0, 1}n is defined as
∆(A,B) def= maxT⊆{0,1}n |Pr[A ∈ T ]− Pr[B ∈ T ]| =
1
2

∑
x∈{0,1}n |Pr[A ∈ T ]− Pr[B ∈ T ]|. We say that

distributions A and B are ε-close if ∆(A,B) ≤ ε.
Let I be a set of strings. A probability ensemble of

a sequence of random variables indexed by I is denoted
as {Ax}x∈I . We say that two ensembles {Ax}x∈I and
{Bx}x∈I are statistically indistinguishable if there exists a
negligible function ε such that Xx and Yx are ε(|x|)-close
for every x ∈ I . We write {Ax}x∈I ≈s {Bx}x∈I to denote
that the two ensembles are statistically indistinguishable.

For a probabilistic algorithm A, we write A(x; r) to de-
note the output of A on input x and coin tosses r. PPT
refers to probabilistic algorithms that run in strict polyno-
mial time. A nonuniform PPT algorithm is a pair (A, z̄),
where z̄ = z1, z2, . . . is an infinite series of strings where
|zn| = poly(n), and A is a PPT algorithm that receives
pairs of input of the form (x, z|x|). (The string zn is called
the advice string for A for inputs of length n.) Nonuniform
PPT algorithms are equivalent to families of polynomial-
sized Boolean circuits.

Definition 2.1 (one-way function). Let s : N → N be any
function. A function f : {0, 1}∗ → {0, 1}∗ is a s(n)-secure
one-way function if f is computable in polynomial time and
for every nonuniform PPT A,

Pr
x←{0,1}n

[A(1n, f(x)) ∈ f−1(f(x))] < 1/s(n),

for all sufficiently large n. We say that f is a one-way func-
tion if f is s(n)-secure for every polynomial s.

We say that a one-way function f is regular with preim-
age size g(n) if there exists a function g : N → N such that
∀y ∈ Supp(f(Un)), |{x ∈ {0, 1}n : f(x) = y}| = g(n).

2.1 Statistical Zero-Knowledge Argu-
ments

We follow the standard definitions of zero-knowledge ar-
guments, as in [Gol2, Sec. 4.8]. Roughly speaking, an ar-
gument (or computationally sound proof system) is an inter-
active protocol (P, V ) whose soundness only holds against

computationally bounded adversaries. That is for a lan-
guage L, if x /∈ L then every nonuniform PPT adversarial
prover P ∗ convinces V to accept with probability at most
1/3. We define an interactive proof system being statistical
zero knowledge as follows.

Definition 2.2 (statistical zero knowledge). We say an ar-
gument system (P, V ) is (black-box) statistical zero knowl-
edge if there exists a universal PPT simulator S such that
for all verifiers V ∗, we have

{viewV ∗(P, V ∗)(x)}x∈L ≈s {SV ∗
(x)}x∈L,

where viewV ∗ denotes the view of V ∗, which consists of the
transcript of the interaction together with V ∗’s coin tosses.

The above definition of zero knowledge is a black box
definition in the sense that the simulator is universal for all
(even computationally unbounded) verifier strategies V ∗,
and in particular does not depend on the code of V ∗. The
zero-knowledge protocols we construct will all be black-
box zero knowledge and thus satisfy the above definition.

2.2 1-out-of-2-Binding Commitments

We now introduce the notion of
(2
1

)
-binding commit-

ments that will play a central role in establishing our results.
These are commitment schemes with two sequential and re-
lated stages such that in each stage, the sender commits to
and reveals a value.

Definition 2.3. A 2-phase commitment scheme (S, R), with
security parameter n and message length k = k(n), con-
sists of four interactive protocols: (S1

c , R1
c) the first com-

mitment stage, (S1
r , R1

r) the first reveal stage, (S2
c , R2

c) the
second commitment stage, and (S2

r , R2
r) the second reveal

stage. For us, both reveal phases will always be noninter-
active, consisting of a single message from the sender to
the receiver. Throughout, both parties receive the security
parameter 1n as input.

1. In the first commitment stage, S1
c receives a private in-

put σ(1) ∈ {0, 1}k and a sequence of coin tosses rS .
At the end, S1

c and R1
c receive as common output a

commitment z(1). (Without loss of generality, we can
assume that z(1) is the transcript of the first commit-
ment stage.)

2. In the first reveal stage, S1
r and R1

r receive as common
input the commitment z(1) and a string σ(1) ∈ {0, 1}k

and S1
r receives as private input rS . At the end, S1

r

and R1
r receive a common output τ . (Without loss of

generality, we can assume that τ is the transcript of the
first commitment stage and the first reveal stage and
includes R1

r’s decision to accept or reject.)
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3. In the second commitment stage, S2
c and R2

c both re-
ceive the common input τ ∈ {0, 1}∗, and S2

c receives
a private input σ(2) ∈ {0, 1}k and the coin tosses rS .
S2

c and R2
c receive as common output a commitment

z(2). (Without loss of generality, we can assume that
z(2) is the concatenation of τ and the transcript of the
second commitment stage.)

4. In the second reveal stage, S2
r and R2

r receive as com-
mon input the commitment z(2) and a string σ(2) ∈
{0, 1}k, and S2

r receives as private input rS . At the
end, R2

r accepts or rejects.

• S = (S1, S2) = ((S1
c , S1

r ), (S2
c , S2

r )) and R =
(R1, R2) = ((R1

c , R
1
r), (R2

c , R
2
r)) are computable in

probabilistic polynomial time.

• We say that (S, R) is public-coin if it is public-coin for
R.

Note that instead of providing S with decommitment val-
ues as private outputs of the commitment phases, we sim-
ply provide it with the same coin tosses throughout (so it
can recompute any private state from the transcripts of the
previous phases).

As for standard commitment schemes, we define the se-
curity of the sender in terms of a hiding property. Loosely
speaking, the hiding property for a 2-phase commitment
scheme says that both commitment phases are hiding. Note
that since the phases are run sequentially, the hiding prop-
erty for the second commitment stage is required to hold
even given the receiver’s view of the first stage.

Definition 2.4 (hiding). 2-phase commitment scheme
(S, R), with security parameter n and message length k =
k(n), is statistically hiding if for all adversarial receiver R∗,

1. The views of R∗ when interacting with the sender
in the first phase on any two messages are statisti-
cally indistinguishable. That is, for all σ(1), σ̃(1) ∈
{0, 1}k, viewR∗(S1

c (σ(1)), R∗)(1n) is statistically in-
distinguishable to viewR∗(S1

c (σ̃(1)), R∗)(1n).

2. The views of R∗ when interacting with the sender
in the second phase are statistically indistinguishable
no matter what the sender committed to in the first
phase. That is, for all σ(1),σ(2), σ̃(2) ∈ {0, 1}k,
viewR∗(S2

c (σ(2)), R∗)(Λ, 1n) is statistically indistin-
guishable to viewR∗(S2

c (σ̃(2)), R∗)(Λ, 1n).

We stress that the second condition of the above hid-
ing definition (Definition 2.4) requires that the view of re-
ceiver in the second phase be indistinguishable for any
two messages even given the transcript of the first phase,
Λ = transcript(S1(σ(1)), R∗)(1n).

Loosely speaking, the binding property says that at least
one of the two commitment phases is (computationally)
binding. In other words, for every polynomial-time sender
S∗, there is at most one “bad” phase j ∈ {1, 2} such that
given a commitment z(j), S∗ can open z(j) successfully
both as σ(1) and σ̃(1) "= σ with nonnegligible probability.
Actually, we allow this bad phase to be determined dynam-
ically by S∗. Moreover, we require that the second phase
be statistically binding if the sender breaks the first phase.
Our construction achieves this stronger property, and using
it simplifies some of our proofs.

Definition 2.5 (1-out-of-2-binding). 2-phase commitment
scheme (S, R), with security parameter n and message
length k = k(n), is computationally

(2
1

)
-binding if there

exist a set B of first phase transcripts and a negligible func-
tion ε such that:

1. For every (even unbounded) sender S∗, the first-
phase transcripts in B make the second phase sta-
tistically binding, i.e. ∀S∗,∀τ ∈ B, with proba-
bility at least 1 − ε(n) over z(2) = (S∗, R2

c)(τ),
there is at most one value σ(2) ∈ {0, 1}k such that
output(S∗, R2

r)(z(2),σ(2)) = accept.

2. ∀ nonuniform PPT S∗,7 S∗ succeeds in the following
game with probability at most ε(n) for all sufficiently
large n:

(a) S∗ and R1
c interact and output a first-phase com-

mitment z(1).
(b) S∗ outputs two full transcripts τ and τ̃ of both

phases with the following three properties:
• Transcripts τ and τ̃ both start with prefix

z(1).
• The transcript τ contains a successful open-

ing of z(1) to the value σ(1) ∈ {0, 1}k using
a first-phase transcript not in B, and R1

r and
R2

r both accept in τ .
• The transcript τ̃ contains a successful open-

ing of z(1) to the value σ̃(1) ∈ {0, 1}k using
a first-phase transcript not in B, and R1

r and
R2

r both accept in τ̃ .
(c) S∗ succeeds if all of the above conditions hold

and σ(1) "= σ̃(1).

3 Our Results

Our main theorem, Theorem 1.1, is established via the
following theorems.

7Definitions of cryptographic primitives in the literature often use the
reverse order of quantifiers, asking that for every (nonuniform) PPT ad-
versary S∗, there exists a negligible function ε(n) such that the success
probability of S∗ is at most ε(n). However, the two resulting definitions
turn out to be equivalent [Bel].
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Theorem 3.1. If one-way functions exist, then on se-
curity parameter n, we can construct in time poly(n)
a collection of public-coin 2-phase commitment schemes
Com1, · · · ,Comm for m = poly(n) such that:

• There exists an index i ∈ [m] such that scheme Comi

is statistically hiding.

• For every index i ∈ [m], scheme Comi is computation-
ally

(2
1

)
-binding.

Theorem 3.2. Assume that on security parameter n, we
can construct in time poly(n) a collection of public-coin
2-phase commitment schemes Com1, · · · ,Comm for m =
poly(n) such that:

• There exists an index i ∈ [m] such that scheme Comi

is statistically hiding.

• For every index i ∈ [m], scheme Comi is
(2
1

)
-

computationally binding.

Then, every language in NP has a public-coin statistical
zero-knowledge argument system.

The proof of Theorem 3.2 is very similar to that in [NV]
for

(2
1

)
-statistically binding commitments, with a bit more

work to handle the computational binding property. Thus
in the rest of this abstract we describe the ideas behind the
proof of Theorem 3.1. A full Full proofs for both theorems
can be found in the full version of the paper [NOV].

4 Warm-up: 1-out-of-2-Binding Commit-
ments from Regular One-Way Functions

As a warm-up to the general construction from any one-
way functions, we first describe a standard commitment
scheme from a regular one-way function with known preim-
age size (based on [HHK+]), and then show how to con-
struct a collection of statistically hiding, computationally(2
1

)
-binding commitments from regular one-way functions

with unknown pre-image size.
The tools used in these commitments schemes are

pairwise-independent hash functions and interactive hash-
ing protocols, both described in the next subsections.

4.1 Hashing and Randomness Extraction

Entropy. The entropy of a random variable X is H(X) =
E

x
R←X

[log(1/ Pr[X = x])]), where here and throughout the
paper all logarithms are to base 2. Intuitively, H(X) mea-
sures the amount of randomness in X on average (in bits).
The min-entropy of X is H∞(X) = minx[log(1/ Pr[X =
x])]; this is a “worst-case” measure of randomness. In gen-
eral H∞(X) ≤ H(X), but if X is flat (i.e. uniform on its
support), then H(X) = H∞(X) = log |Supp(X)|.

A family of hash functions Ha,b = {h : {0, 1}a →
{0, 1}b} is pairwise independent if for any two x "= x′ ∈
{0, 1}a and any two y, y′ ∈ {0, 1}b, when we randomly
choose h ← Ha,b, we have: Pr[h(x) = y ∧ h(x′) = y′] =
1

22b . We define $(a, b) to be the number of bits required to
describe an element of the hash function family Ha,b; that
is, $(a, b) = max{a, b} + b. We will use the following
strong extractor property of Ha,b.

Lemma 4.1 (Leftover Hash Lemma [BBR, ILL]). Let Ha,b

be a pairwise independent family of hash functions mapping
{0, 1}a to {0, 1}b. Let Z be a random variable taking val-
ues in {0, 1}a such that H∞(Z) ≥ b + 2 log(1/ε). Then
the following distribution has statistical difference at most
ε from the uniform distribution on Ha,b × {0, 1}b: Choose
h ← Ha,b and x ← Z and output (h, h(x)).

4.2 Interactive Hashing

Ostrovsky, Venkatesan and Yung [OVY] introduced a
powerful tool known as interactive hashing (IH), which is
a protocol between a sender SIH and receiver RIH. The
sender begins with a private input y, and at the end both par-
ties outputs y0 and y1 such that y ∈ {y0, y1}. Informally,
the IH protocol has the following properties:

1. (Hiding) If the sender’s input y is uniformly random,
then the receiver does not learn which of y0 or y1

equals to y.

2. (Binding) The sender can “control” the value of at most
one of the two outputs.

Naor, Ostrovsky, Venkatesan and Yung [NOVY] showed
that interactive hashing can be used to construct statistically
hiding commitment schemes from one-way permutations.

We extend the notion of interactive hashing to allow mul-
tiple outputs (instead of just two output strings). Since we
allow the number of outputs to be possibly superpolyno-
mial, we succinctly describe the set of outputs as the image
of a polynomial-sized circuit C : {0, 1}k → {0, 1}q, where
k and q are polynomially related to the security parameter.

For a relation W , let Wy = {z : W (y, z) = 1} and
we refer to any z ∈ Wy as a valid witness for y. In the
definitions below, we use general relations, and hence do
not require that relation W be polynomial-time computable.

Definition 4.2. An interactive hashing scheme with multi-
ple outputs is a polynomial-time protocol (SIH, RIH) where
both parties receive common inputs (1q, 1k), SIH receives
a private input y ∈ {0, 1}q, with the common output be-
ing a circuit C : {0, 1}k → {0, 1}q, and the private output
of SIH being a string z ∈ {0, 1}k. We denote q to be the
input length and k to be the output length. The protocol
(SIH, RIH) has to satisfy the following security properties:
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1. (Correctness) For all R∗ and all y ∈ {0, 1}q,
letting C = (SIH(y), R∗)(1q, 1k) and z =
outputSIH

(SIH(y), R∗), we have that C(z) = y.

2. (Perfect hiding) For all R∗, (V,Z) is distributed iden-
tically to (V,Uk), where V = viewR∗(SIH(Uq), R∗)
and Z = outputSIH

(SIH(Uq), R∗).

3. (“Computational” binding) There exists an oracle PPT
algorithm A such that for every S∗ and any rela-
tion W , letting circuit C = (S∗, RIH)(1q, 1k) and
((x0, z0), (x1, z1)) = outputS∗(S∗, RIH), if it holds
that

Pr[x0 ∈ WC(z0) ∧ x1 ∈ WC(z1) ∧ z0 "= z1] > ε,

where the above probability is over the coin tosses of
RIH and S∗. Then we have that

Pr
y←{0,1}q

[AS∗(y, 1q, 1k, ε) ∈ Wy] > 2−k · (ε/q)O(1).

We make three remarks regarding the above definition.

1. The security requirements should hold for all, even
computationally unbounded R∗ (for correctness and
perfect hiding) and computationally unbounded S∗

(even though binding is “computational”). In addi-
tion, the relation W need not be polynomial-time com-
putable.

2. To simplify notation, we often write AS∗(y), or even
A(y), to denote AS∗(y, 1q, 1k, ε).

3. Although the output of the honest sender SIH is always
a string z, the output of the cheating sender S∗ is ar-
bitrary; hence, we can assume without loss of gener-
ality that S∗ breaks binding by producing two pairs of
strings (x0, z0) and (x1, z1).

We think of the string z ∈ {0, 1}k as a k-bit string com-
mitment associated to one of the 2k outputs strings, namely
y = C(z), and a witness x ∈ Wy = WC(z) as a decommit-
ment to z. Intuitively, the knowledge of x gives the sender
the ability to decommit to z. The “computational” binding
property, read in its contrapositive, says that if it is hard to
find a witness for a uniformly random string y, then it is
hard for a sender to successfully decommit to two differ-
ent values. Notice that this property holds even if the set
of “hard” y’s is not fixed in advance, but depends on the
algorithm trying to find a witness for y (i.e. an element in
Wy). In several places, however, we will only need the spe-
cial case of a static set of y’s as captured in the following
lemma.

Lemma 4.3 (binding for static sets). For any protocol
(SIH, RIH) satisfying the computational binding condition

of Definition 4.2, the following holds: For all S∗ and any
set T ⊆ {0, 1}q, letting C = (S∗, RIH)(1q, 1k), we have

Pr[∃z0 "= z1 s.t. C(z0), C(z1) ∈ T ] < (µ(T )·2k)Ω(1)·poly(q),

where the above probability is taken over the coin tosses of
S∗ and RIH.

Compare the bound of the above lemma to the case
where adversarial sender S∗ had control of only one output
string. This means that the rest of the 2k− 1 outputs strings
are distributed uniformly on {0, 1}q, and hence the bound
would be µ(T ) · (2k − 1). (S∗ will make the string that it
controls lie in T , and the probability that at least one of the
rest of the 2k − 1 strings lie in T is at most µ(T ) · (2k − 1),
by a union bound argument.) The above bound is almost as
good, and in particular if µ(T ) is negligible and k logarith-
mic, both probabilities are negligible.

We extend the theorem in [NOVY] to obtain the follow-
ing theorem. The protocol is obtained by simply ending the
NOVY protocol k − 1 rounds earlier.

Theorem 4.4. There exist interactive hashing schemes with
multiple outputs satisfying Definition 4.2.

4.3 From Regular One-Way Function with
Known Preimage Size

We first informally describe a (standard) commitment
scheme from a regular one-way function with known preim-
age size and known hardness s(n) = nω(1), based loosely
on Haitner et al. [HHK+] (who prove a stronger result, not
needing to know the hardness).

Let f : {0, 1}n → {0, 1}n be a regular one-way function
such that the entropy H(f(Un)) = t is known (this is equiv-
alent to knowing the preimage size of f ). In the commit-
ment scheme, the sender S generates a random string x ∈
{0, 1}n and sets y = f(x). S picks a random hash function
h : {0, 1}n → {0, 1}t−∆ where ∆ = (log s(n))/2. (S, R)
then run the interactive hashing protocol (with k = 1)
with S having input (h, h(y)). Their common output is
a pair (w0, w1) = (C(0), C(1)), and the sender receives
d ∈ {0, 1} such that wd = w. To commit to the bit
b, S sends c = d ⊕ b. The commitment z is defined as
(w0, w1, c). In the reveal phase, S sends b, d, and the string
x ∈ {0, 1}n used to generate y. R checks that f(x) = y,
c = d⊕ b, and wd is of the form (h, h(y)).

Intuitively, the commitment scheme is hiding since there
are 2t possible values of y hence (h, h(y)) is (1/s(n))Ω(1)-
close to the uniform distribution by the Leftover Hash
Lemma (Lemma 4.1), which implies that the commitment
scheme is hiding by the hiding property of interactive hash-
ing. As for the binding property, the one-wayness of f in-
tuitively guarantees that the set T of y’s for which a sender

7



S∗ can compute an element of f−1(y) is of density at most
2−s(n) in Image(f), i.e. of size at most 2H(f(Un))−s(n).
Thus the set of pairs (h, h(y)) such that y ∈ T has den-
sity at most 2H(f(Un))−s(n)/2t−∆ = s(n)9/10 = neg(n).
By the binding property of interactive hashing (Lemma 4.3),
the probability that S∗ can force both w0, w1 ∈ T is neg-
ligible and the scheme is computationally binding. (The
complete argument to prove the binding property is actually
more subtle because the set T is not actually fixed in ad-
vance, and we need to use the computational binding prop-
erty of interactive hashing given in Definition 4.2)

4.4 From Regular One-Way Function with
Unknown Preimage Size

We show that if regular one-way functions with known
hardness exist, then on security parameter 1n, we can
construct a collection of 2-phase commitment schemes
Com1, · · · ,Comn such that:

• There exists an index i ∈ [n] such that scheme Comi

is statistically hiding.

• For every index i ∈ [n], scheme Comi is
(2
1

)
-

computationally binding.

To deal with the case where the preimage size is un-
known, a first attempt would be to try all possible values
of t in the protocol sketched above in Section 4.3 and ob-
tain a collection of standard commitments. However, the
above commitment scheme only seems to be computation-
ally binding when t >∼ H(f(Un)) (and is hiding when
t <∼ H(f(Un))) not matching the guarantees of the desired
collection of commitments.

We will in fact use the above protocol as the first
phase. However, we also introduce a second phase that
will be binding when t <∼ H(f(Un)) and hiding when
t >∼ H(f(Un)). This will be obtained by the sender us-
ing (a hash of) the preimage x as an input to another exe-
cution of interactive hashing. Note that given y = f(x),
x is distributed uniformly over a set of size |f−1(y)| =
2n−H(f(Un)) so hiding and binding follow from the prop-
erties of interactive hashing. In fact these schemes for regu-
lar one-way functions achieve a stronger property than

(2
1

)
-

binding. For each value of t, either the first phase is al-
ways binding or the second phase is always binding (i.e.
the sender cannot choose which binding property to break).
However, we will in fact show that

(2
1

)
-binding in the sense

of Definition 2.5 is achieved for any one-way function f ,
regardless of whether it is regular. We use this

(2
1

)
-binding

commitment for each possible value of t. This ensures that
all are

(2
1

)
-binding and at least one of the commitments in

this collection is hiding.

4.5 The Protocol

Let f : {0, 1}n → {0, 1}n be any function, not nec-
essarily regular nor one-way—as we shall later see, the
regularity condition and one-way security of the function
give us the hiding and binding properties, respectively. Let
Ha,b = {ha,b : {0, 1}a → {0, 1}b} be a family of pairwise
hash functions. The description of each element in Ha,b

takes $(a, b) = max{a, b} + b < 2(a + b) bits. For a, b <
poly(n), it is convenient to make $(a, b) = q(n) − b, for
some fixed polynomial q(n), so that for every y ∈ {0, 1}a,
|h, h(y)| = q(n). This can be done by padding random bits
to the description of h.

In addition, it will be convenient to work with protocols
where the sender has no input σ to be committed to, but
rather privately receives an output d ∈ {0, 1}k at the end of
each phase of the commitment. If we can ensure that d is
(nearly) uniform given the receiver’s view, such a protocol
can be tuned into a standard commitment scheme, where the
sender can commit to an σ of its choice by sending d⊕ σ at
the end of the commit phase.

The following two lemmas establish the statistical hiding
and computational

(2
1

)
-binding properties of Protocol 4.5.

The proofs of the lemmas are in the full version of this pa-
per [NOV].

Lemma 4.6 (statistical hiding). If f is a regular function
with H(f(Un)) ∈ (t0 − 1, t0], then Protocol 4.5, with
setting of parameters t = t0, k ≤ q(n), and ∆1 =
∆2 = ω(log n), is statistically hiding in the sense of Defi-
nition 2.4.

Lemma 4.7 (computational 1-out-of-2-binding). If f is
a s(n)-secure one-way function (not necessarily regular),
then for any value of t ∈ {1, · · · , n}, Protocol 4.5, with
setting of parameters k = O(log n), ∆1 = ∆2 ≤
(log(s(n)))/4, is computationally

(2
1

)
binding in the sense

of Definition 2.5.

5 Overview of Construction for General
One-Way Functions

We now present an overview of how we generalize our
construction for regular one-way functions with unknown
preimage size (Protocol 4.5) to arbitrary one-way functions.
As shown in Lemma 4.7, this protocol already achieves

(2
1

)
-

binding when f is any one-way function (for every value of
t). Thus the challenge is the hiding property. (Another issue
is that Protocol 4.5 requires a one-way function with known
security. It turns out that our method for handling the hiding
property also eliminates the need to know the security.)

As discussed in Section 4, for regular one-way functions,
Protocol 4.5 has a hiding first phase when the parameter
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Protocol 4.5. 2-Phase Commitment Scheme (S, R) based on f : {0, 1}n → {0, 1}n.

Parameters: Integers t ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , n}, ∆1 ∈ {0, 1, . . . , t}, and ∆2 ∈ {0, 1, . . . , n− t}.

Sender’s private input: String x ∈ {0, 1}n. (Note that this is not the value to which the sender is committing, but is
rather part of its coin tosses, which will be chosen uniformly at random by S unless otherwise specified.)

First phase commit:

1. S1
c sets y = f(x).

2. Let H1 = {h1 : {0, 1}n → {0, 1}t−∆1} be a family of pairwise independent hash functions. S1
c chooses a

random hash h1 ← H1, and computes v = (h1, h1(y)) ∈ {0, 1}q.

3. (S1
c , R1

c) run Interactive Hashing Scheme (SIH(v), RIH)(1q, 1k), with S1
c and R1

c acting as SIH and RIH

respectively.
Let circuit C(1) : {0, 1}k → {0, 1}q be the common output and d(1) ∈ {0, 1}k be SIH’s private output in
(SIH(v), RIH)(1q, 1k).

First phase sender’s private output: String d(1) ∈ {0, 1}k.

First phase reveal:
S1

r sends the tuple γ(1) = (d(1), y, h1).
Receiver R1

r accepts if and only if C(1)(d(1)) = (h1, h1(y)).

Second phase commit:
Second phase common input: First-phase transcript τ = transcript(S1(x), R1), which in particular includes the
string y.

1. Let H2 = {h2 : {0, 1}n → {0, 1}n−t−∆2} be a family of pairwise independent hash functions. S2
c chooses

a random hash h2 ← H2, and computes w = (h2, h2(x)) ∈ {0, 1}q.

2. (S2
c , R2

c) run Interactive Hashing Scheme (SIH(w), RIH)(1q, 1k), with S2
c and R2

c acting as SIH and RIH

respectively.
Let circuit C(2) : {0, 1}k → {0, 1}q be the common output and d(2) ∈ {0, 1}k be SIH’s private output in
(SIH(v), RIH)(1q, 1k).

Second phase sender’s private output: String d(2) ∈ {0, 1}k.

Second phase reveal:
S2

r sends the tuple γ(2) = (d(2), x, h2).
Receiver R2

r accepts if and only if f(x) = y and C(2)(d(2)) = (h2, h2(x)).
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t satisfies t <∼ H(f(Un)) and has a hiding second phase
when t satisfies t >∼ H(f(Un)). Intuitively, when f is
not regular, we should replace the fixed value H(f(Un))
with the ‘dynamic’ value Hf (y)def= log(1/ Pr[f(Un) = y]),
where y = f(x) is the value chosen by the sender in the
pre-processing step, because Hf (y) can be viewed as mea-
suring the amount of “entropy” in y. The “approximable
preimage-size one-way functions” studied by Haitner et
al. [HHK+] come equipped with an algorithm that estimates
Hf (y), but for general one-way functions, this quantity may
be infeasible to compute.

A weakly hiding scheme. One natural approach is to
have the sender choose t at random and “hope” that it is
close to Hf (y). When we choose t too small, only the first
phase will be hiding, and when we choose t too large, only
the second phase will be hiding. But we have a nonnegli-
gible probability δ (specifically, δ = 1/n) that t ≈ Hf (y),
and thus both phases will be hiding. Thus we have a

(2
1

)
-

binding commitment scheme satisfying a “weak hiding”
property, where with probability δ, both phases are hiding,
and it is always the case that at least one phase is hiding.
Actually, in order to simplify our analysis, we will include
t as a parameter to the protocol. Then there exists a choice
of t such that the protocol is weakly hiding in the sense
above, and for all choices of t the protocol is

(2
1

)
-binding.

At the end, we will enumerate over all values of t, result-
ing in a collection of commitment schemes as claimed in
Theorem 3.1, albeit with a weak hiding property.

Unfortunately, we do not know how to directly con-
struct zero-knowledge arguments from a weakly hiding

(2
1

)
-

binding commitment scheme. Thus instead, much of the
effort in this paper is devoted to amplifying the weak hid-
ing property (δ = 1/n) into a strong hiding property (δ =
1− neg(n)), while maintaining the

(2
1

)
-binding property.

Amplifying the hiding property. Inspired by the break-
through results of Reingold [Rei] and Dinur [Din] on dif-
ferent topics, we do not amplify the hiding probability from
δ = 1/n to δ = 1 − neg(n) in “one shot,” but instead per-
form a sequence of log n iterations, each one of which in-
creases δ by a roughly factor of 2. This results in δ = Ω(1),
and then we are able to get δ = 1−neg(n) in just one more
amplification step.

How do we double δ? A natural idea is to consider
several, executions of the previous weakly hiding scheme.
Specifically, if we take m = O(1) executions, the prob-
ability that at least one of the executions has both phases
hiding is roughly m · δ. Moreover, each of the remain-
ing m − 1 executions have either the first phase hiding or
the second phase hiding. Thus for some value of β, there
are β + 1 first phases that are hiding and m − β second
phases that are hiding. It turns out that we can choose β

so that this exact (β + 1,m − β) breakdown given that
one execution has both phases hiding occurs with proba-
bility Ω(1/

√
m). Thus we are in the situation described

with probability m · δ ·Ω(1/
√

m) > 2δ, for a large enough
constant m.

Now our aim is to combine the outcomes of the weakly
hiding schemes in such a way that when the above-
described situation occurs, which happens with probability
at least 2δ, both phases are hiding. Notice that the secret
values σ1, . . . ,σm ∈ {0, 1}k to which the sender commits
in the first commit phases have entropy (even min-entropy)
at least (β + 1) · k conditioned on the receiver’s view (be-
cause (β+1) of them are hiding), and similarly the sender’s
secrets in the second commit phases have entropy at least
(m− β) · k conditioned on the receiver’s view. Let us com-
pare this to the situation with binding. Since each execu-
tion is

(2
1

)
-binding, a cheating polynomial-time sender can

break the binding property for either at most β of the first
phases or at most m−β− 1 of the second phases. Thus the
number of possible values to which the sender can open in
each case is at most 2m · 2k·β in the first phase or at most
2k·(m−β−1), where the 2m factor in the first bound comes
from the sender’s ability to choose which subset of execu-
tions to break (and it is this factor that limits us to taking
m to be a constant). We can view these as strong forms of
“entropy” upper bounds m + kβ and k · (m − β − 1). In
at least one phase, there will be an entropy gap of at least
k −m.

How can we exploit these entropy gaps? It turns out
that interactive hashing, again, is a useful tool. Specifi-
cally, in the first phase we have the sender choose a ran-
dom pairwise independent hash function h1 mapping to ap-
proximately (β + 1) · k bits and use (h1, h1(σ1, . . . ,σm))
as the input to an Interactive Hashing protocol, and analo-
gously for the second phase. By the Leftover Hash Lemma,
this pairwise independent hashing converts the min-entropy
lower bound described above to an almost-uniform distri-
bution, so the Interactive Hashing hiding property applies.
As for the binding property, the bound on the number of the
sender’s choices gets translated to saying that the sender’s
input (in the first phase) comes from a set T of density
2−(k−m), so the Interactive Hashing binding property ap-
plies. The analyses for the second phase are similar. For-
malizing these ideas, we get a new

(2
1

)
-binding commitment

scheme in which both phases are hiding with probability at
least 2δ.

When we try to iterate this amplification step O(log n)
times, we run into a new difficulty. Specifically, the above
sketch hides the fact that we pay entropy losses of ω(log n)
in both the hiding and binding analyses. The entropy loss
of ω(log n) in the hiding property comes from the Leftover
Hash Lemma, in order to ensure that (h1, h1(σ1, . . . ,σm))
has negligible statistical distance from uniform. The en-
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tropy loss of ω(log n) in the binding property comes from
needing the µ(T ) · 2k factor to be negligible when applying
Lemma 4.3. This forces us to go, in one step of amplifi-
cation, from a commitment scheme for secrets of length k
to a scheme for secrets of length k − m − ω(log n). As
in Lemma 4.7, we can take the initial secret length to be
k = Θ(log s(n)) = ω(log(n)) if the one-way function has
known security s(n) = nω(1). But to tolerate log n losses
of ω(log n), we would need s(n) = nω(log n) (i.e., at least
quasipolynomial security).

To get around this difficulty, in the amplification, we
work with more relaxed, “average-case” measures of “en-
tropy” for both the hiding and binding analyses. Specif-
ically, for hiding, we keep track of the expected collision
probability of the sender’s secret, conditioned on the re-
ceiver’s view. (Actually, we use the expected square root
of the collision probability.) For binding, we work with the
expected number of values to which the sender can open. In
both cases, we only require these expectations to be within a
constant factor of the ideal values (2−k and 1 respectively).
With these measures, it turns out that we need only lose
O(m) = O(1) bits in the entropy gap with each amplifica-
tion step. Moreover, once we amplify δ to a constant, we
can afford to take the number of executions m to equal the
security parameter n and get an Ω(n)-bit “entropy gap” in
the final amplification step. This allows us to achieve expo-
nentially strong statistical hiding even when we do not know
the security and start with secret length of k = O(log n).

The hiding analysis of the above construction works only
for certain values of t in the weakly hiding scheme, and for
certain values of the β’s in the amplification steps. We try
out all possible values of t and β’s, thus obtaining a col-
lection poly(n) schemes, at least one of which is strongly
hiding and all of which are

(2
1

)
-binding. Notice that the

number of possible choices of t and the β’s are polynomial
in n since t ∈ {1, 2, . . . , n}, the β’s in the each step ex-
cept for the last is in the range {0, 1, . . . ,m− 1}, for some
constant m, and the last β is in the range {0, 1, . . . , n}.
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