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ABSTRACT
We prove that every problem in NP that has a zero-knowledge
proof also has a zero-knowledge proof where the prover can
be implemented in probabilistic polynomial time given an
NP witness. Moreover, if the original proof system is statis-
tical zero knowledge, so is the resulting efficient-prover proof
system. An equivalence of zero knowledge and efficient-
prover zero knowledge was previously known only under the
assumption that one-way functions exist (whereas our re-
sult is unconditional), and no such equivalence was known
for statistical zero knowledge. Our results allow us to trans-
late the many general results and characterizations known
for zero knowledge with inefficient provers to zero knowledge
with efficient provers.

Categories and Subject Descriptors
F.1.2 [Modes of Computation]: Interactive and reactive
computation

General Terms
Theory
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1. INTRODUCTION
Zero-knowledge proofs [18] have been one of the most fer-

tile sources of interaction between cryptography and com-
plexity theory. From the perspective of cryptography, zero-
knowledge proofs provide a powerful building block for se-
cure protocols and serve as a good testbed for understanding
new security concerns such as concurrency and composabil-
ity. From a complexity point of view, zero knowledge en-
riches the classical study of NP proofs with randomness,
interaction, and secrecy, and provides an interesting classi-
fication of computational problems.

In the past decade, this interaction has yielded a number
of very general results about zero-knowledge proofs. These
include natural complete problems (or similar characteriza-
tions), closure properties, equivalence of private coins and
public coins, equivalence of honest-verifier and malicious-
verifier zero knowledge, and more. Results of this form were
first obtained for the class SZK of problems having “statis-
tical” zero-knowledge proofs [28, 31, 15, 17, 32], and were
recently extended to the class ZK of problems having gen-
eral, “computational” zero-knowledge proofs [34].1

However, there has been a significant gap between this
complexity-theoretic study of zero knowledge and the cryp-
tographic applications of zero knowledge. Specifically, the
works mentioned above ([28, 31, 15, 17, 32, 34]) allow for
a computationally unbounded prover, following the standard
definition of interactive proofs [18, 2]). Cryptographic appli-
cations of zero knowledge, on the other hand, require that
the prover strategy be implementable in polynomial time,
so that the resulting cryptographic protocol is feasible to
execute. We can hope for a polynomial-time prover in such
applications because the statements being proven are typi-
cally NP statements (e.g. that a given ciphertext decrypts
to a particular message) and the prover typically has an NP
witness (e.g. the decryption key) to the statement. Thus we
want zero-knowledge proofs for languages in NP where the
prover can be implemented in polynomial time given an NP
witness. We refer to a proof system with this property as
having an efficient prover.

Many existing zero-knowledge proofs have efficient provers,
including perfect (or statistical) zero-knowledge proofs for
specific problems such as Quadratic Residuosity [18] and
Graph Isomorphism [14], as well as the (computational)

1All of these results were known about ZK under the as-
sumption that one-way functions exist [14, 21, 7, 19, 26,
20]. The point of [34] is to establish the same results uncon-
ditionally.
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zero-knowledge proofs for all of NP based on one-way func-
tions [14]. However, the general, unconditional results men-
tioned earlier do not provide efficient provers. For example,
the results of [28, 34] provide a generic way to transform
any zero-knowledge proof into one that uses public coins.
But, even if the original prover is efficient, the prover in the
resulting public-coin proof system will run in superpolyno-
mial time (indeed, the best upper bound seems to be prob-
abilistic polynomial time with an NP oracle). Thus, even
though some of these general transformations have crypto-
graphic significance (e.g. from honest-verifier zero knowl-
edge to malicious-verifier zero knowledge), they cannot ac-
tually be used in cryptographic protocols.2

In [33], it was shown that this blow-up in prover complex-
ity is inherent in the approach being used. Specifically, if
one-way functions exist, then there is no “black-box trans-
formation” from private-coin honest-verifier statistical zero-
knowledge proofs to public-coin proofs that preserves prover
efficiency, where “black-box transformation” essentially says
that the prover and verifier strategies in the new proof sys-
tem are constructed using the original prover and verifier
strategies (as well as the simulator) as black boxes.3 Indeed,
all of the general transformations for SZK at the time [28,
31, 15, 17] were black box in this sense.

Recently, Micciancio and Vadhan [24] suggested a “non-
black-box” approach with the potential to overcome the
above bottleneck, and reduced the question to constructing a
certain kind of “instance-dependent” commitment scheme [5,
22] for any SZK-complete problem. (This is described in
more detail below in Section 1.) However, they only man-
aged to construct such a commitment scheme for a restricted
form of an SZK-complete problem. In this work, we carry
out a variant of their approach (introducing a new type of
commitment scheme), and thereby resolve the question of
prover efficiency for statistical zero knowledge:

Theorem 1.1. Every problem in SZK ∩ NP has a sta-
tistical zero-knowledge proof with an efficient prover. More-
over, the proof system is public coin and has perfect com-
pleteness.

We note that SZK ⊆ AM ∩ co-AM [12, 1] and it has
been shown that AM = NP under plausible complexity
assumptions [23, 25], so we conclude that all of SZK has
efficient provers under plausible complexity assumptions.

Combining our techniques with the results of [34], we ob-
tain the analogous result for computational zero knowledge:

Theorem 1.2. Every problem in ZK ∩ NP has a (com-
putational) zero-knowledge proof with an efficient prover.
Moreover, the proof system is public coin and has perfect
completeness.

We recall that the classic Three-Coloring protocol of Gol-
dreich, Micali, and Wigderson [14] shows that if one-way
2We note that for honest-verifier vs. malicious-verifier zero
knowledge, the real bottleneck is the transformation from
private coins to public coins; given a public-coin honest-
verifier zero-knowledge proof, the transformation to tolerate
cheating verifiers [15] preserves prover efficiency.
3This should not be confused with notion of (non-)black-box
simulation, as in the work of Barak [3], which is concerned
with how we establish the zero-knowledge property, not how
we construct the proof system itself.

functions exist, all of NP (not just ZK ∩ NP) has zero-
knowledge proofs with an efficient prover. Thus, the signif-
icance of Theorem 1.2 is that it is unconditional.

We can use these theorems to automatically translate
general results known about SZK and ZK to the classes
SZKeff and ZKeff of problems having zero-knowledge proofs
with an efficient prover.

Related Work. Bellare and Petrank [6] showed that
every problem in SZK has a statistical zero knowledge proof
where the prover can be implemented in probabilistic poly-
nomial time with an NP oracle. Bellare and Goldwasser [4]
studied the power of the prover in (non-zero-knowledge) in-
teractive proofs. They showed that, under plausible com-
plexity assumptions, there exist languages L ∈ NP for which
proving membership is harder than decision, in that L does
not have an interactive proof where the prover can be im-
plemented in polynomial time given an oracle for L (but
no auxiliary-input/NP witness). The notions of prover ef-
ficiency considered in both of these works [6, 4] are mainly
interesting from a complexity-theoretic perspective, and do
not match the requirements of cryptographic applications.

Ostrovsky and Wigderson [29, 30] showed that if a hard-
on-average problem has a zero-knowledge proof, then one-
way functions exist. Thus, for hard-on-average problems,
one can use the equivalence between zero knowledge and
efficient-prover zero knowledge based on one-way functions.
However, this approach does not seem to suffice for prov-
ing results about all of ZK or SZK, because these classes
may be nontrivial (not equal to BPP), yet not have a hard-
on-average problem. Nevertheless, the work of [29, 30] was
an inspiration for the work of [34] on computational zero
knowledge, which we use in our proof of Theorem 1.2.

Techniques. We begin by recalling the notion of a com-
mitment scheme, which is a basic building block for many
zero-knowledge proofs. A commitment scheme is a two-stage
protocol between a sender and a receiver. In the first stage,
the sender ‘commits’ to a value v, and in the second, the
sender ‘reveals’ this value to the receiver. We want two
security properties from a commitment scheme. The hid-
ing property says that the receiver does not learn anything
about the value v during the commit stage. And the binding
property says that after the commit stage, there is at most
one value that the sender can successfully open (without
the receiver rejecting). It is known that (computationally
hiding) commitment schemes exist if and only if one-way
functions exist [26, 20]. The only way that the existence
of one-way functions is used in constructing zero-knowledge
proofs for NP [14] is to obtain a commitment scheme.

In an instance-dependent commitment scheme [5, 22],4 the
sender and receiver strategies also depend on an instance
x of some decision problem Π, and we relax the security
properties so that we only require hiding if x is a yes in-
stance of Π and only require binding if x is a no instance of
Π. Since we do not require the hiding and binding proper-
ties to hold simultaneously, instance-dependent commitment
schemes do not imply the existence of one-way functions. In
particular, they can be constructed unconditionally for cer-

4Previous works [24, 34] have referred to this as a ‘problem-
dependent’ commitment scheme, but the new terminology
‘instance-dependent’ seems more accurate.
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tain problems. (For example, if Π is Graph Isomorphism,
then on instance x = (G0, G1), we can take a commitment
of b ∈ {0, 1} to be a random isomorphic copy of Gb. This is
perfectly hiding when G0

∼=G1 and perfectly binding when
G0 & ∼=G1. [5])

Itoh, Ohta, and Shizuya [22] showed that this relaxation
of commitment schemes is still useful for constructing zero-
knowledge proofs. The reason is that many constructions of
zero-knowledge proofs (e.g. [14]) from commitment schemes
only use the hiding property to prove zero knowledge, which
is only required on yes instances, and only use the binding
property to prove soundness, which is only required on no
instances. Thus, to construct a zero-knowledge proof for a
problem Π ∈ NP, it suffices to have an instance-dependent
commitment scheme for Π. Then we can reduce Π to an NP-
complete problem, such as Three-Coloring, and use the
Π-dependent commitment scheme to implement the zero-
knowledge proof for Three-Coloring [14].

Micciancio and Vadhan [24] suggested that this approach
could be useful for obtaining efficient provers for all of SZK.
Specifically, if we could show that every problem in SZK has
a (statistically hiding and statistically binding) instance-
dependent commitment scheme, then it would follow that
every problem SZK ∩ NP has a statistical zero-knowledge
proof with an efficient prover. The plausibility of this ap-
proach was demonstrated in [24] by exhibiting an instance-
dependent commitment scheme for a restricted version of
the SZK-complete problem Statistical Difference [31].
Moreover, in [34], it was shown that all of SZK has an
instance-dependent commitment scheme, albeit with an in-
efficient sender, which renders it useless for the question of
efficient provers.

In this work, we do not show how to construct an instance-
dependent commitment scheme for all of SZK. Instead, we
introduce a new relaxation of commitment schemes, which
we call

`
2
1

´
-binding commitment schemes. These are com-

mitment schemes with two phases, each consisting of a com-
mit stage and a reveal stage. In the first phase, the sender
commits to and reveals one value v1, and subsequently, in
the second phase, the sender commits to and reveals a sec-
ond value v2. We require that both phases are hiding, but
only that one of them is binding. That is, the binding prop-
erty only requires that with high probability, the sender will
be forced to reveal the correct committed value in at least
one of the phases (but which of the two phases can be de-
termined dynamically by the malicious sender).

First, we demonstrate that these
`
2
1

´
-binding commitment

schemes can be used to construct zero-knowledge proofs for
NP. Roughly speaking, we run two executions of, say, the
Three-Coloring zero-knowledge proof of [14], and use the
first phase of the commitment scheme for the first execution
and the second phase for the second execution. Intuitively,
the zero knowledge property will hold because both phases
are hiding, and soundness because at least one phase is bind-
ing. Actually, the protocol and the proof of soundness are
complicated by the fact that in the first execution, only a
subset of the first-phase commitments are opened (so we do
not have as many second-phase commitments as first-phase
ones), and that the prover can decide whether to break the
binding property in the first phase or second phase differ-
ently for each of the commitments. Nevertheless, we can
manage these difficulties.

Now, our goal of obtaining efficient provers for SZK is
reduced to constructing an instance-dependent

`
2
1

´
-binding

commitment scheme for an SZK-complete problem. Unfor-
tunately, we do not know how to do this, either. Instead, for
each instance x of our problem Π, we construct polynomially
many two-phase commitment schemes, with the guarantee
that if x is a yes instance, at least one of the schemes is
hiding (in both phases), and if x is a no instance, then all
of the schemes are binding. However, it turns out that, with
some more work, our zero-knowledge proof construction can
be extended to work with such a collection of commitment
schemes. And thus we obtain Theorem 1.1. The results of
[34] allow us to immediately convert our collection of

`
2
1

´
-

binding commitment schemes for SZK into a collection of`
2
1

´
-binding commitment schemes for ZK (now with compu-

tational hiding), and thereby obtain Theorem 1.2.

Notation. If X is a random variable taking values in

a finite set U , then we write x
R← X to indicate that x is

selected according to X. If S is a subset of U , then x
R← S

means that x is chosen uniformly from S. We denote by Un

the random variable distributed uniformly over {0, 1}n, by
neg(n) an arbitrary negligible function and by poly(n) an
arbitrary polynomial. For a probabilistic algorithm A, we
write A(x; r) to denote the output of A on input x and coin
tosses r. A(x) is a random variable denoting the output of
A for uniformly selected coin tosses. We follow the standard
definition of zero-knowledge proof as in [13].

2. 1-OUT-OF-2 BINDINGCOMMITMENTS
We now introduce the notion of

`
2
1

´
-binding commitments

that will play a central role in establishing our results. These
are commitment schemes with two sequential and related
phases such that in each phase, the sender commits to and
reveals a value.

Definition 2.1. A 2-phase commitment scheme (S, R)
consists of four interactive protocols:

• (S1
c , R1

c) the first commitment phase

• (S1
r , R1

r) the first reveal phase

• (S2
c , R2

c) the second commitment phase

• (S2
r , R2

r) the second reveal phase

1. In the first commitment phase, S1
c receives a private

input σ1 ∈ {0, 1} and a sequence of coin tosses rS
5.

S1
c and R1

c receive as common output a commitment
z1 (without loss of generality, we can assume that z1

is the transcript of the first commitment phase).

2. In the first reveal phase, S1
r and R1

r receive as common
input the commitment z1 and a bit σ1. S1

r receives as
private input rS . S1

r and R1
r receive a common output

τ . (Without loss of generality, we can assume that τ
is the transcript of the first commitment phase and the
first reveal phase and includes R1

r’s decision to accept
or reject).

5The receiver will also be probabilistic but our protocols will
not require that the receiver remembers its coin tosses from
previous phases. Indeed, our protocols will be public coin
for the receiver.
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3. In the second commitment phase, S2
c and R2

c receive
the common input τ ∈ {0, 1}! (where τ denotes the
common output of the first reveal phase). S2

c receives
a private input σ2 ∈ {0, 1} and the coin tosses rS. S2

c

and R2
c receive as common output a commitment z2

(without loss of generality, we can assume that z2 is
the concatenation of τ and the transcript of the second
commitment phase).

4. In the second reveal phase, S2
r and R2

r receive as com-
mon input the commitment z2 and a bit σ2. S2

r re-
ceives as private input rS. At the end of the protocol,
R2

r accepts or rejects.

5. S = (S1, S2) = ((S1
c , S1

r ), (S2
c , S2

r )) and R = (R1, R2) =
((R1

c , R
1
r), (R

2
c , R2

r)) are computable in probabilistic poly-
nomial time poly(n) (where 1n is the security param-
eter).

When defining the security of such a commitment scheme
with respect to the receiver, we will restrict our focus on
honest receivers for simplicity because we will use the com-
piler of [15] to convert our public-coin honest-verifier zero-
knowledge proof into a public-coin zero-knowledge proof that
withstands malicious verifiers. Loosely speaking, the hiding
property for a 2-phase commitment scheme says that each
commitment phase is hiding. Note that since the phases are
run sequentially, the hiding property for the second commit-
ment phase is formalized by including the receiver’s view of
the first phase.

Definition 2.2 (Hiding property). We say that the
2-phase commitment scheme (S, R) is statistically (resp. com-
putationally) hiding for honest receiver if:

• the views of R1
c in (S1

c (0), R1
c) and (S1

c (1), R1
c) are sta-

tistically (resp. computationally) indistinguishable.

• for every σ1 ∈ {0, 1}, the distributions
“
ViewR1(S1(σ1), R1), ViewR2

c
(S2

c (0), R2
c)(τ )

”
and

“
ViewR1(S1(σ1), R1), ViewR2

c
(S2

c (1), R2
c)(τ )

”

where τ = output(S1
r , R1

r)(z
1,σ1) are statistically (resp.

computationally) indistinguishable.

Loosely speaking, the binding property says that at least
one of the two phases is binding. In other words, for every
sender S!, there is at most one “bad” phase j ∈ {1, 2} such
that given a commitment zj , S! can open zj successfully
both as 0 and 1 with nonnegligible probability (this bad
phase is determined dynamically by the cheating sender S!).
In formalizing this, we use the simplifying assumption that
both reveal phases are non-interactive and deterministic. In
the first reveal phase, the sender just sends a decommitment
value to the receiver. In the second reveal phase, without
loss of generality the sender sends its coin tosses rS. Indeed
the 2-phase commitments we construct in Section 4 will be
of that form.

Definition 2.3 (1-out-of-2 binding property). We
say that the 2-phase commitment scheme (S, R) is 1-out-of-2
statistically binding or

`
2
1

´
statistically binding if ∀S!, with

probability at least 1 − neg(n) over z1 ← output(S!, R1
c),

there is at least one “improper” value σ1 ∈ {0, 1} such that

for any τ = (S!, R1
r)(z

1,σ1) where R1
r accepts, we have that

with probability at least 1 − neg(n) over z2 = (S!, R2
c)(τ ),

there is at least one value σ2 ∈ {0, 1} such that (S!, R2
r)(z

2,σ2) =
reject.

We say that the first phase commitment z1 is broken if
S! opens the commitment z1 to the “improper” value σ1

specified in the above definition (in which the second phase
will be binding).

Note that if S! opens the commitment z1 to the “proper”
value σ1, there is no guarantee that the second phase will be
binding.

In Section 4, we will describe how to construct a polyno-
mial collection of 2-phase commitment schemes for a promise
problem 6 in SZK (resp. ZK):

Theorem 2.4. For every promise problem Π = (ΠY , ΠN) ∈
SZK (resp. Π ∈ ZK), there exists a polynomial-time com-
putable function that maps an instance x of length n to
t = poly(n) 2-phase commitment schemes Com1, · · · , Comt

such that

x ∈ ΠY ⇒ ∃i ∈ [t] such that Comi is statistically

(resp. computationally) hiding

x ∈ ΠN ⇒ ∀i ∈ [t] Comi is
`2
1

´
statistically binding

3. ZERO-KNOWLEDGE PROOFS FROM
1-OUT-OF-2 BINDINGCOMMITMENTS

3.1 Generic Zero-knowledge Proof
It will be convenient to present our protocols based on

an abstraction of standard zero-knowledge proofs for NP-
complete problems [14, 8]. Using the standard zero-knowledge
proof for Hamiltonicity [8], we may assume that every
problem Π ∈ NP has a public-coin (honest verifier) zero-
knowledge proof (P, V )(x) of the form:

1. P commits to # bits (b1, b2, · · · , b"), and sends the com-
mitments to V . (In Hamiltonicity, this is a commit-
ment to the adjacency matrix of a permuted graph)

2. V sends a challenge c
R← {0, 1}q . (This tells the prover

whether to reveal the permutation or a cycle in the
permuted graph)

3. P sends a subset of indices U ⊆ [#] of size u, where U
is determined by the challenge and the prover’s coin
tosses. P opens the commitments to bi for i ∈ U . (U
is either the entire graph or a cycle. By using appro-
priate ”dummy” commitments, we can ensure that the
subsets of indices are of fixed size u.)

4. V checks that “U is valid with respect to the challenge
c” and that the opened commitments are valid. (The
verifier will check that either these values correspond
to the adjacency matrix of a permuted graph or that
they correspond to a Hamiltonian cycle.)

6A promise problem [11] is specified by two disjoint sets
of strings Π = (ΠY , ΠN), where we call ΠY the set of
yes instances and ΠN the set of no instances. Such a
promise problem is associated with the following compu-
tational problem: given an input that is “promised” to lie
in ΠY ∪ ΠN , decide whether it is in ΠY or in ΠN
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This proof system has perfect completeness. By repeating
Blum’s Hamiltonicity protocol [8] in parallel, we get neg-
ligible soundness error when the commitment scheme used
is perfectly binding. More generally, we can say that if
x ∈ ΠN , then with probability 1 − neg(n), either the ver-
ifier rejects or the prover breaks one of the commitments.
When the commitment scheme used is statistically hiding,
the protocol is statistical honest-verifier zero-knowledge.

3.2 Zero-knowledge Proof from a Single
1-out-of-2 Binding Commitment

As a warm-up to the construction of zero-knowledge proofs
based on the collection of commitments given by Theorem 2.4,
we will sketch the construction based on a single

`2
1

´
-binding

commitment scheme.

Theorem 3.1. Let Π ∈ NP and (S, R) be a 2-phase com-
mitment scheme. There exists an interactive protocol (P ′, V ′)
such that:

• if x ∈ ΠY and (S,R) is statistically (resp. computa-
tionally) hiding, then (P ′, V ′) is honest-verifier statis-
tical (resp. computational) zero-knowledge

• if x ∈ ΠN and (S,R) is 1-out-of-2 statistically bind-
ing, then (P ′, V ′) is statistically sound with negligible
soundness error.

The new protocol (P ′, V ′) will consist of two sequential
executions of the generic protocol (P, V ). The prover will
use the first phase of (S, R) in the first execution and the
second phase of (S, R) in the second execution. The sound-
ness property will rely on the fact that for each commitment,
at least one phase is binding (though it might be a different
phase for each commitment). Intuitively, this

`
2
1

´
-binding

property should ensure that the prover cannot cheat in both
executions.

However two difficulties arise at this point. First, the
prover only opens u first phase commitments in the first
execution, whereas we need # second phase commitments
in the second execution. Secondly, the prover only needs
to break one first phase commitment to ruin the soundness
property in the first execution and we cannot guarantee that
the corresponding second phase commitment (known to be
binding) will be opened by the prover in the second execu-
tion.

In order to manage these difficulties, in the first execu-
tion, we make the prover commit to each bit bi a total of
#2 times using the first phase of (S, R). We denote these
first phase commitments zi,j for i ∈ [#], j ∈ [#2]. Hence the
prover opens more than enough first phase commitments in
the first execution so that the corresponding second phase
commitments can be used in the second execution.

The protocol (P ′, V ′) is honest-verifier zero-knowledge when
x ∈ ΠY because both phases of the commitment scheme
(S, R) are hiding and the generic protocol is honest-verifier
zero-knowledge when the commitment scheme used is hid-
ing.

Let x ∈ ΠN . Let us consider the soundness property for
the first execution of (P, V ). By the binding property of`
2
1

´
-binding commitments, with 1−neg(n) probability, each

zi,j has at most one “proper” decommitment value b!
i,j (i.e.

other than the bit σ1 in Definition 2.3). Consider the se-
quence (b!

1, · · · , b!
" ) where b!

i is the majority of b!
i,j (over

j ∈ [#2]). By soundness of the generic protocol, the veri-
fier would reject with probability 1 − neg(n) if the prover
opens consistently with (b!

1, · · · , b!
" ). Thus there must be an

index i! such that the prover opens inconsistently with bi! ,
i.e. at least half of the commitments {zi!,1, · · · , zi!,"2} are
broken and the second phases of these commitments will be
statistically binding.

Before the second execution starts, the verifier chooses
a random correspondence between the first phase commit-
ments opened in the first execution and the second phase
commitments to be used in the second execution. This ran-
dom “shuffling” guarantees that if the prover cheats in the
first execution by breaking at least half of the commitments
{zi!,1, · · · , zi!,"2}, then with high probability every bit b′i
committed to in the second execution of (P, V ) will have
at least one binding second phase commitment. Then, by
soundness of the generic protocol, the verifier rejects in the
second execution with probability 1 − neg(n).

3.3 Zero-knowledge Proof from a Collection
of 1-out-of-2 Binding Commitments

We will now sketch how to construct a zero-knowledge
proof based on the collection of commitments given by The-
orem 2.4.

Theorem 3.2. Let Π ∈ NP and Com1, · · · , Comt be 2-
phase commitment schemes (where Comj = (Sj , Rj)). There
exists an interactive protocol (P ′, V ′) such that:

• if x ∈ ΠY and one of the commitments Com1, · · · , Comt

is statistically (resp. computationally) hiding, then (P ′, V ′)
is honest-verifier statistical (resp. computational) zero-
knowledge

• if x ∈ ΠN and all commitments Com1, · · · , Comt are
1-out-of-2 statistically binding, then (P ′, V ′) is sound
with negligible soundness error.

The new protocol (P ′, V ′) will consist of (t + 1) sequen-
tial executions of the generic protocol (P, V ). In order to
preserve the zero-knowledge property of the generic proto-
col, we need the prover’s commitments in each execution
to be statistically hiding. Since we are only guaranteed
to have at least one statistically hiding commitment among
Com1, · · · , Comt (when x ∈ ΠY ), we will use a secret shar-
ing scheme for each bit that the prover must commit to in
the generic protocol. Each bit bi will be shared using t ran-
dom values and the prover will commit to the jth share of
bi using Comj . This will ensure that each unopened bit
bi is hidden from the verifier and thus that the protocol is
honest-verifier zero-knowledge.

The soundness property will be proven by showing that
the prover’s commitments are binding in at least one of the
executions. Similarly to the warm-up case, in each execu-
tion of (P, V ), for every j ∈ [t], the prover commits to the
jth share multiple times using both the first and the second
phases of Comj . For every j ∈ [t], the verifier chooses a ran-
dom correspondence between the first phase commitments
using Comj opened in the rth execution (r ∈ {1, · · · , t+1})
and the second phase commitments using Comj in the re-
maining (t − r + 1) executions. This random “shuffling” of
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the commitments using Comj guarantees that if in the rth
execution, the prover cheats by opening inconsistently and
breaking some first phase commitments using Comj , then
with high probability, for each of the remaining (t − r + 1)
executions, for every i ∈ [#], the jth share of bi will have at
least one binding second-phase commitment. Hence every
bit bi committed to in the (t+1)st execution will be binding
and by soundness of the generic protocol the verifier rejects
in the (t + 1)st execution with probability 1 − neg(n) (if it
hasn’t rejected in an earlier execution).

4. CONSTRUCTING1-OUT-OF-2BINDING
COMMITMENTS

We will need the following basic notation. The support of
a random variable X is Supp(X) = {x : Pr [X = x] > 0}. A
random variable X is flat if it is uniform over its support.
A circuit X : {0, 1}m → {0, 1}n defines a probability dis-
tribution on {0, 1}n by evaluating X on a uniformly chosen
input in {0, 1}m.

Promise problems and instance-dependent com-
mitment schemes

Recall that a promise problem is specified by two disjoint
sets of strings Π = (ΠY , ΠN), where we call ΠY the set of
yes instances and ΠN the set of no instances. The com-
plement of a promise problem Π = (ΠY , ΠN) is the promise
problem Π = (ΠN , ΠY ).

In a (standard) instance-dependent commitment scheme [5,
22], the sender and receiver strategies also depend on an in-
stance x of some problem Π. We require that the scheme
is hiding if x is a yes instance of Π and binding if x is a
no instance of Π. Similarly, an instance-dependent 2-phase
commitment scheme is a 2-phase commitment scheme where
both the sender and receiver are given an auxiliary input x
that is viewed as an instance of Π. It is required that the
scheme is hiding when x ∈ ΠY and is

`
2
1

´
-binding when

x ∈ ΠN .

To construct the polynomial collection of commitments
of Theorem 2.4, we will consider the promise problems En-
tropy Difference (known to be SZK-complete [17]) and
Entropy Approximation [16]. The promise problem En-
tropy Difference ED = (EDY , EDN ) is defined by

EDY = {(X, Y ) : H(X) ≥ H(Y ) + 1}
EDN = {(X, Y ) : H(X) ≤ H(Y ) − 1},

where H(·) denotes the entropy function defined by H(X) =
E

x
R←X

[log(1/ Pr[X = x])].

The promise problem Entropy Approximation EA =
(EAY ,EAN ) is defined by

EAY = {(X, t) : H(X) ≥ t + 1}
EAN = {(X, t) : H(X) ≤ t − 1},

Our goal is to construct some form of an instance-dependent
commitment scheme for all of SZK. To do so, it suffices to
construct one for the SZK-complete problem ED. However,
rather than work with ED directly, we will reduce it to sim-
pler problems. The starting point is a Cook reduction from

ED to EA given by [16]. This reduces the task to construct-
ing instance-dependent commitment schemes for EA and
its complement. Indeed, we describe an instance-dependent
commitment scheme for EA in Section 4.4; in fact this is a
standard 1-phase commitment scheme. However we do not
know how to give an instance-dependent 2-phase commit-
ment scheme for the complement of EA but rather for the
complement of a restriction of EA, denoted by EA′ that we
will describe later. Hence we will modify the reduction of
[16] to obtain a Cook reduction from ED to EA′.

Interactive hashing

A key tool in our constructions of
`
2
1

´
-binding commit-

ments is interactive hashing, which was introduced by Naor,
Ostrovsky, Venkatesan and Yung [27] for the purposes of
constructing perfectly binding commitments from one-way
permutations and have been used to construct commitments
in other settings as well. We only need an information-
theoretic version, which we take from Ding, Harnik, Rosen
and Shaltiel [10].

Roughly speaking, in such a protocol A holds an input
W ∈ {0, 1}" and at the end of protocol A and B agree on
a pair (W0, W1) (in lexicographic order) such that Wd = W
for some d ∈ {0, 1}. A secure interactive hashing protocol
guarantees that B does not learn anything about the value
d if A’s input W is uniform, and that A cannot control both
values W0 and W1, i.e. A cannot force both values to lie in
a “small” subset S ⊆ {0, 1}".

Definition 4.1. A protocol (A,B) is called an η-uniform
interactive hashing protocol if it is an efficient two-party
protocol with the following properties:

Inputs A has an input string W ∈ {0, 1}" and B has no
input

Outputs A and B output a 2-to-1 hash function h : {0, 1}" →
{0, 1}"−1 and two values W0, W1 ∈ {0, 1}" (in lexico-
graphic order) such that h(W0) = h(W1) = h(W ).

Uniformity Let d ∈ {0, 1} such that Wd = W . Condi-
tioned on B’s view, the distribution of W1−d over the
parties’ coin tosses is η-close to the uniform distribu-
tion over {0, 1}".

Definition 4.2. Let D denote the distribution of the in-
dex d ∈ {0, 1} such that the string Wd corresponds to the in-
put of A in the interactive hashing protocol. An interactive
hashing protocol is secure for A if for every unbounded de-
terministic B! the distributions {V IEWB!(A(W ),B!), D}
and {V IEWB!(A(W ),B!), U1} are identical when W ≡ U".

An interactive hashing protocol is (µ, ρ)-secure for B if for
every S ⊆ {0, 1}" of density at most µ and every unbounded
strategy A!, Pr [W0, W1 ∈ S] < ρ

Improving on the previous protocol of [27], [10] constructed
a constant-round interactive hashing protocol where the mes-
sages sent from B are the output of its coin-tosses.

Theorem 4.3. [10] For every 0 < µ < 1, there exists a
constant-round η-uniform interactive hashing protocol (A,B)
that is secure for A and (µ, poly(#) · µ)-secure for B, where
η < 2−".
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4.1 Instance-dependent Commitment Scheme
for Entropy Approximation

Theorem 4.4. EA has an instance-dependent commit-
ment scheme with a constant number of rounds.

We will describe informally an instance-dependent (stan-
dard) commitment scheme (S, R) for EA.

On input (X, t), the sender and receiver first apply the
lemma given in [16] to transform X into a new distribution

X ′ on {0, 1}n′
such that

(X, t) ∈ EAY ⇒ ∆(X ′, Un′) ≤ 2−n

(X, t) ∈ EAN ⇒ |Supp(X ′)| ≤ 2−n2n′

where ∆(X, Y ) denotes the statistical difference between
random variables X and Y 7.

Pre-processing: On input (X, t), the sender and receiver
apply the above transformation to obtain the circuit
encoding the distribution X ′.

Commit phase 1. On input X ′, the sender S generates
a random sample x ← X ′.

2. (S,R) run the constant-round interactive hash-
ing protocol (A, B) of with S playing A(x) and
R playing B. Their common output is a pair
(x0, x1).

3. S lets d ∈ {0, 1} such that xd = x and sends
c = d ⊕ b.

4. The commitment z is defined as the triple (x0, x1, c).

Reveal phase S reveals b and the coin tosses r used to
generate the sample x. R checks that X ′(r) = xc⊕b.

Intuitively, the hiding property holds if (X, t) ∈ EAY be-

cause x
R←X ′ is close to uniform and the interactive hashing

protocol ensures that B does not learn anything about d
when A’s input is uniform. If (X, t) ∈ EAN , then by secu-
rity of the interactive-hashing protocol, S cannot force both
x0 and x1 to be in Supp(X ′) since Supp(X ′) is an exponen-

tially small fraction of {0, 1}n′
.

4.2 1-out-of-2 Binding Commitment for EA′

For intuition, we will first consider the construction of an
instance-dependent commitment for EA when X is a flat
distribution. We denote by ΩX (x) the set of coin tosses r
that generate x.

• If X ∈ EAY , then ∀x ∈ Supp(X), ΩX (x) is of size
2m−H(X) ≥ 2m−t+1.

• If X ∈ EAN , then ∀x ∈ Supp(X), ΩX (x) is of size
2m−H(X) ≤ 2m−t−1.

This factor 4 gap (which can be amplified) between YES and
NO instances of EA is similar to the gap between YES and
NO instances of EA we exploited in the previous section. We
will therefore make the sender choose a sample x ← X and
apply interactive hashing to the coin tosses used to generate
x.
7If X and Y are random variables taking values

in U , ∆(X, Y )
def
= maxS⊂U |Pr [X ∈ S] − Pr [Y ∈ S]| =

1
2

P
x∈U |Pr [X = x] − Pr [Y = x]|

Commit phase 1. S generates a sample x ← X using
coin tosses r and sends x. S chooses a random
hash function h : {0, 1}m → {0, 1}m−t.

2. (S, R) then run the interactive hashing protocol
(A, B) with S playing A(h, h(r)) and R playing
B. Their common output is a pair (w0, w1).

3. S lets d ∈ {0, 1} such that wd = w and sends
c = d ⊕ b.

4. The commitment z is defined as (w0, w1, c).

Reveal phase S reveals b and the coin tosses r used to
generate the sample x. R checks that X(r) = x and
wd is of the form (h, h(r)) and rejects if not.

Intuitively, the hiding property holds if (X, t) ∈ EAY be-
cause (h, h(r)) is close to uniform given x (after amplifying
the gap so that |ΩX(x)| ≥ 2m−t+n). If (X, t) ∈ EAN , then
for every x, ΩX (x) is of small size and by security of the
interactive hashing protocol S cannot force both w0 and w1

to be of the form (h, h(r)) for r ∈ ΩX (x).

Let us turn to the case where the distribution X is not
flat. Note that the binding property is violated in the above
commitment scheme for EA if the sample x sent by S is
“too heavy”, i.e. ΩX(x) is of large size. It is known that
by taking k independent copies of X, we can flatten the
distribution X such that most strings in Supp(X) will not be
too heavy. However flattening on its own doesn’t solve the
problem since there still exist some heavy strings under X
and the sender can violate the binding property by choosing
such a string x. Nevertheless, flattening the distribution
X guarantees that there are few heavy strings. Hence we
use another execution of interactive hashing a first time to
constrain the sender’s choice of x, thereby giving us the first
commitment phase of our two-phase commitment scheme.
We can make this idea work for the following restriction of
EA.

The promise problem EA′ = (EA′
Y ,EA′

N) is defined by:

EA′
Y = {(X, t, 1k) : H(X) ≥ t + 1}

EA′
N = {(X, t, 1k) : t − 1/k ≤ H(X) ≤ t ∧ k ≥ p(m, n)},

where X is a samplable distribution specified by a circuit
mapping {0, 1}m → {0, 1}n, t a rational parameter, 1k a se-
curity parameter, p is a fixed polynomial to be determined (p
will emerge from our construction of a 2-phase commitment
scheme for EA′).

Theorem 4.5. EA′ has an instance-dependent 2-phase
commitment scheme that is statistically hiding on YES in-
stances and

`
2
1

´
-statistically binding on NO instances .

Direct product of random variables.

In our construction of an instance-dependent 2-phase com-
mitment scheme for EA′, we will take independent copies of
a random variable hence we need to consider the behavior
of entropy under direct products. If X and Y are random
variables, then X⊗Y denotes the random variable obtained

by taking independent random samples x
R← X and y

R← Y
and outputting (x, y). We write ⊗kX to denote the random
variable consisting of k independent copies of X.
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For every X, Y , H(X ⊗ Y ) = H(X) + H(Y ) and thus
H(⊗kX) = k · H(X). Another well-known and useful fea-
ture of taking direct products is that it “flattens” random
variables, so that probability masses become concentrated
around 2−H(X). (This is known as the Asymptotic Equipar-
tition Property in information theory; see [9].) Our formal-
ization of it follows [17].

Definition 4.6 (heavy, light and typical elements).
Let X be a random variable taking values in a universe U, x
an element of U, and ∆ a positive real number. We say that
x is ∆-heavy (resp., ∆-light) if Pr [X = x] ≥ 2∆ · 2−H(X)

(resp., Pr [X = x] ≤ 2−∆ · 2−H(X)). Otherwise, we say that
x is ∆-typical.

A natural relaxed definition of flatness follows. The def-
inition links the amount of slackness allowed in “typical”
elements with the probability mass assigned to non-typical
elements.

Definition 4.7 (nearly flat distributions). A dis-
tribution X is called ∆-flat if for every t ≥ 1 the probability
that an element chosen from X is t · ∆-typical is at least

1 − 2−t2 .

Lemma 4.8 (Flattening Lemma). Let X be a distri-
bution, k a positive integer, and ⊗kX denote the distribution
composed of k independent copies of X. Suppose that for all
x in the support of X it holds that Pr [X = x] ≥ 2−m. Then
⊗kX is

√
k · m-flat.

Let (X0, t0, 1
k) be an instance of EA′. Let X = ⊗kX0,

m = m0 · k, n = n0 · k and t = t0 · k. We have

(X0, t0) ∈ EA′
Y ⇒ t − 1 ≤ H(X) ≤ t

(X0, t0) ∈ EA′
N ⇒ H(X) ≥ t + k

By taking k independent copies of the original circuit X0,
Lemma 4.8 ensures that X = ⊗kX0 is ∆-flat for ∆ = k7/12

(by setting k ≥ (m0)
12). The key point is that the entropy

gap between the YES and NO instances is linear in k, but
the deviation ∆ from flatness is sublinear. Specifically, we
will use the fact that k 5 s∆ for s = k1/12.

We now describe the 2-phase commitment scheme (S, R)
for EA′:

Pre-processing: Both the sender and verifier apply the
flattening lemma to X0 to obtain the circuit encod-
ing a distribution X as above.

First Commit phase 1. Let rS be the sender’s coin tosses.
S1

c (rS) chooses a random hash function h1 : {0, 1}n →
{0, 1}t−2s∆ and a sample x from the distribution
X.

2. (S1
c (σ1), R1

c) run the constant-round interactive
hashing protocol (A, B) for the setting µ = 2−k

with the sender playing A on input W = (h1, h1(x))
and the receiver playing B. The output of the in-
teractive hashing protocol is a pair (W0, W1).

3. S1
c lets d1 ∈ {0, 1} such that Wd1 = W and sends

c1 = d1 ⊕ σ1.

4. The first commitment z1 is defined as concatena-
tion of the transcript of the interactive hashing
protocol and the triple (W0, W1, c

1).

First Reveal phase S1
r (σ1, rS, z1) reveals σ1 and the sam-

ple x used. R1
r checks that Wc1⊕σ1 is of the form

(h1, h1(x)) and rejects if not. Their common output,
denoted by τ , is the concatenation of the transcripts of
the first commitment phase and the first reveal phase.

Second Commit phase 1. S2
c (τ, rS) chooses a random

hash function h2 : {0, 1}m → {0, 1}m−t−2s∆. Let
r be the sequence of coin tosses used by S1

c to
generate x in the first phase.

2. (S2
c (σ2, rS), R2

c)(τ ) run the constant-round inter-
active hashing protocol (A,B) for the setting µ =

2−k2/3
with the sender playing A on input W ′ =

(h2, h2(r)) and the receiver playing B. The out-
put of the interactive hashing protocol is a pair
(W ′

0, W
′
1).

3. S2
c lets d2 ∈ {0, 1} such that W ′

d2 = W ′ and sends
c2 = d2 ⊕ σ2.

4. The second commitment z2 is defined as the con-
catenation of τ , the transcript of the interactive
hashing protocol and the triple (W ′

0, W
′
1, c

2).

Second Reveal phase S2
r (σ2, rS, z2) reveals σ2 and the

coin tosses r used to generate x. R2
r checks that X(r) =

x and that W ′
c2⊕σ2 is of the form (h2, h2(r)) and rejects

if not.

4.3 Collection of Commitment Schemes for
SZK

Once we have built 2-phase commitment schemes for both
EA′ and EA′, we use the Cook reduction given below to
construct a collection of 2-phase commitments as in Theo-
rem 2.4.

Lemma 4.9. Let (X, Y ) be an instance of ED where the
circuits have input length m and output length n. Then for
every k ≥ p(m,n),

(X, Y ) ∈ EDY

⇒
n·k_

i=0

 
(Y, i/k, 1k) ∈ EA′

Y ∧
î

i′=0

(X, i′/k, 1k) ∈ EA′
Y

!

(X, Y ) ∈ EDN

⇒
n·k̂

i=0

 
(Y, i/k, 1k) ∈ EA′

N ∨
i_

i′=0

(X, i′/k, 1k) ∈ EA′
N

!

For each value of i ∈ {0, · · · , nk}, we build a 2-phase
commitment scheme Comi by combining the commitment
scheme for EA′ and the 2-phase commitment scheme for
EA′. More precisely, in each phase of Comi, we commit
to a value a total of (i + 2) times by running in parallel
the commitment scheme given by Theorem 4.4 for each in-
stance of EA′ and the 2-phase commitment scheme given by
Theorem 4.5 for the instance of EA′. Therefore, we obtain
a collection of t = (nk + 1) 2-phase commitment schemes
Com1, · · · , Comt as in Theorem 2.4.
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